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The Contribution

In 1955, Herbert Simon proposed that economic agents do not optimize, but instead
satisfice [Simon, 1955].

We provide a formal theory built on Reference-Model Based Adaptive Control (MRAC) in
robust control engineering.

The MRAC agent aims to interact with markets in order to produce return distributions
that minimize surprise with respect to a desired (target) reference distribution.

The satisficing agent mostly acts “as if” optimizing, but we discover important – and
realistic – deviations; asset pricing predictions change accordingly.
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Introductory Remarks

1.
There is little work on formally modeling satisficing; Caplin et al. [2011] interpret satisficing as
sequential search towards a level of reservation utility; Murawski and Bossaerts [2016] shows
that humans continue searching way beyond the point where value increases, which casts
doubt on the search-towards-reservation-utility hypothesis.
2.
There are various ways to motivate MRAC. Best is to motivate MRAC as in engineering:
robustness for a nonstationary world.
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MRAC: A Standard Textbook
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1.

The Theory: Setup
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Traditional Control Theory (As in Reinforcement Learning/Computational
Neuroscience; and Core of AI)

Value = “Q Value” and updating is based on “Temporal Difference” (TD Learning)
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MRAC (Model-Reference (Based) Adaptive Control)
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Situating MRAC in Behavioral Economics & Neuroeconomics

Behavioral economists and neuroeconomists have recently embraced the use of reference
models, but for a different reason:

Decoding information under neural constraints: Yamada et al. [2018], Azeredo da Silveira
and Woodford [2019], Polańıa et al. [2019], Vieider [2024].

Value encoding under cognitive constraints: [Louie et al., 2013, Glimcher and Tymula,
2023, Payzan-LeNestour and Woodford, 2022, Frydman and Jin, 2022, Glimcher, 2022].

Extensions of variational Bayes analysis (reference model = “recognition model”):
Samuelson and Steiner [2024], Bossaerts and Rayo [2023].

Roughly speaking, these approaches do not concern robustness, but information loss.
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MRAC and Investments

We will not be interested in adaptation dynamics per se, but in the nature of the control,
and hence, the choices, that obtain at a particular point in time, given beliefs at that
time. Why we can do this? Most of our results hold for large classes of beliefs. For
testing the theory, it suffices to identify which class the agent’s beliefs belong to when she
is making choices.

There is a second dimension in which we simplify analysis: the principal has full control
over the investment; the principal directly controls the optimal investment policy given
the desire to minimize expected surprise
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MRAC and Investments

Define Expected Surprise S as traditional in engineering:

S = (E (R̃ − µ)2 − σ2)2.

R̃ is the return on the chosen portfolio, E is taken with respect to the perceived (“true”)
distribution, and µ and σ are the desired return mean and volatility, respectively. The agent
chooses an investment strategy with (true) volatility x and expected return y .

S =(E (R̃ − y + y − µ)2 − x2 + (x2 − σ2))2

=((y − µ)2 + (x − 0)2 − σ2))2. (1)
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Graphical Representation

Lemma

The set of portfolios which generate surprise S = 0 is a circle with center (0, µ) and radius σ.
We label it the 0-surprise circle.
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The 0-Surprise Circle
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The 0-Surprise Circle

-0.1 0 0.1 0.2

Standard deviation

0

0.05

0.1

0.15

0.2

0.25

0.3

E
x
p

e
c
te

d
 r

e
tu

rn

Agent’s desired (µ, σ)

0−surprise circle

Berrada, Bossaerts & Ugazio Satisficing August 2024 12 / 29



2.

Theoretical Predictions

Berrada, Bossaerts & Ugazio Satisficing August 2024 13 / 29



Case 1: Unique Solution

Define θ = Market Sharpe Ratio (maximal mean excess return per unit of volatility)

Proposition

When the efficient frontier is such that

0 < θ ≤ ytan − RF

xtan

where

ytan =
µ2 − µRF − σ2

µ− RF

xtan =
√
(ytan − µ)(ytan − RF )

the surprise minimizing portfolio is at the tangency point of an ε-surprise circle and EF , and
is unique.
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Case 1: Unique Solution
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Case 1: Unique Solution

-0.1 0 0.1 0.2

Standard deviation

0

0.05

0.1

0.15

0.2

0.25

0.3

E
x
p

e
c
te

d
 r

e
tu

rn

Surprise-minimizing choice: orthogonal
projection on EF

Berrada, Bossaerts & Ugazio Satisficing August 2024 14 / 29



Case 1: Unique Solution
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Case 1: Unique Solution
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Case 1: Unique Solution – as if MV-optimizers...
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Case 2: Multiple Solutions

Proposition

When the efficient frontier is such that

θ >
ytan − RF

xtan

where

ytan =
µ2 − µRF − σ2

µ− RF

xtan =
√
(ytan − µ)(ytan − RF )

there exist multiple surprise minimizing portfolios. They are on the arc of the 0-surprise circle
inferior to EF and superior to nEF .
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Case 2: Multiple Solutions
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Case 2: Multiple Solutions
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Case 2: Multiple Solutions and non-MV behavior
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Why would anyone insist on buying an inefficient portfolio if we can do
better?

ROBUSTNESS!

Excessive specialization for one environment may prove disastrous when the environment
changes (too slow to adapt). MRAC modeling is to ensure one’s reference model affords
converging adaptation in a wide variety of contexts. One notable failure: X-15 crash, 1967.
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Case 2: Limits to Risk Taking

Corollary

When the desired pair (µ, σ) satisfies the conditions of proposition 3, the surprise minimizing
portfolios have risk inferior to the desired level of risk σ.

As a result, there may be equilibrium existence problems, as in credit rationing [Stiglitz and
Weiss, 1981].
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Risk Taking Despite Zero Risk Premium

Corollary

When the desired Sharpe ratio is strictly inferior to one, i.e. µ−RF
σ < 1, the demand for risky

assets is generically positive when the risk premium is 0.

The mean-variance trade-off is only in the mind of the (financial) economist; the MRAC agent
is not averse to risk, on the contrary; she is averse to surprise, i.e., to risk and return that is
“unusual,” and absence of risk is surprising.
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Demand Analysis

N (number of risky assets) = 1.
(The agent trivially holds a mean-variance optimal portfolio)
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Demand as a Function of Price

Expected vol s and return m change with price; Sharpe ratio of risky security (location: plus
sign) decreases as price increases, as below
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Demand as a Function of Price

Proposition

Let Pb denote the price boundary level defined as Pb = (M −Σ ytan−RF
xtan

)(1 + RF ). The demand
function of the risky asset for the surprise minimizing agent with desired (µ, σ) is given by

d(P) =
(µ− RF )θ(P)

1 + θ(P)2
P

Σ

when P ≥ Pb, and, when P < Pb, by

d(P) =
(µ− RF )θ(P)±

√
∆(P)

1 + θ(P)2
P

Σ
,

where θ(P) =
M
P
−1−RF

Σ
P

and ∆(P) = θ(P)2(µ− RF )
2 −

(
(µ− RF )

2 − σ2
)
(1 + θ(P)2).
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Demand as a Function of Price
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3. Conclusion
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Conclusion

We have presented a mathematical model of a satisficing agent based on a core concept in
robust control theory, namely, Model Reference Based Adaptive Control (MRAC). The agent
aims at minimizing expected surprise when targeting a particular expected return and return
volatility. The agent often ends up choosing as if mean-variance optimizing, but the situations
in which she does not provide a unique opportunity to re-visit the many empirical anomalies
recorded since the emergence of the first formal asset pricing model, the CAPM.
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Future Work

1 Bring in adaptation (will require extending traditional RMAC mathematics!); a simple
version is in Bossaerts [2018].

2 Allow the “controller” to be at arms length from investor; the controller can be a
traditional reward optimizer, like a mean-variance optimizer; a simple version is in
Bossaerts [2018].

3 The framework can also be used to represent delegated portfolio management, including
delegation to an algorithmic (robotic) trader.

4 Experimental tests.

5 Neurobiological foundations: re-interpret anterior insula neural activation in response to
surprise using sEEG; change behavior through anterior insula stimulation; based on
application of MRAC (adaptive version) for a simple stochastic target-centering game
[Bossaerts, 2018] (with Fabienne Picard [HUG] and Nina Sooter [UNIGE]).
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