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Abstract

In today’s financial landscape, traditional exchanges compete against online trading
platforms. A critical point of competition centers around transaction costs. While
traditional exchanges adhere to transparent transaction cost structures, many online
trading platforms, under the guise of ‘zero-commission trading’, conceal transaction
costs within their bid-ask spread. In this paper, I show that hidden transaction costs
induce additional volatility in the form of price cycles in markets that would be stable if
transparent transaction costs were charged. To compete with the profit opportunities
from price cycles on platforms with hidden transaction costs, platforms with transparent
costs must reduce them below the optimal monopolist level to attract traders. In this
duopoly, I show that there is a market equilibrium: more risk-averse traders prefer
transparent transaction costs, while less risk-averse traders choose hidden costs. De-
pending on the risk attitudes of traders, transparent transaction costs can be more or
less efficient than hidden transaction costs. Finally, I show that the lack of commitment
to transparent transaction costs can also lead to market failure, as patient traders may
exploit price cycles through strategic market entry, creating a novel Coasian dynamic in
a two-sided market.

Keywords: Market Design, Financial Markets, Transaction Costs
JEL Codes: D44, D47, G10, G12, G14, G23, L13

∗I am grateful for comments and suggestions by Paul Klemperer, Scott Duke Kominers, Heinrich Nax,
Bary Pradelski, Marek Pycia, Alex Teytelboym, participants of the Fall 2023 program ’Mathematics and
Computer Science of Market and Mechanism Design’ at the Simons Laufer Mathematical Sciences Institute,
and the program committee and audience at ACM EC’24. This material is based upon work supported by
the National Science Foundation under Grant No. DMS-1928930 and by the Alfred P. Sloan Foundation
under grant G-2021-16778, while I was in residence at the Simons Laufer Mathematical Sciences Institute
(formerly MSRI) in Berkeley, California, during the Fall 2023 semester.

†Department of Economics and Nuffield College, OX1 3UQ, United Kingdom
E-Mail: simon.jantschgi@economics.ox.ac.uk

1



1 Introduction
In 2023, the global online trading platform market was valued at $43.04 billion USD with
an expected compound annual growth rate of 8.6% between 2024 and 2032.1 This growth
highlights the increasing influence of online trading platforms such as Robinhood, E-Toro,
E*TRADE, Charles Schwab, and WeBull in the financial landscape, positioning them as
significant counterparts to traditional exchanges like the New York Stock Exchange (NYSE).
A key competitive aspect between modern online trading platforms and traditional exchanges
lies in the area of transaction costs. These costs are not only crucial to the functioning of
financial markets, but they also play a significant role in influencing traders’ decisions when
selecting a marketplace to conduct their trading activities.

Traditional exchanges like the NYSE are known for their transparency and predictability in
terms of transaction costs. This is partly due to the stringent regulations imposed by entities
such as the Securities and Exchange Commission (SEC), which enforce strict standards of
operation to ensure fair and orderly markets. Buy and sell prices are determined by prevailing
market conditions, and transaction costs are transparent, often as percentages of transaction
values or as flat rates per share, ensuring traders can readily discern their potential expenses.2

In contrast, modern online trading platforms promote the allure of zero-commission
trading, enticing retail investors with the mirage of an ostensibly cost-free trading environment.
However, a deeper look unveils a nuanced picture: transaction costs on these platforms have
not vanished; they have merely transmuted. Zero-commission platforms predominantly
monetize via two mechanisms: Payment for Order Flow (PFOF) — wherein platforms like
Robinhood sell their order books to market makers such as Citadel Securities,3 or by acting
as market makers themselves, as seen with platforms like E-Toro. A market maker’s modus
operandi differs substantially from a traditional exchange. Instead of allowing prices to be
determined by the natural interplay of market demand and supply, market makers set buy and
sell prices according to their own discretion after observing their orderbook.4 Market makers
and online trading platforms offering zero-commission trading emphasize their critical role in
ensuring liquidity, democratizing market access, and stabilizing markets during exogenous
shocks by absorbing volatility.5

1See, e.g., the Online Trading Platform Global Market Report by Expert Market Research (2023).
2Tradition exchanges like the NYSE employ multifaceted fee structures that fluctuate based on diverse

parameters, such as the types of participants (e.g., adding vs. removing liquidity) and the nature of the trade.
For instance, a transaction that removes liquidity might be charged a fee of approximately $0.0030 per share.
Alternatively, some trades are subject to fees as a percentage of the trade value, around 0.1%.

3As of the first quarter of 2023, around 70% of Robinhood’s total net revenue of $441 million was generated
through PFOF. Citadel Securities spent approximately $2.6 billion annually on PFOF across 2020 and 2021.

4U.S. Securities and Exchange Commission (2005) allows market makers some discretion in setting spreads
to maintain a competitive, efficient market, permitting them to adjust spreads as market conditions change.
However, it’s important to distinguish these market makers from Designated Market Makers (DMMs) on
traditional exchanges like the NYSE, who serve as liquidity providers by consistently posting transparent
bids and asks.

5Citadel Securities emphasizes their role in ensuring quick and fair trading under all con-
ditions, thereby generating market confidence (https://www.citadelsecurities.com/what-we-do/
what-is-a-market-maker/).
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However, the practices of market-making and PFOF have attracted significant regulatory
attention.6 Regulator’s concerns are rooted in issues of transparency, and the overarching
question of whether these mechanisms serve the best interests of retail investors or have the
potential to disrupt the integrity of financial markets. Most of the scrutiny surrounding these
practices hinges on the potential for conflicts in best price execution, particularly through the
imposition of wider bid-ask spreads which can disadvantage the trader in pursuit of profits.

1.1 My Contribution

In this paper, I study how hidden transaction costs, attributable to market makers and zero-
commission trading on modern online trading platform, compare to transparent transaction
costs and ask the following question: How does the (in)transparency of transaction costs
impact a market, and what are the implications for both traders and the market platform?

I consider a dynamic market environment, where traders arrive on a market platform at a
constant rate. They can either be sellers, who wish to sell, or buyers, looking to purchase
a homogeneous commodity. Upon entry, traders place limit orders, detailing the maximal
price at which they are willing to purchase the commodity or the minimal price at which
they are willing to sell the commodity. At fixed time steps, the market platform observes the
orderbook, determines a buy and a sell price for the commodity, and executes subsets of buy
and sell orders at those prices. The difference between the buy and sell price, known as the
bid-ask spread, is the platform’s revenue. The market platform sets the bid-ask in one of two
ways:

1. Hidden transaction costs (e.g. zero-commission models). The platform sets buy and
sell prices at their own discretion to maximize revenue after observing the orderbook.

2. Transparent transaction costs (e.g. fees on traditional exchanges). The platform sets
buy and sell prices as ex-ante communicated functions of the market-clearing price.

Traders, whose order was executed, exit the market, while traders, whose order was not
executed, remain for the next trading round with some probability or cancel their order.

The first contribution of this paper is to demonstrate that while transparent and hidden
transaction costs may produce equivalent market outcomes in a static environment — yielding
similar revenue for the platform and surplus for traders — this equivalence drastically breaks
down in a dynamic market environment. Hidden transaction costs introduce volatility
by creating price cycles in markets that would otherwise remain stable under transparent
transaction costs. This finding directly challenges the conventional view that market makers
and online trading platforms reduce volatility. The volatility arises because market makers

6The SEC in the U.S. has scrutinized PFOF, addressing concerns in their Regulation Best Execution
proposal Securities and Exchange Commission (2022). In Europe, PFOF faces bans, with the UK’s FCA
leading since 2012 Financial Conduct Authority (2012), and ESMA finding it incompatible with MiFID II,
indicating stricter EU standards European Securities and Markets Authority (2021). Furthermore, market
makers are rigorously regulated by the SEC’s Division of Trading and Markets to ensure fair trading practices
and maintain market integrity.
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can exploit accumulated excess demand and supply by adjusting the spread. As profitable
orders accumulate unexecuted due to spread constraints, the market platform can profit by
temporarily narrowing the spread to increase trading volume. Once the excess demand or
supply is cleared, the platform reverts to a wider spread, creating cyclical price movements.
In contrast, a platform with transparent transaction costs cannot engage in such adjustments.
Because these platforms commit upfront to a fixed cost structure, they cannot manipulate
the spread to clear accumulated orders. The key reason is that the accumulated unexecuted
orders do not influence the market-clearing price under transparent costs. As a result, the
bid-ask spread remains constant over time, leading to a more stable and predictable market
environment.

The second contribution is to show how the additional volatility on market platforms with
hidden transaction costs affects its competition against a market platform with transparent
transaction costs. I establish the existence of a market equilibrium, where transparent
transaction costs must be charged below the optimal monopolist level to compete against the
additional profit opportunities from price cycles. The optimal transparent transaction cost
depends on the risk attitude of traders. Higher levels of risk aversion allow a market platform
to charge transparent transaction costs at a higher rate. Surprisingly, there is a cross-over
effect, when it comes to average market efficiency. For high levels of risk aversion, transparent
transaction costs are on average less efficient than hidden transaction costs, but this reverses
for low levels of risk aversion, where transparent transaction costs are more efficient. If traders
have different risk attitudes, in equilibrium, there is a natural market segmentation: Traders
with higher risk aversion favor the reliability of transparent transaction costs, while traders
with lower risk aversion favor the additional profit opportunities of hidden transaction costs.

The third contribution of this paper is to study how the sophistication of traders affects
market dynamics. In markets with transparent transaction costs, the spread remains stable
and predictable over time, which means traders cannot influence their deals, making price-
taking the optimal strategy. However, in markets with hidden transaction costs, patient
traders can exploit predictable price cycles through a sophisticated strategy of market entry,
potentially bringing the market to failure. This market failure represents a novel Coasian
dynamic in a two-sided environment, where the platform’s inability to commit to transparent
transaction costs is the root cause of instability. Unlike classical Coasian scenarios where
traders exert market power by waiting for favorable prices, here, prices are not announced in
advance. Thus, patient traders cannot force the spread to narrow simply by waiting. However,
if patient traders can anticipate the structure of price cycles, they can place aggressive orders
that only execute when market conditions are favorable. If all traders adopt this strategy, the
market’s orderbook drastically narrows, causing price cycles to evolve with a smaller baseline
spread. Anticipating this, iterative reasoning leads to best response strategies where the
revealed demand and supply only support spreads that are unprofitable for the platform if it
has to cover fixed costs. As a result, the market fails. This outcome theoretically supports
the folk-wisdom that zero-commission market platforms with hidden transaction costs must
attract unsophisticated traders to remain profitable.
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1.2 Related literature

The importance of transaction costs in markets has been recognized at least since Coase
(1960). Demsetz (1968) pioneered the analysis of the impact of such costs on financial markets.

Transparent transaction costs are well-studied in continuous-time models (representing
stock exchanges in business hours) and discrete-time batch auctions (similar to off-hours
clearing). Their impact is summarized as follows: First, higher transaction costs lead to a
broader bid-ask spread, reducing trading volume, see, e.g., Barclay et al. (1998) and Noussair
et al. (1998). Second, competition between exchanges generally decreases transaction costs,
see Cantillon and Yin (2011) for a survey. Third, the break-down of fees between liquidity
demanders and suppliers matters (Colliard and Foucault 2012, Foucault et al. 2013, Malinova
and Park 2015). For discrete time models, transparent transaction costs have received
attention in the literature on mechanism design, analyzing their impact on trader’s incentives
and market efficiency (Tatur 2005, Chen and Zhang 2020, Jantschgi et al. 2023). I add to
this literature by providing a novel model to study transparent transaction costs, and show
that they lead to stable outcomes in dynamic markets.

Hidden transaction costs emerge when market makers set bid-ask spreads at their discretion.
The market microstructure literature typically views market makers as providers of immediacy,
with the spread as their service fee for providing and holding risky assets, see O’Hara (1998)
or Madhavan (2000). The main thrust of this literature is concerned with how the spread is
affected by traders with different levels of asymmetric information (Glosten and Milgrom
1985, Kyle 1985) and risk attitudes of market makers (O’Hara and Oldfield 1986) in the face
of uncertainty. Their key finding is that uncertainty, insider trading risks, and varying risk
aversion levels can result in a dynamic spread. I extend this literature by showing how the
accumulation of excess demand and supply prompts market makers to modify the bid-ask
spread, even without uncertainty, risk, or insider information, in a framework where the
asset’s value is dictated entirely by current demand and supply. This insight starkly contrasts
with the classical belief that market makers stabilize markets and volatility is only caused by
informational asymmetries and external shocks.

It has been well-established that market makers, zero commission models, and hidden
transaction costs are linked to PFOF (Chordia and Subrahmanyam 1995, Kandel and Marx
1999, Battalio and Holden 2001, Parlour and Rajan 2003). The main thrust of the literature
on PFOF finds that it leads to wider bid-ask spreads, justifying regulatory concerns regarding
best execution guarantees. More recent work includes Battalio and Loughran (2008), Anand
et al. (2016), Battalio et al. (2016), Ernst and Spatt (2022) for more recent work. This
paper adds to this literature by providing a novel theoretical model to study zero-commission
models and by uncovering new layers of potential conflicts like additional volatility, strategic
incentives, and profit opportunities. Moreover, by studying platform competition, I provide
theoretical justification for the empirical finding that hidden transaction costs can lead to
wider bid-ask spreads than transparent transaction costs.
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High volatility and cyclical price patterns are well-documented in various economic
contexts. Most relevant to this paper is the cyclical pricing observed for a durable goods
monopolist, where the arrival of new traders and the accumulation of excess demand lead to
additional volatility, as demonstrated by Conlisk et al. (1984) and Sobel (1991). In financial
markets, significant price jumps are frequently linked to major news revelations following
information aggregation failures, often due to irrational behaviors like informational cascades
(Bikhchandani et al. 1992) and herding (Banerjee 1992, Shiller 1995). Some models can
generate big price movements without substantial news, based on strategic interactions of
rational traders (Bulow and Klemperer 1994) and failure of information aggregation due to
transaction costs (Lee 1998). In gasoline retail markets, asymmetric price cycles with small
price decreases and large price increases are regularly observed (Eckert 2002, Noel 2007, Wang
2009). These so-called Edgeworth cycles, often linked to tacit collusion, can be explained by
oligopolistic price competition (Maskin and Tirole 1988, Noel 2008). In particular, my model
is similar to Nisan (2023)’s work on cyclical price patterns on blockchains driven by excess
demand. Complementary, this paper explains cyclical price patterns on two-sided market
platforms, even in the absence of irrational behavior or competition, as a result of hidden
transaction costs and accumulation of excess demand and supply, similar to a durable good
monopolist, who sets transaction costs instead of prices.

My paper connects to the dynamic revenue management literature (van Ryzin and Talluri
(2005),McAfee and Wiseman (2008), Hörner and Samuelson (2011), Board and Skrzypacz
(2016)), and to studies exploring monopolists’ decisions between price discrimination and fixed
pricing in the presence of strategic buyers, particularly in relation to the Coase Conjecture
(Coase (1972), Stokey (1981), Gul et al. (1986), Board and Pycia (2014), Brzustowski et al.
(2023)). The key contribution of this paper is uncovering a novel Coasian dynamic within a
two-sided market, where the monopolist is not pricing goods but rather setting transaction
costs. Unlike traditional Coasian scenarios, where strategic buyers exert power by timing
their entry, in this environment, prices are not publicly announced. Instead, traders exercise
their market power by strategically submitting aggressive orders that only execute under
favorable market conditions.

Finally, by examining competition among financial platforms with varying transaction
cost models, I add to the extensive body of research on platform competition, c.f., Rochet
and Tirole (2003) and Armstrong (2006). This paper specifically contributes to the discourse
on fee competition, see, e.g., Weyl (2010), Tan and Zhou (2021), and Teh et al. (2023).
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2 The Model

2.1 The Static Market

The Traders. I consider a market in which a continuum of traders play one of two roles:
sellers sell and buyers buy units of a homogeneous commodity. B denotes the set of buyers
and S denotes the set of sellers, which are closed intervals in R.7 Every trader i ∈ B ∪ S
submits a limit order oi = (qi, vi) to a market platform, consisting of the quantity qi that
they want to trade, and a value vi. Without loss of generality, I assume that for every trader
i, vi ∈ [1, 2]. For a buyer b, the value vb is called a bid and represents the maximum price
at which they are willing to purchase one unit of the good. For a seller s, this value vs is
called an ask and represents the minimum price at which they are willing to sell one unit
the good. Let qB : B → [0, 1] and qS : S → [0, 1] denote Borel-functions assigning each buyer
and seller their preferred quantity of trade. Similarly, let vB : B → [1, 2] and vS : S → [1, 2]
denote Borel-functions assigning each trader their value. Let µB and µS be two absolutely
continuous measures on B and S with densities qB(·) and qS(·). µB and µS describe the
distribution of traders, with their mass being equal to their preferred quantity of trade. Let
µt
B and µt

S denote the push-forward measures of µB and µS on [1, 2] via the functions vB and
vS. µt

B and µt
S describe the distribution of values on [1, 2], taking their size into account.

Demand and Supply. Buy and sell orders are aggregated to demand and supply functions,
which specify the mass of traders, who, given their orders, are willing to trade at price P .8

D(P ) = µB({b ∈ B : vb ≥ P})= µt
B([P, 2]) (Demand Function)

S(P ) = µS({s ∈ S : vs ≤ P})= µt
S([1, P ]) (Supply Function)

Assumption (Analytical Properties of Demand and Supply). Demand and
supply are C1-functions, with demand being strictly decreasing on [1, 2] and supply being
strictly increasing on [1, 2]. Their derivatives are strictly bounded from above and below on
[1, 2]. The total mass of orders is one for each market side.

The unique market-clearing price Peq equates demand and supply, that is, D(Peq) = S(Peq).

The Market Platform. A market platform facilitates trade as follows: It sets a buy price
Pb and a sell price Ps and execute subsets B∗ ⊂ B and S∗ ⊂ S of buy and sell orders. Buyers
with executed order pay the buy price Pb per unit, and sellers with executed order receive the
sell price Ps per unit. A key constraint is trade-balance, that is, µB(B∗) = µS(S∗). The gap
between buy and sell price, called the bid-ask spread, is σ = Pb − Ps ≥ 0. Market platforms
determine the terms of trade according to one of two transaction costs (TCs):

7Studying markets with continuum of traders dates back to Aumann (1964).
8Jantschgi et al. (2022) demonstrate that in finite markets with n traders on both sides, demand and

supply step functions approximate continuous curves at a rate of O(n−1/2). Considering the usual depth of
order books, a trader continuum is thus an effective approximation.
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• Transparent TCs. The platform executes all buy orders above and all sell orders below
the market clearing price: B∗ = {b ∈ B : tb ≥ Peq} and S∗ = {s ∈ S : ts ≤ Peq}. Buy
and sell prices are set as continuous and strictly increasing functions of Peq, which the
traders know ex-ante: Pb = FB(Peq) ≥ Peq and Ps = FS(Peq) ≤ Peq.9 For example, a
price fee p ∈ (0, 1) with FB(P ) = (1 + p)P and FS(P ) = (1− p)P .

• Hidden TCs. The platform sets buy and sell price at their own discretion after
observing demand and supply. All buy orders with bid above the buy price and sell
orders with ask below the sell price are executed, that is, B∗ = {b ∈ B : tb ≥ Pb} and
S∗ = {s ∈ S : ts ≤ Ps}. Trade-balance imposes D(Pb) = S(Ps).

I use the term transparent for transaction costs directly tied to the market clearing price.
When traders know the market environment and equilibrium price, they can fully discern
their transaction costs and the resulting buy and sell prices. In contrast, hidden transaction
costs occur when the platform sets buy and sell prices at its discretion, making it impossible
to separate the market price from additional fees ex-ante. As noted in the Introduction,
transparent costs are common on major stock exchanges, while hidden costs often appear on
zero-commission platforms that sell order flow to third-party market makers. In this model,
the market platform combines the roles of a zero-commission broker collecting limit orders
and the market maker executing the trades.

Trader’s Behavior. A trader’s true value is such that they are indifferent to trading, if
it coincides with their total payment. In order to not make losses, traders must guarantee
ex-post individual rationality : buyers should trade only if the buy price is below their value,
and sellers should trade only if the sell price exceeds theirs. The net value vnetb of a buyer b is
the largest bid that guarantees ex-post individual rationality. Similarly, the net value vnets of
a seller s is the smallest ask that guarantees ex-post individual rationality.

• Transparent TCs. Net values are different from true values. The set of executed orders
depends on the market-clearing price, with transaction costs added ex-post. If traders
report their true value, they risk trades where the market-clearing price matches their
value, leading to a loss due to transaction costs. For a buyer b, the net value vnetb is
vnetb = F−1

B (vb). For a seller, the net value vnets is vnets = F−1
S (vs).10 Thus, net values are

continuous and strictly increasing in the true value. For a price fee p, net values are
vnetb = vb

1+pb
and vnets = vs

1−ps
.

• Hidden TCs. Net values are equal to true values. Reporting the true value is ex-post
individually rational. That is, because a buyer is involved in trade, if and only if their
bid is above the buy price, and a seller is involved in trade, if and only if their ask is
below the sell price.

9Strict monotonicity ensures that buyers prefer lower market-clearing prices, while sellers prefer higher
ones. Equivalently: In addition to Peq, the platform charges transaction costs as functions of Peq, ΦB(Peq)
and ΦS(Peq). The buy price is Pb = Peq +ΦB(Peq) and the sell price is Ps = Peq − ΦS(Peq).

10This follows from the necessary and sufficient equations vb − FB(v
net
b ) = 0 and FS(v

net
s ) − vs = 0. A

formal derivation of net values can be found in Jantschgi et al. (2023).
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Reporting the net value is the least aggressive bid that guarantees ex-post individual
rationality. I call this behaviour truthfulness or price-taking. Let D0(·) and S0(·) denote the
net demand and supply, adjusting true demand and supply for net values. Given that net
values are continuous and strictly increasing, net demand and supply inherit the analytical
properties from true demand and supply.

Assumption (Price-Taking Behavior). Until Section 6, I assume that upon arrival on
the platform, traders act as price-takers and do not strategically misrepresent their value.

In a static market, price-taking is the optimal strategic.11 However, in the dynamic market,
it will turn out that this behaviour can be thought of as myopic, as traders, who properly
understand the market evolution outlined in Sections 3 and 4, can, in some cases, benefit
from strategically misrepresenting their bid, see Section 6.

Market Metrics. Trade volume is the mass of all active buyers and sellers. For an active
trader, welfare is the difference between their valuation and the price, scaled by the order size.
Total Welfare is given by the welfare of all active traders. Revenue is the bid-ask spread, times
the trading volume. Realized gains of trade are the sum of welfare and revenue. The gross
gains of trade correspond to the maximum possible gains, which occur when the spread is
zero and trade happens at the equilibrium price. The loss measures, how much gains of trade
are lost due to a strictly positive spread. The market efficiency measures as a percentage,
how many gains of trade are realized. More formally:

Q = µB(B∗) = µS(S∗) (Trade Volume)

W =

∫
B∗
(vb − Pb) dµB(b) +

∫
S∗
(Ps − vs) dµS(s) (Welfare)

R =

∫
B∗
Pb dµB(b)−

∫
S∗
Ps dµS(s) = (Pb − Ps) ·Q (Revenue)

Greal =

∫
B∗
vb dµB(b)−

∫
S∗
vs dµS(s) (Realized Gains of Trade)

Ggross =

∫
Beq

vb dµB(b)−
∫
Seq

vs dµS(s) (Gross Gains of Trade)

L = Ggross −Greal (Loss)

E =
Greal

Ggross
(Efficiency)

The gross gains of trade are thus equal to the sum of traders’ welfare, revenue and loss,
that is Ggross = W +R + L. We identify market performance with the triple (W,R,L).

11Jantschgi et al. (2023) find that in finite markets, strategic behavior in the presence of transaction
costs converges to price-taking at a rate O( 1n ). Therefore, under the large market assumption, price-taking
accurately reflects optimal market behavior.
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Static Market Equivalence

In a static market, it turns out that hidden and transparent transaction costs are equivalent:

Proposition 2.1 (Static equivalence). In a static market, the same set of market performances
can be achieved with transparent transaction costs and hidden transaction costs.

Intuition. For hidden transaction costs, the market performance is fully specified by the
rectangle with height equal to the trading volume and width equal to the chosen spread that
fits under the true demand and supply curve, see left-hand side of Figure 1. For transparent
transaction costs, the market performance is also fully specified by the trading volume, that
is, the intersection of revealed demand and supply. The market performance is then equal
to the largest rectangle with height equal to that trading volume that fits under the true
demand and supply curve, see right-hand side of Figure 1. For any height of that rectangle,
transparent transaction costs can be scaled such that they intersect exactly at that height.
The formal of this last claim can be found in Jantschgi et al. (2023, Proposition12).

Example 2.2 (Static market with linear demand and supply). Suppose that true values of
traders are such that demand is D(P ) = 2− P and supply is S(P ) = P − 1 on [1, 2]. If the
market platform sets the spread at their own discretion, traders report their true value. Thus,
revealed demand and supply are D0(P ) = 2− P and S0(P ) = P − 1 on [1, 2]. If the market
platform charges a price fee p, that is, Pb = (1 + p)P eq and Ps = (1− p)P eq, traders report
their net value, that is, tnetb = tb/(1 + p) for buyers and tnets = ts/(1− p) for sellers. Thus, revealed
demand and supply are D0(P ) = 2− (1 + p)P and S0(P ) = (1− p)P − 1. Figure 1 compares
revealed demand and supply, as well as the market performance, for the two transaction cost
models.

((a)) Choosing the spread σ = Pb − Ps ((b)) Choosing the price fee p

Figure 1: Market performance in a static market. This figure shows the market
performance for hidden transaction costs (Left) for a transparent price fee (Right). In both
cases, the market performance is fully specified by the trading volume: The revenue (blue) is
equal to the largest rectangle with height equal to the trading volume that fits under true
demand and supply. The trader’s surplus (green) is the area to the left and right of the
revenue rectangle. The loss (red) is the area above the revenue rectangle.

The following table shows analytical expressions for the market performances:
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Market Price Buy price Sell price Volume Revenue Welfare Loss

Spread σ 3
2

3+σ
2

3−σ
2

1−σ
2

σ−σ2

2
1−2σ+σ2

4
σ2

4

Price fee p 3
2

3(1+p)
2

3(1−p)
2

1−3p
2

3p−9p2

2
1−6p+9p2

4
9p2

4

In line with Proposition 2.1, the two transaction cost structures are equivalent. That is,
for σ = 3p, the market performances coincide. For linear demand and supply, revenue is
maximized, when the spread is set as σ = 0.5, or equivalently, if the price fee is set as p = 1

6
.

2.2 The Dynamic Market

Next, I consider a dynamic extension of the static market environment.

Arrival of Traders. At discrete time steps t = 1, 2, . . ., new buyers and sellers enter the
market platform. Real-world markets often face exogenous shocks, causing dynamic shifts in
demand and supply. One key result of this paper is that transaction costs can potentially
introduce volatility into an otherwise stable market. To minimize the impact of modeling
choices on volatility, I assume the following for the main part of the paper:

Assumption (Homogeneous Arrival). The arrival of new traders is homogeneous,
that is, the value distributions of incoming buyers and sellers are constant over time. Let
D0(P ) and S0(P ) be the baseline demand and supply, already accounting for net values.
Incoming demand and supply satisfy the analytical properties imposed in Section 2.1. More-
over, I assume that for D0(·) and S0(·), there exists a unique revenue-maximizing spread σ0.

This provides the foundation for analyzing market dynamics without introducing volatility
through the model itself. The uniqueness of σ0 will ensure that there are no selection and
tie-breaking issues in the baseline market. This assumption can be relaxed by allowing for
exogenous shocks to demand and supply. The main results of the paper qualitatively extend.12

Clearing Events. At each time step t, the market platform observes the current market
condition, that is, the revealed demand and supply Dt(P ) and St(P ) of all traders currently
in the market. As in Section 2.1, the platform sets buy and sell prices using hidden or
transparent transaction costs, and executes subsets of active limit orders.

Thus, the dynamic market model is that of frequent batch auctions, where multiple or-
ders are executed simultaneously. Although traditional financial exchanges usually operate in
continuous time, they use batch auctions to clear accumulated off-hours offers, determining
the next day’s opening price. Budish et al. (2015) suggested that frequent batch auctions could
mitigate the ’High Frequency Arms Race’ by reducing mechanical arbitrage rents. Moreover,

12Detailed simulations of this claim will be available in the near future in an Online Appendix.
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market makers also frequently bundle client’s orders. Hence, frequent batch auctions provide
a realistic and unified mechanism to understand the impact of different transaction costs.

It is important to note that this model does not address the frequency at which frequent
batch auctions should occur; instead, it assumes a given frequency with associated incoming
demand and supply as exogenously determined. The trade-off between longer trading periods,
which increase market thickness, and shorter trading windows, which reduce waiting times,
lies beyond the scope of this paper, and is well-studied (without transaction costs), see, e.g.
Mendelson (1982), Loertscher et al. (2022). However, this trade-off is particularly relevant in
the context of contracting Payment for Order Flow and for designing optimal batch auctions
with transaction costs, and is thus an interesting avenue for future research.

Departure of Traders. Traders, whose order was executed in round t, leave the market.
Traders with unfulfilled orders remain in the market for round t+ 1 with some probability.
Let Zt

D(P ) denote the built-up demand corresponding to unfulfilled buy orders after round t.
Similarly, let Zt

S(P ) denote the built-up supply after round t. More formally:

Zt
D(P ) =

(
Dt(P )−Qt

)
1{P≤P t

eq} and Zt
S(P ) =

(
St(P )−Qt

)
1{P≥P t

eq} (Transparent TCs)

Zt
D(P ) =

(
Dt(P )−Qt

)
1{P≤P t

b} and Zt
S(P ) =

(
St(P )−Qt

)
1{P≥P t

s} (Hidden TCs)

Assumption (Memoryless Departure). The departure of traders with unfulfilled
orders is memoryless : Limit orders, which are not executed in round t, remain in the market
for round t+ 1 with probability ϵ, or are deleted with probability 1− ϵ. Thus, at round t+ 1,
demand and supply are

Dt+1(P ) = ϵ · Zt
D(P ) +D0(P ) and St+1(P ) = ϵ · Zt

S(P ) + S0(P ) (Market Evolution)

For an illustration of the demand and supply dynamics in the first trading rounds, please
refer to Figure 2 (b) in Section 3 for hidden transaction costs, and to Figure 4 (b) in Section 4
for transparent transaction costs.

In financial markets, unexecuted limit orders remain in the order book, awaiting price
movements for execution.13 Market makers hold orders until execution or client cancellation,
not deleting them arbitrarily. Therefore, the assumptions on departure and market evolution,
where orders remain active until fulfilled or canceled, align well with real-world practices.
The assumption of equal departure rates for buyers and sellers is not crucial to this analysis.
The results for transparent transaction costs remain unchanged, while the results for hidden
transaction costs are qualitatively extended. The main technical challenge arises from the
asymmetric buildup of excess demand and supply, which skews the market over time.14

13Hollifield et al. (2006) found that around 70% of welfare loss was due to non-execution of limit orders,
often because of transaction costs.

14An Online Appendix with detailed simulations will be available soon.
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Long-Run Performance. The superscript t denotes market metrics in round t. Let
Σ = (σt)t≥1 denote a sequence of spreads. Define the long-run averages as

W∞(Σ) = lim
T→∞

∑T
t=1W

t(σt)

T
(Average Welfare)

R∞(Σ) = lim
T→∞

∑T
t=1R

t(σt)

T
(Average Revenue)

L∞(Σ) = lim
T→∞

∑T
t=1 L

t(σt)

T
(Average Loss)

E∞(Σ) = lim
T→∞

∑T
t=1E

t(σt)

T
(Average Efficiency)

Note that for average efficiency, if Ggross represents the gross gains of trade for incoming
value distributions D0(·) and S0(·), then E∞(σ) = limT→∞

∑T
t=1 G

t
real(σ

t)

T ·Ggross
. The definitions are

equivalent as trade timing is irrelevant for the long-run average. Each round adds Ggross, so
T ·Ggross measures potential trade over T rounds, and

∑T
t=1 G

t
real measures realized gains.

3 Hidden TCs lead to Predictable Price Cycles
In the following section, I analyze the evolution of the bid-ask spread, if the platform charges
hidden transaction costs. For the main part of the paper, I make the following assumption:

Assumption (Myopic Revenue Maximization). The platform charging hidden transac-
tion costs sets the spread to myopically maximize per-round revenue, i.e., σ = argmaxσ∈[0,1]R(σ).
In case of ties, the platform opts for the smaller spread with a larger trading volume.

This assumption facilitates a more straightforward and intuitive analysis of the primary
economic driving forces. While myopic revenue maximization may be reasonable due to mar-
ket volatility and the unpredictability of long-term forecasts — especially in high-frequency
trading, where operations exploit quick-changing price variations — it’s also natural to study
the maximization of long-run average revenue. In Appendix A.2, I extend the analysis to a
platform selecting a sequence of spreads to maximize average revenue. The main qualitative
insights of Theorem 3.1 and Theorem 3.2 below extend, as demonstrated in Theorem A.2.

Existence of Price Cycles. In a first step, I show that the sequence of realized spreads is
not constant over time, even though the arrival and departure of traders is homogeneous.
Instead, there emerge price cycles. Recall that for the incoming baseline demand and supply,
I assumed that the revenue-maximizing spread is unique and denoted by σ0. This baseline
spread σ0 will play an important role, as the starting point of the price cycles.
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Theorem 3.1 (Hidden TCs ⇒ Price Cycles.). If a market platform charges hidden transaction
costs, the market-clearing price is constant over time. However, the bid-ask spread evolves as
follows:

• Monotonicity. For all t>1, σt = σ0 or σt < σt−1.

• Upper & lower bound. There exists a spread σ∗ > 0, such that for all t > 1,
σ∗≤σt ≤σ0.

• Cycles. There exist infinitely many t with σt = σ0. If the departure rate 1 − ϵ is
sufficiently low, there exist infinitely many t′ with σt ̸= σ0.

This result may seem surprising at first glance. The market environment is stable, as
traders arrive and depart at a constant rate, leading to a stable market-clearing price. Why
would it be optimal for a platform to adjust the spread over time?

Intuition. After some time, the platform can profit from built-up excess demand and
supply. In the second round, there is built-up demand on the interval [P 0

b , 2] and built-up
supply only on the interval [1, P 0

s ] from orders, which were not executed in the first round,
and which remain active. If the departure rate is sufficiently low, after some trading rounds
at the baseline spread, enough excess demand and supply has accumulated, such that it
becomes profitable to lower the spread and clear more trades. However, once the market is
cleared at a certain spread, all the excess demand and supply for this spread is gone. Thus, if
the market were to clear again at the same spread. It would clear only baseline demand and
supply, for which the baseline spread σ0 is optimal. Hence, after deviating from the baseline
spread, the spread must keep on strictly decreasing or jump back up to the baseline spread.
However, due to the non-zero departure rate, excess demand and supply does not build up
forever. Thus, at some point, most profitable excess demand and supply has been cleared. At
this point, it is optimal for the platform to revert back to a wider spread that is optimal for
the baseline demand and supply. Thus, a next cycle starts. The formal proof of Theorem 3.1
is relegated to Appendix B.2.

Predictability of Price Cycles. Next, I demonstrate that the sequence of the bid-
ask spread is not just unstable; it follows a consistent and predictable pattern. To describe
this pattern, I introduce the following notation: Let Σ[T1,T2] = (σt)T1≤T≤T2 denote the sequence
of realized spreads in the time interval [T1, T2]. A key focus will be on identifying points in
time when a new lowest-ever spread occurs, followed immediately by a spread that returns to
the baseline level. I define the n’th price cycle Cn as

Cn = Σ[tn−1+1,tn] for t0 = 0 ∧ tn = inf{t ≥ tn−1 : σ
t ≤ σtn−1 ∧ σt+1 = σ0}. (Price Cycles)

The next theorem shows price cycles are finite and follow a recurrent pattern.
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Theorem 3.2 (Predictability of price cycles). Consider a market platform with hidden
transaction costs. The nth price cycle is finite. ∀t ∈ [tn−1, tn], if σt ≥ σtn−1, then σt = σt−tn−1.

Let
⋃n−1

i=1 Ci denote the concatenation of the first n− 1 price cycle. Theorem 3.2 implies
that n’th price cycle Cn repeats

⋃n−1
i=1 Ci, until it is broken by a new global minimum. This

theorem has multiple interesting implications. First, each spread, that is realized for the first
time, must be a new global minimum. Second, the endpoints of each cycle, that is, σtn , a
global minimum. This sequence is monotone. Thus, the lower bound in Theorem 3.1 implies
that the sequence of the minimal spread is converging over time. Moreover, the theorem
implies that sequence of realized bid-ask spreads is countable, possibly finite. Excess demand
and supply builds up continuously over time, changing the market environment. So why does
the same pattern of prices emerge consistently?

Intuition. At the end of every price cycle, the market was cleared at the global mini-
mum spread. Thus, the only way to profit from the excess demand and supply from past
price cycles is to clear the market at a new global minimum. For any wider spread, excess
demand and supply that is cleared in the n’th cycle is the one that built up during that
particular cycle. Given that the arrival process is homogeneous and the departure process is
memoryless, excess demand and supply builds up in the exact same way as in the n− 1’st
price cycle. Thus, it is optimal to clear the market in the same way, unless the price cycle is
broken by clearing the market at a smaller spread than ever before. The proof of Theorem 3.2
is relegated to Appendix B.3.

Example 3.3 (Hidden TCs in a market with linear demand and supply). Suppose that the
incoming distribution of demand and supply is linear, see Example 2.2, and that traders with
unexecuted orders depart at a rate 1− ϵ = 0.05. That is, before the second trading round,
an unexecuted limit order is deactivated with a probability of five percent. In the second
trading round, demand and supply are as follows: 95% of orders from round 1, which where
not executed, remain in the market, and new demand and supply arrives. Suppose that the
market platform charges hidden transaction costs.

In the first trading round, there is no built-up demand and supply, and thus baseline
spread is optimal, that is, σ1 = σ0. In the second and third round, the platform profits from
built-up excess demand by successively tightening the spread, that is, σ3 < σ2 < σ1 = σ0. In
the fourth trading round, it becomes optimal to clear at the baseline spread again. Thus, in
line with Theorem 3.2, a first price cycle of length 3 evolves already in the first four trading
rounds, given by C1 = (σ1, σ2, σ3). Figure 2 shows the evolution of demand and supply, as
well as the optimal bid-ask spread for the first four trading rounds.
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((a)) 1st round: P 1
b = 1.75, P 1

s = 1.25, σ1 = 0.5 ((b)) 2nd round: P 2
b ≈ 1.69, P 2

s ≈ 1.31, σ2 ≈ 0.38

((c)) 3rd round: P 3
b ≈ 1.65, P 2

s ≈ 1.35, σ2 ≈ 0.3 ((d)) 4th round: P 4
b = 1.75, P 4

s = 1.25, σ4 = 0.5

Figure 2: Short-run dynamics for hidden TCs. This figure shows the evolution of
demand and supply, buy and sell prices, and the bid-ask spread for the first four trading
rounds in a market with linear demand and supply, departure rate 1− ϵ = 0.05.

However, in the second cycle, starting at trading round four, a different pattern emerges.
While it indeed holds that σ5 = σ2, σ6 ̸= σ3. Instead, σ6 is equal to a new global minimum.
This is again in line with Theorem 3.1. Each time a new spread is realized, it has to be a
new global minimum. Figure 3 shows the long-run evolution of the market.

Figure 3: Long-run dynamics for hidden TCs. Evolution of buy and sell prices (Top.)
and spread (Bottom.) in a market with linear demand and supply, departure rate 1− ϵ = 0.05.
Price cycles emerge with lim supt≥1 σ

t = σ0 = 0.5 and lim inft≥1 σ
t ≈ 0.12.
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In the first 100 trading rounds, eight different spreads realize, see Example 5.2 below.
Suppose they are ordered as σ0 < σ1 < ... < σ7. Let Ci| ∪ σ denote a price cycle Ci, which
was broken at a certain point by a new minimum spread σ. In line with Theorem 3.2, we
find a recurrent pattern, that is, for each Cn, it starts as a concatenation of

⋃n−1
i=1 , until it is

broken by a new global minimum:

Price Cycle C1 C2 C3 C4 C5 C6

Recurrent pattern σ0 ∪ σ1 ∪ σ2 C1| ∪ σ3 C1| ∪ σ4
⋃2

i Ci ∪ C3|σ5
⋃3

i Ci ∪ C4|σ6
⋃4

i Ci ∪ C4|σ7

4 Transparent TCs lead to Stable Prices
In the following section, I study a market platform charging transparent transaction costs.

Assumption (Ex-Ante Commitment). I assume that the market platform commits
to transparent transaction costs ex-ante, that is, it is not allowed to switch to different
transparent transaction costs after some round t.

This assumption ensures ex-post individual rationality. Once a trader submits an order, their
net value adjustment is based on the existing transparent transaction costs. If the platform
were to alter the transaction cost model, the net value adjustment would become inaccurate.
Furthermore, this assumption aligns with real-world practices, where platforms typically have
to maintain consistent transaction cost structures during clearing windows.

The following theorem shows that the build-up of excess demand and supply, which lead
to the predictable cyclical price pattern for hidden transaction costs, does not have the same
impact for transparent transaction costs. Instead, for transparent transaction costs, the
spread remains constant in the dynamic market. Thus, the predictable cyclical behavior
that emerges if the platform charges hidden transaction costs (see Theorem 3.1) cannot be
explained by the dynamic market environment on its own.

Theorem 4.1 (Transparent TCs ⇒ Stable Prices). If a market platform charges transparent
transaction costs, the market-clearing price and the bid-ask spread are constant over time.

Theorem 4.1 has interesting implications. If the market platform commits to transparent
transaction costs, the spread does not change over time. Hence, no excess demand and
supply is ever cleared, and the revenue is constant over time. This implies that when it
comes to revenue-maximization, there is no distinction between myopically maximizing per-
round revenue, or maximizing the long-run average. Hence, it is sufficient to set transparent
transaction costs to implement the optimal baseline spread σ0. Jantschgi et al. (2023) show
that any transaction cost structure can be linearly scaled, e.g. tuning the percentage of a
price fee, to achieve this spread.
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Intuition. Why does the build-up of unexecuted orders not influence the market-clearing
price? The reason is that transparent transaction costs are added ex-post, and the set of
executed orders is calculated solely based on the market-clearing price. This has the following
effect: Traders are responsible to adjust to the net value to guarantee ex-post individual
rationality. Thus, the market price is not calculated with respect to true demand and supply,
but net demand and supply. This corresponds to a market environment without transaction
costs, where all profitable orders are cleared. And in such a model, excess demand below the
market-clearing price and excess supply above the market-clearing price have no influence
on determining the price. Intuitively, net demand and supply become steeper after their
intersection, that is, the unique market clearing price. The actual market-clearing price with
respect to true values might change, but given the net value considerations, this is never
realized in the market. Hence, the market outcome is stationary, even though excess demand
and supply builds up. The formal proof is relegated to Appendix B.4.

Example 4.2 (Transparent TCs in a market with linear demand and supply). Suppose
that the incoming distribution of demand and supply is linear, see Example 2.2, and that
traders with unexecuted orders depart at a rate 1 − ϵ = 0.05. That is, before the second
trading round, an unexecuted limit order is deactivated with a probability of five percent.
Suppose that the market platforms set their transaction costs to maximize revenue, that is,
e.g, charges a price fee p = 1

6
. In the first trading round, the revealed net demand are thus

given by D1(P ) = 2− (1 + p)P and the revealed net supply is S1(P ) = (1− p)P − 1. The
baseline market price is P 1,eq = 1.5. In the second trading round, excess demand has built-up
for true values below 1.75 and excess supply has built up for true values above 1.25. However,
this corresponds to built-up revealed demand below 1.5 and built-up revealed supply above
1.5. Thus, revealed demand and supply still intersect at P 2,eq = 1.5, see RHS of Figure 4.

((a)) First round. ((b)) Second round.

Figure 4: Market dynamics for a transparent price fee p = 1/6. This figure shows the
evolution of demand and supply, buy and sell prices, and the bid-ask spread for the first two
trading rounds in a market with linear demand and supply, departure rate 1− ϵ = 0.05, and
a transparent price fee p = 1/6. The equilibrium price, and thus the spread, remain constant,
as excess demand only builds up above the realized market-clearing price and excess supply
only builds up below the realized market-clearing price.

18



This remains true for every trading round t ≥ 1. For net demand and supply, excess only
builds up after their intersection, proving that the market-clearing price remains constant
over time. As buy and sell prices are deterministic functions of the market-clearing price, the
sequence of realized prices and thus also the sequence of realized spreads remains constant.

5 Platform Competition
In this section, I study competition between a platform charging transparent transaction
costs, and a platform charging hidden transaction costs. Traders are faced with the decision,
whether to join a platform with transparent transaction costs and associated spread σT or
join a platform with hidden transaction costs and associated spread σH . Which platform
should a trader join? The answer to this question depends on the risk attitude of traders and
their belief about the market environment.

First, traders derives some utility u(σ) from their order being executed at spread σ. A
lower spread corresponds to a lower buy price and a higher sell price (Lemma B.2). Thus, a
lower spread is more favourable for all traders. In this section, I omit the dependence of the
utility function on a trader’s true value vi. While it is true that a smaller spread is more
favourable to all traders, certain spreads are not individually rational for a trader. Recall that
the true value of a trader i is the price, at which they are indifferent between trading and not
trading. That is, if the buy price for buyers or the sell price for sellers coincides with their
true value vi, their utility is equal to zero. In the following subsection, I will focus on traders
with the most profitable gross values: As we assumed that demand and supply are distributed
in the interval [1, 2], a spread of 1 corresponds to a buy price Pb = 2 and a sell price Ps = 1.
In Equation (Utility functions), the utility is equal to zero, if the spread is equal to 1. Hence,
these are the utility functions for a buyer with value 2, and a seller with value 1, for whom trade
is always individually rational at any spread. In Section 6, I will extend the utility functions
for traders with less profitable gross values, for whom trade is not always individually rational.

Assumption (Constant Absolute Risk Aversion). For analytical simplicity, I assume
that traders have constant absolute risk aversion:

uα(σ) =

{
1−exp (−α·(1−σ))

α
, if α ̸= 0,

1− σ, if α = 0.
(Utility functions)

This corresponds to exponential utility functions with risk aversion α, where the term (1− σ)
corresponds to the fact that smaller spreads yield a higher utility.

This assumption allows for clean comparative statics results with respect to a single parameter
α. The proof of Theorem 5.1 can be adjusted to any one-parameter family of utility functions,
which monotonically increases or decreases risk-aversion. Moreover, in Appendix A.3, I ex-
tend the analysis to markets where traders have different levels of risk aversion α ∈ [−M,+M ].
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In order to decide, which market to enter, traders form beliefs about the market envi-
ronment.

Assumption (Understanding the Market Evolution). Traders know the prim-
itives of the arrival and departure process, and thus understand the market evolution for
transparent transaction costs (Theorem 4.1) and for hidden transaction costs (Theorem 3.2).
Suppose that the previous bid-ask spreads are not announced publicly.

• Transparent transaction costs. Trader i has deterministic beliefs about the spread, that
is, they believe that the spread is σT ≥ 0. Thus, the utility of joining the platform with
transparent transaction costs is equal to uα(σ

T ).

• Hidden transaction costs. Trader i forms beliefs about how likely spread σj is, if the
entire sequence of spreads is (σj)j≥1. Suppose that beliefs are truncated such that
trader i’s beliefs have support on a finite set (σj)1≤j≤k, and that the departure rate is
sufficiently low, such that k ≥ 2. Let σH be a random variable according to this belief.
Thus, the utility of joining the platform with hidden transaction costs is Ei[uα(σ

H)].

The assumption that traders know the spread in the market with transparent transaction
costs, is in line with practice. On stock exchanges, traders see the current best available
price, and are thus well informed about the current market. The fact that in market with
hidden transaction costs, traders are assumed to only form beliefs about the market, but not
know the current prices, is also reasonable for some market platforms, as in Payment for
Orderflow models, zero-commission platforms sell orders to market makers, who then execute
trades at their own discretion. Thus, traders do not the terms of their trade in advance, other
than it must meet their limit order. Moreover, in Section 6, I will introduce a rational model
of how forward-looking traders form this expecation, based on the idea of random arrival times.

Assumption (Utility Maximization). Suppose that trader i aims to maximize their
expected utility. Thus, trader i prefers a platform charging transparent transaction costs
and spread σT over a platform charging hidden transaction costs and spread σH , if ui(σ

T ) >
Ei[ui(σ

H)]. If ui(σ
T ) < Ei[ui(σ

H)], trader i prefers the market charging hidden transaction
costs.

Evaluating the market with hidden transaction costs according to Ei[ui(σ
H)] either cor-

responds to a social planner, evaluating the overall markets, or to a trader that evaluates the
current market conditions, that is, a trader acting as a price taker. This behavior maximizes
the expected utility, if traders are perfectly impatient. In Section 6, I extend the analysis
and consider patient traders, who do not act as price-takers.

I say that the two markets are in equilibrium, if

uα(σ
T ) = Ei[uα(σ

H)]. (Market Equilibrium)

That is, the trader is indifferent between the two platforms. The following theorem examines
the effects of platform competition by analyzing equilibrium properties.
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Theorem 5.1 (Platform Competition). For any risk attitude, there exists a unique equi-
librium between a market platform charging transparent transaction costs and a market
platform charging hidden transaction costs. Moreover, for a sufficiently low departure rate, in
equilibrium:

• Sub-Monopoly Pricing. Transparent transaction costs are charged below the optimal
monopolist level, that is, 0 < σT < σ0.

• Comparative Statics. The spread σT associated with transparent transaction costs
is strictly increasing in the risk-aversion α, while the long-run average efficiency is
decreasing in α

• Efficiency Crossover. At low levels of risk aversion, transparent transaction costs
lead to higher long-run average efficiency, whereas at high levels of risk aversion, hidden
transaction costs lead to a higher long-run average efficiency.

Intuition. A more volatile market with hidden transaction costs offers additional profit
opportunities without added risk. Assuming transparent transaction costs lead to the
optimal spread σ0, in a baseline market with no excess demand or supply, the spreads for
both transparent and hidden costs coincide (see Proposition 2.1). If the departure rate is
sufficiently low, hidden costs will eventually result in spreads σt < σ0. However, Theorem 3.1
indicates that hidden costs never exceed σ0. Therefore, the spread with hidden costs is
always less than or equal to the baseline spread σ0, and with some probability, it is strictly
less. Consequently, traders, regardless of risk aversion, prefer the market with hidden costs.
Comparative statics are straightforward: More risk-averse traders prefer the security of
transparent costs and a stable spread. Thus, in equilibrium, transparent costs can be set
higher for these traders, leading to reduced market efficiency. As risk aversion increases, the
transparent spread converges to σ0, while for risk-loving traders, it converges to the global
minimum spread of hidden costs. On average, the efficiency of the market with hidden costs
lies between these extremes. Proof details are relegated to Appendix B.5.

Example 5.2 (A trader’s choice in a market with linear demand and supply). Consider again
a market with linear demand and supply, that is and departure rate 1− ϵ = 0.05. Trader i has
exponential utility with constant risk aversion α ∈ [−M,M ]], that is, ui(σ) =

1−exp−α·(2−σ)
α

.
Joining the market platform with transparent transaction costs and spread σT leads to utility
uα(σ

T ). Suppose that trader i forms beliefs according to the distribution of spreads in the
first 100 trading rounds, see Example 3.3.

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7

Realized spread σj 0.5 0.38 0.3 0.225 0.185 0.15 0.13 0.12

P[σH = σj] 34% 32% 14% 9% 5% 3% 2% 1%

Table 1: Trader i’s beliefs about price-cycles.
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The utility of joining the market platform with hidden transaction costs and spread σH is
thus given by E[uα(σ

H)] =
∑8

j=0 uα(σ
j)P[σH = σj]. Figure 5 shows the comparison of the

utilities for different values of the transparent spread σT and computes the equilibrium value
as a function of the trader’s risk attitude. In line with Theorem 5.1, the equilibrium value of
the transparent spread is strictly increasing in the risk attitude α.

((a)) Risk-neutral trader. ((b)) Risk-averse trader.

Figure 5: Equilibrium Analysis. This figure compares the expected utility of a trader for
joining either a platform with transparent transaction costs and spread σT or a platform
with hidden transaction costs and spread σH in the market with linear demand and supply.
Left. Comparison of utilities for different choices of σT ∈ [0, 1] for a risk-averse trader with
α = 0 (red), a risk-neutral trader with α = 0 (blue), and a risk-loving trader with α = −1
(green). The intersection gives the equilibrium value of the transparent spread σT . Right.
The equilibrium value of the transparent spread as a function of a trader’s risk attitude.

6 Strategic Market Entry
Up to this point, I have considered traders who are myopic — those who act as price-takers,
reporting their true valuations upon market entry. This behavior is optimal in a static large
market, but also when traders are perfectly impatient, with a discount factor of zero, meaning
they seek to maximize expected utility in a single trading round. In this section, I shift focus
to patient traders — those who understand the market’s evolution and acknowledge that
their orders may not be executed immediately.

Recall from Section 5 that traders have constant absolute risk aversion with a utility
function uα(σ), which is strictly decreasing in the spread. I now introduce the following
addition to account for their true value: A trader’s utility also depends on their true value
vi, writ uvi(σ), where vi determines the unique point, where a trader is indifferent between
trading and not trading. Let Pb(σ) and Ps(σ) be the buy and sell price associated with a
given spread. The utility functions are thus of the following form:
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uvb(σ) =

{
1−exp (-α(vb−Pb))

α , if vb ≥ Pb ∧ α ̸= 0,

vb−Pb, if vb ≥ Pb ∧ α = 0,
uvs(σ) =

{
1−exp (-α(Ps−vs))

α , if Ps ≥ vs ∧ α ̸= 0,

Ps−vs, if Ps ≥ vs ∧ α = 0.

If vb < Pb(σ) and vs > Ps(σ), I assume that traders have a negative utility −L.15

I assume that, upon arrival, traders do not know the current point in the cycle, but model
their arrival at the market at a random time.

Assumption (Random Arrival Times). Suppose again that trader i has some be-
liefs about the evolution of the bid-ask spread Σ = (σt)t≥1 in the market. Let σinf denote
inft≥0 σ

t and σsup denote supt≥0 σ
t. Let ti denote a random variable on N≥1. I call this the

random arrival time of trader i. That is, upon arrival, trader i believes that the current
spread is σti .

As argued in Section 5, this assumption is irrelevant for transparent transaction costs,
as the spread is constant over time, and thus mirrors the fact that traders know the transpar-
ent spread before arriving to the market. For hidden transaction costs, this mirrors the fact
that prices are not publicly announced in advance, but sophisticated traders at least know
the structure of the price cycles. A second assumption is that traders discount their utility,
depending on when their order is executed.

Assumption (Discounted Expected Utility). Suppose that trader i with true value vi
submits a value v′i. Let Ti(v

′
i,Σ, ti) denote the first time after a trader’s random arrival ti,

where order v′i is executed at spread σTi(v
′
i,Σ,ti):

Tb(v
′
b,Σ, tb) = inf

t≥tb
{v′b ≥ P t

b} and Ts(v
′
s,Σ, ts) = inf

t≥ts
{v′s ≤ P t

s} (Order Execution Time)

The expected utility of trader i with discount factor δ ∈ (0, 1] is

Eti [δ
Ti(v

′
i,Σ,ti) · uvi(σ

Ti(v
′
i,Σ,ti))] (Expected Utility)

Suppose that upon arrival at the platform, traders submit a value to maximize their
expected discounted utility. A best response BR(vi) for a trader with true value vi satisfies

BR(vi) ∈ max
v′i∈[1,2]

Eti [δ
Ti(v

′
i,Σ,ti) · uvi(σ

Ti(v
′
i,Σ,ti))]. (Best Response)

I use the convention that reporting a value v′i that is never executed, results in zero utility, as
Ti(v

′
i,Σ, ti) = ∞ in that case.

15This assumption is not crucial, and can be extended to any strictly negative function.
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6.1 Transparent TCs are Robust to Strategic Market Entry

For transparent transaction costs, patience and sophistication do not alter the market
dynamics. Since the spread Σ = (σt)t≥1 remains stable over time (Theorem 4.1), there is no
incentive for individual traders to gain by misreporting their values, as truthfulness is a best
response. The market is thus robust against strategic market entry.

Theorem 6.1 (Transparent TCs ⇒ robust against strategic market entry). For a market
platform with transparent transaction costs, truthfulness is a best response.

Proof. This follows from Theorem 4.1, as the spread Σ = (σt)t≥1 is constant over time. Hence,
truthfully reporting their true value maximizes the expected utility. Either, a trader’s order
is executed immediately, or never. If the true value leads to no execution, this is also optimal,
as reporting an order that would get executed would lead to a negative utility.

6.2 Hidden TCs are Fragile to Strategic Market Entry

Because hidden transaction costs lead to price cycles (Theorems 3.1 and 3.2), reporting
truthfully might not be optimal. Best responses balance the trade-off between maximizing
utility by submitting a more aggressive order, which only gets executed at a small and thus
more profitable spread versus faster execution by being less aggressive. First, note that it is
sufficient to consider reported values that correspond to one of the realized spreads in the
sequence of cycles Σ = (σt)t≥1. For a submitted order v′i, let σ∗ be the spread with the closest
buy or sell price in Σ, at which v′i could get executed. Submitting exactly this buy or sell
price results in the same expected utility. As this space is countable, it is easy to show that a
best response exists.

In the remainder of this section, I will specifically consider perfectly patient traders with
discount rate δ sufficiently close to 1. It is straightforward to see that for perfectly patient
trader and the market evolution Σ = (σt)t≥1, if σinf denotes inft≥0 σ

t, then the best response
of buyers and sellers are close to the associated buy and sell prices P inf

b and P inf
s , if this is

individually rational given their true value. This is the case, because for δ sufficiently close to
1, the increase in utility from receiving a better buy and sell price outweighs the exponential
discounting of receiving that spread at a later point in time. Hence, traders submit an order
that only gets executed, when the spread is close to minimal. If this limit is not individually
rational, suppose that traders report truthfully, because then, no individually rational order
will ever be executed. I call this strategy the patient best response:

PBR(vb,Σ)=

{
P inf
b if vb≥P inf

b

vb if vb<P inf
b

PBR(vs,Σ)=

{
P inf
s if vs≤P inf

s

vs if vs>P inf
s

(Patient Best Responses)

If all traders use patient best responses, revealed demand and supply adjust as follows:
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Figure 6: Demand and Supply for Patient Best Responses. This figure shows the
patient best response adjustments to linear demand and supply. Up until the buy and sell
price associated to σinf , demand and supply are zero, as there are no buy and sell orders
with such a value. At these buy prices, demand and supply jump up to the true demand and
supply curve.

Level k Reasoning. Research suggests that humans often engage in iterative reasoning to
anticipate the actions of others, with the depth of this reasoning varying depending on the
individual and the context, see Crawford (2019) for an overview. In the following, I apply
the concept of level k reasoning to the patient best responses of traders.

Suppose that, as in Section 3, all traders truthfully report their values. Let be Σ0 = (σt
0)t≥1

the evolution of the bid-ask spread according to Theorem 3.1 and Theorem 3.2. I call Σ0

the level 0 market evolution. Denote the patient best response trading strategies against Σ0

by PBR1, that is, reporting the buy and sell prices associated with σinf
0 , if it is individually

rational, and being truthful otherwise. I call these trading strategies level 1 best responses,
as they best respond to the market evolution for unsophisticated traders. Let DPBR1 and
SPBR1 be the adjustments of demand and supply, if traders submit according to PBR1.

Suppose that DPBR1(·) and SPBR1(·) are the new incoming value distributions in each
trading round. It follows analogous to Theorem 3.1 and Theorem 3.2 that a market platform
charging hidden transaction costs would create price cycles according to a sequence of spreads
ΣPBR1 . I call ΣPBR1 the level 1 market evolution and denote by σinf

1 the new infimal spread.
Note that the new baseline spread in ΣPBR1 must be smaller or equal to σinf

0 , as any spread
greater than σinf

0 would lead to zero revenue, see Figure 6. Forward looking and patient
traders could know about the price cycles according to ΣPBR1 . Then their best response
becomes to bid the new infimal spread σinf

1 < σinf
0 . Let PBR2 be the patient best responses

to ΣPBR1 . I call these trading strategies level 2 best responses, as they best respond to the
market evolution, where all traders use level 1 best responses. Let DBR2 and SBR2 be the
associated adjustments to demand and supply for level 2 best responses. Let ΣBR2 be the
evolution of spreads and associated price cycles with respect to DBR2 and SBR2 , called the
level 2 market evolution. Applying this reasoning iteratively yields level k best responses BRk

as best responses to the level k − 1 market evolution ΣBRk−1
with σinf

k > σinf
k−1.
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Next, I will show that strategic market entry in the form of level k-best responses can
lead to a form of market failure:

Assumption (Minimal Revenue Requirement). Suppose that a market platform
needs a fixed amount of revenue R > 0 per round to remain profitable, which is satisfied for
baseline demand and supply, that is R(σ0) ≥ R. I call R the profitability threshold and say
that market failure occurs, if in some trading round, the profit is less or equal to R.

Note that, if clearing the market without excess is profitable, then, even if price-cycles
occur, the market remains profitable. That is, because price-cycles always increase revenue.
Hence the baseline spread, where no excess is cleared, is a lower bound on revenue.

For many market platforms, the minimal revenue assumption is reasonable because they
typically incur significant overhead costs associated with operating the exchange, such as
infrastructure, regulatory compliance, and transaction processing. If the spread and trading
volume are too small, the revenue generated may not cover these fixed costs, making it
unprofitable for the platform to continue operating. In such cases, it may not be economically
viable to execute trades, as doing so would fail to meet the minimum revenue needed to
sustain the platform’s operations.

As soon as price cycles occur, strategic market entry can lead to market failure, even for
level 2 best responses, if the profitability threshold R is close to the benchmark revenue for
baseline demand and supply, that is, if the platform is not generating a lot of revenue to
begin with. However, a stronger statement holds: No matter the profitability threshold R,
market failure occurs for sufficiently patient traders.

Theorem 6.2 (Hidden TCs ⇒ fragile against strategic market entry). Consider a market
platform charging hidden transactions. For any profitability threshold R > 0, if traders are
sufficiently patient and have a sufficiently low departure rate, there exists k ≥ 1, such that
market failure occurs in the level k-market evolution.

Intuition. If traders adopt level k-best responses, the baseline spread in the level k
market, σsup,k, will strictly decrease over time because σinf,k < σsup,k and σsup,k+1 ≤ σinf,k.
Therefore, it suffices to show that, eventually, there will exist a k such that the baseline
spread in the level k market evlution becomes unprofitable. If the departure rate is sufficiently
low, price cycles will be significant, causing the smallest spread in the cycle to become very
small. If this spread becomes so small that clearing the baseline market without excess at
this spread is no longer profitable, then market failure occurs in the level k + 1 market, as
the new baseline spread will be at this level or even smaller. For every profitability threshold
R > 0, let σ∗ be the smallest spread such that clearing a market without excess remains
profitable. If the departure rate is sufficiently low, then at some point, a smaller spread will
be realized to clear the excess, leading to market failure in the next period. Proof details are
provided in Appendix B.6.

Thus, Theorem 6.2 reveals a close connection to the Coase conjecture (Coase 1960), where
a platform’s failure to commit to stable transaction costs leads to market failure through
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strategic market entry of traders. However, the crucial difference to classical Coasian dynam-
ics is that, as prices are not revealed publicly, traders have to time their purchase through
strategically submitting aggressive limit orders.

Hence, while transparent transaction costs are robust to transparent transaction costs,
market platforms with hidden transaction costs need unsophisticated traders, as the market
could significantly fail otherwise.

7 Conclusion
This paper studied the effects of transaction cost transparency on market dynamics. In a
market with homogeneous arrival and memoryless departure, I have shown that transparency
is a crucial necessity for market stability and efficiency. While transparent transaction costs
lead to a stable market outcome, hidden transaction costs lead to additional volatility and
predictable price cycles . In a model of platform competition, I showed that platforms with
transparent transaction costs must lower them to compete with the profit opportunities of
more volatile markets with hidden costs. An efficiency crossover emerges: at higher risk
aversion, transparent costs are less efficient on average, while the reverse holds for lower risk
aversion. This creates a natural market segmentation, with less risk-averse traders favoring
hidden costs for higher returns, and more risk-averse traders preferring the stability of
transparent costs. Additionally, I uncovered a critical vulnerability in platforms with hidden
transaction costs when faced with strategic market entry. While transparent transaction
costs are robust against such strategies, hidden costs are fragile due to a newly identified
Coasian dynamic that can lead to market failure. This fragility underscores the necessity for
platforms with hidden transaction costs to attract unsophisticated traders to maintain their
long-term viability.

Given that hidden transaction costs are integral to the operations of online trading
platforms and market makers, these findings align with regulatory concerns, emphasizing the
need for caution in adopting zero-commission trading models without fully understanding
their broader market implications.

There are several promising avenues for future research. One key question is whether em-
pirical evidence can be found—beyond the well-established link to wider bid-ask spreads—that
connects zero-commission models to increased market volatility and cyclical pricing. Addi-
tionally, given that both transparent and hidden transaction costs are charged in practice,
what explains the choice in a particular market in practice? Another intriguing question is
whether hidden transaction costs, which create profit opportunities through strategic market
entry, could be systematically exploited by trading algorithms or sophisticated human traders.
This raises the question of how access to historical pricing data and real-time order book
information might influence these strategies, emphasizing the critical relationship between
transaction cost transparency and order book visibility. For platforms operating under a
zero-commission model, optimizing or controlling the flow of information could become a
strategic necessity, further reinforcing concerns about intransparency. Lastly, how might
these findings inform regulatory bodies and policymakers in addressing the potential risks
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posed by hidden transaction costs and the strategic behaviors they incentivize?
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A Additional Results

A.1 Evolution of Demand and Supply

Lemma A.1 (Evolution of Demand and Supply). Consider a market platform charging
hidden transaction costs. Fix Pb < P

′

b and Ps > P
′
s.

1. For all t > 1 we have that

Dt(Pb)−Dt(P
′

b) ≤
1− ϵt+1

1− ϵ

(
D0(Pb)−D0(P

′

b)
)
≤ 1

1− ϵ

(
D0(Pb)−D0(P

′

b)
)

St(Ps)− St(P
′

s) ≤
1− ϵt+1

1− ϵ

(
S0(Ps)− S0(P

′

s)
)
≤ 1

1− ϵ

(
S0(Ps)− S0(P

′

s)
) (1)

2. For all T and t > T

Dt(Pb)−Dt(P
′

b) ≤
1− ϵt−T

1− ϵ

(
D0(Pb)−D0(P

′

b)
)
+ ϵt−T

(
ZT

D(Pb)− ZT
D(P

′

b)
)

St(Ps)− St(P
′

s) ≤
1− ϵt−T

1− ϵ

(
S0(Ps)− S0(P

′

s)
)
+ ϵt−T

(
ZT

S (Ps)− ZT
S (P

′

s)
)
.

(2)

3. For all T and t > T , if for all t′ with T < t′ < t we have that P t′

b ≥ P
′

b > Pb, then

Dt(Pb)−Dt(P
′

b) =
1− ϵt−T

1− ϵ

(
D0(Pb)−D0(P

′

b)
)
+ ϵt−T

(
ZT

D(Pb)− ZT
D(P

′

b)
)

St(Ps)− St(P
′

s) =
1− ϵt−T

1− ϵ

(
S0(Ps)− S0(P

′

s)
)
+ ϵt−T

(
ZT

S (Ps)− ZT
S (P

′

s)
)
.

(3)

4. For all T such that P T
b ≤ Pb < P

′

b (or T = 0), and all t > T , we have that

Dt(Pb)−Dt(P
′

b) ≤
1− ϵt−T

1− ϵ

(
D0(Pb)−D0(P

′

b)
)
≤ 1

1− ϵ

(
D0(Pb)−D0(P

′

b)
)

St(Ps)− St(P
′

s) ≤
1− ϵt−T

1− ϵ

(
S0(Ps)− S0(P

′

s)
)
≤ 1

1− ϵ

(
S0(Ps)− S0(P

′

s)
)
.

(4)

5. For all T such that P T
b ≤ Pb < P

′

b (or T = 0), if for all t′ with T < t′ < t, we also have
that P t′

b ≥ P
′

b > Pb, then

Dt(Pb)−Dt(P
′

b) =
1− ϵt−T

1− ϵ

(
D0(Pb)−D0(P

′

b)
)
≤ 1

1− ϵ

(
D0(Pb)−D0(P

′

b)
)

St(Ps)− St(P
′

s) =
1− ϵt−T

1− ϵ

(
S0(Ps)− S0(P

′

s)
)
≤ 1

1− ϵ

(
S0(Ps)− S0(P

′

s)
)
.

(5)

The proof of Lemma A.1 is relegated to Appendix B.7.
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A.2 Hidden Transaction Costs that maximize long-run average
revenue

In this subsection, I consider a market platform charging hidden transaction costs, which
does not myopically maximizes per-round revenue, but instead chooses an infinite sequence
of spreads to maximize the long-run average revenue.

The main result of this Appendix is an extension of Theorem 3.1, demonstrating that the
optimal sequence of spreads is oscillatory when the objective is to maximize long-run average
revenue. I use the term oscillatory rather than cyclical because the primary proof presented
in this Appendix relies on abstract arguments to show that the sequence of spreads cannot
eventually become monotone and must instead fluctuate indefinitely. However, the method
used to prove Theorem 3.2, which addresses the predictability of these fluctuations, does not
extend to this context, which is why I refer to the sequence as oscillatory rather than cyclical.

To formalize this result, I introduce additional notation: Consider an infinite sequence of
spreads σ = (σtt≥1). A sequence of spreads is oscillatory, if for any t ∈ N, there exist t′, t′′ > t,
such that σt′ < σt′+1 and σt′′ > σt′′+1. A sequence of spreads is eventually monotone, if
there exists t ∈ N, such that (i) for all t′ > t it holds that σt′ ≤ σt′+1 or (ii) for all t′ > t it
holds that σt′ ≥ σt′+1. Note that a sequence of spreads is not oscillatory if and only if it is
eventually monotone.

The following theorem shows that any optimal sequence of spreads must be oscillatory.

Theorem A.2 (Hidden TCs + long-run revenue maximization ⇒ Price oscillations). If
the departure rate is sufficiently low, any eventually monotone sequence of spreads does not
maximize long-run average revenue.

The proof is relegated to Appendix B.8.
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A.3 Platform Competition for Different Risk-Aversions

In the following subsection, I will consider a continuum of traders with different risk attitudes
and derive an equilibrium condition for transparent transaction costs to compete against
hidden transaction costs.

A market platform with transparent transaction cost must lower the spread to attract
traders with lower risk-aversion. On the other hand, for a lower spread, the market platform
decreases their revenue per trade. What is the optimal choice for transparent transaction
costs to compete against hidden transaction costs?

Distribution of risk attitudes. I assume that traders share the same belief about the
market environment, but have different risk attitudes. For analytical simplicity, I again
assume that traders have constant relative risk aversion. That is, for every trader i, their
utility functions is ui(σ) = ũi(2− σ), where ũi(·) comes from the family Uα = (ũα)α∈[−M,+M ]

of exponential utility functions with risk-aversion α. That is, ũα(x) =
1−exp (−α·x)

α
for α ̸= 1

and ũ0(x) = x. Again, a higher α correspond to more risk-averse traders.
I assume that a trader’s risk attitude is independent of their value or preferred quantity of

trade, and whether they are a buyer or seller: That is, there exists a continuous and strictly
positive function f(α) on [−M,M ], such that value distributions of buyers and sellers with
relative risk aversion α are f(α)µt

B(·) and f(α)µt
S(·). Thus, if buyers and sellers with risk

attitude in A ⊂ [−M,M ] choose to enter a platform, demand λ(A)D0(·) and the supply
λ(A)S0(·) arrives, where λA =

∫
A f(α)dα denotes the mass of traders with risk attitude in

A. The pair (Uα, fα) is called the distribution of risk attitudes.

Attracting Traders. For a given risk attitude α, a trader will prefer the platform with
transparent transaction costs and spread σT or the platform with hidden transaction costs
and spread σH . Let AT (σT , σH) = {α ∈ [−M,M ] : uα(σ

T ) ≥ E[uα(σ
H)]} denote the set

of risk attitudes, such that a trader with that level of risk-aversion prefers the platform
charging transparent transaction costs with spread σT . Similarly, AH(σT , σH) = {α ∈
[−M,M ] : uα(σ

T ) ≤ E[uα(σ
H)] corresponds to traders, who prefer the platform charging

hidden transaction costs with spread σH .

Market equilibrium. For a platform charging transparent transaction costs with associ-
ated spread σT , the revenue when facing competition from a platform with hidden transaction
cost and associated spread σH is given by λ(AT (σT , σH)) · R0(σT ), where R0(σT ) is the
revenue from spread σT in the baseline model with a unit mass of traders on each market side.
This holds, because the spread σT attracts a total mass of λ(AT (σT , σH)) traders on both
market sides, and by assumption, the risk aversion is independent of the value distribution.
Thus, incoming demand and supply has the same shape, but is multiplied by the mass of
incoming traders. Finally, I introduce the following notion of a market equilibrium, where
a market platform with transparent transaction costs sets the spread σT to maximize their
revenue when competing against a market platform charging hidden transaction costs with
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spread σH , and thus best responds against the competition. I say that the pair (σT , σH) is
an equilibrium, if σT ∈ argmaxσ≥0 λ(A(σ, σH)) ·R0(σ).

The following theorem shows that there exists an equilibrium between a platform charging
transparent transaction costs and a platform charging hidden transaction costs. Moreover,
this equilibrium results in a market segmentation, where less risk-averse traders prefer hidden
transaction costs, while more risk-averse traders prefer transparent transaction costs.

Theorem A.3 (Equilibrium existence and properties). For any distribution of risk attitudes
(Uα, fα), there exists an equilibrium (σT , σH) between a market platform charging transparent
transaction costs and a market platform charging hidden transaction costs. Moreover:

• Sub-monopoly pricing. Transparent transaction costs are charged below the optimal
monopolist level, that is, 0 < σT < σ0.

• Market segmentation. Less risk-averse traders enter the platform charging hidden
transaction costs, and more risk-averse traders enter the platform charging transparent
transaction costs. That is, there exists α∗ ∈ [−M,M ] with AH(σT , σH) = [−M,α∗] and
AT (σT , σH) = [α∗,M ].

Transparent transaction costs lead to a stable market, while hidden transaction costs lead
to a volatile market. How can there be an equilibrium?

Intuition. Different traders have different risk attitudes. Suppose that for traders with a
fixed risk attitude α ∈ [−M,M ], transparent transaction costs with spread σT and hidden
transaction costs with spread σH are such that uα(σ

T ) = E[uα(σ
H)]. Such traders are

indifferent between the two platforms. More risk-averse traders strictly prefer the certain
spread σT over the uncertain spread σH . Less risk-averse traders strictly prefer the platform
with hidden transaction costs. Thus, for any transparent transaction costs with spread
σT , the market is segmentating, that is, there exists a threshold risk attitude α∗(σT ), such
that traders with lower risk-aversion choose the platform with hidden transaction costs,
hoping for a market entry at a currently low spread, while trader with higher risk-aversion
choose the platform with transparent transaction costs to avoid market entry at a high
spread. Given a distribution of risk attitudes, transparent transaction costs can be tuned
to balance the trade-off between trying to attract more traders by offering a lower spread
versus maximizing the revenue from a higher spread. More formally, I show that the map
σT 7→ λ(A(σT , σH)) · R0(σT ) is continuous and thus attains a maximum by the Extreme
Value Theorem. The proof is relegated to Appendix B.9.
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B Proofs

B.1 Proof of Proposition 2.1

Proof. For both hidden and transparent transaction costs, all market metrics are fully specified
by gross demand and supply, as well as the trading volume Q = D(PB) = S(PS). That is:

W =

∫ 2

D−1(Q)

D(x)dx+

∫ S−1(Q)

1

S(x)dx (Total Welfare)

R = Q · (D−1(Q)− S−1(Q)) (Revenue)
Greal = W +R (Realized Gains of Trade)

Ggross =

∫ 2

Peq

D(x)dx+

∫ Peq

1

S(x)dx (Total Welfare)

L =

∫ D−1(Q)

Peq

(D(x)−Q) dx+

∫ Peq

S−1(Q)

(S(x)−Q) dx (Loss).

For transparent transaction costs, the result is a direct consequence of Jantschgi et al. (2023,
Theorem 10). Since the proof can be seamlessly adapted for hidden transaction costs, I will
forgo further elaboration. For hidden transactions costs, the trading volume stands in a one
to one bijection with the spread. Thus, any trading volume, and hence the associated market
performance, can be implemented. For transparent transaction costs, the trading volume
can be adjusted by a linear scaling. The fact that any trading volume — and hence any
market performance associated with – is achievable, again follows from Jantschgi et al. (2023,
Theorem 10). Thus, the same set of market performances are achievable with transparent
and hidden transaction costs.

B.2 Proof of Theorem 3.1

Theorem 3.1 is proven in several steps. In a first step, I show that due to the homogeneous
arrival and memoryless departure, the market-clearing price and the pairs of buy and sell
prices that balance trade are constant over time.

Lemma B.1. For all t ≥ 1, it holds that P t,eq = P 0,eq. Moreover, for any buy price
Pb ∈ [P 0,eq, 2], consider the unique sell price Ps ∈ [1, P 0,eq], such that D0(Pb) = S0(Ps). Then,
it holds for all trading rounds t ≥ 1 that Dt(Pb) = St(Ps).

Proof of Lemma B.1. First, I prove by induction that the market clearing price is constant
over time. For t = 0, the statement holds by definition. Next, assume that the statement
holds for t, that is, P t,eq = P 0,eq. P t,eq = P 0,eq is equivalent to Dt(P 0,eq) = St(P 0,eq). Note,
that after clearing the market at prices P t

b and P t
s , it still holds that Zt

D(P
0,eq) = Zt

S(P
0,eq),

see Appendix A.1. If P ≤ P t
b , it holds that Dt+1(P ) = ϵ · Zt

D(P ) + D0(P ). If P ≥ P t
s , it

holds that St+1(P ) = ϵ · Zt
S(P ) + S0(P ). Note that P t

s ≤ P 0,eq ≤ P t
b . It holds that

Dt+1(P 0,eq)− St+1(P 0,eq) = ϵ ·
(
Zt

D(P
0,eq)− Zt

S(P
0,eq)

)
+
(
D0(P 0,eq)− S0(P 0,eq)

)
(6)
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It holds by the induction statement that Zt
D(P

0,eq) − Zt
S(P

0,eq) = 0 and by definition of
P 0,eq that D0(P 0,eq)− S0(P 0,eq) = 0. Therefore, Dt+1(P 0,eq)− St+1(P 0,eq) = 0, which finally
implies that P t+1,eq = P 0,eq.

Second, I prove again by induction that the sequence of buy and sell prices that balance
trade is constant over time. That is, for any buy price Pb ∈ [P eq, 1], consider the unique sell
price Ps, such that D0(Pb) = S0(Ps). Then, it holds for all trading rounds t ≥ 1 that Dt(Pb) =
St(Ps). For t = 0, the statement holds by definition. Next, assume that the statement holds
for t, that is, Dt(Pb) = St(Ps). We show that this implies that also Dt+1(Pb) = St+1(Ps).
We need to consider two cases separately: (i) Pb ∈ [P t

b , 1] and (ii) Pb ∈ [P eq, P t
b ]. For

(i), it holds that Dt+1(Pb) = D0(Pb). Note that this implies that Ps ∈ [0, P t
s ], and hence

St+1(Ps) = S0(Ps). This implies that Dt+1(Pb) = D0(Pb) = S0(Ps) = St+1(Ps). For (ii), it
holds that Dt+1(Pb) = ϵ · Zt

D(Pb) +D0(Pb) and St+1(Ps) = ϵ · Zt
S(Ps) +D0(Ps). It thus holds

that
Dt+1(Pb)− St+1(Ps) = ϵ ·

(
Zt

D(Pb)− Zt
S(Ps)

)
+
(
D0(Pb)− S0(Ps)

)
. (7)

It follows from the assumption Dt(Pb) = St(Ps) that Zt
D(Pb) = Zt

S(Ps) holds as well, which
implies that the first term in the equation above is equal to zero. Moreover, it follows from
the definition of Pb and Ps, that the second term is also equal to zero. This finally implies
that Dt+1(Pb)− St+1(Ps) = 0, which finishes the proof.

Next, I show that at each point in time, the spread either decreases, or jumps back to the
baseline spread σ0. Moreover, a decreasing spread implies decreasing buy and increasing sell
prices.

Lemma B.2 (Monotonicity). For all t > 1, it holds that either (i) σt = σ0 or (ii) σt < σt−1,
and thus σt ≤ σ0. If (ii) holds, then it must also hold that P t

b < P t−1
b , P t

s > P t−1
s and

Qt > Qt−1.

Proof of Lemma B.2. I prove this Lemma via induction on the trading round t. For t = 0,
the baseline spread σ0 is optimal by definition and hence the statement holds for the base
case. Next, consider that the hypothesis is true for the spread σt−1 in round t− 1. Let P t−1

b

and P t−1
s be the buy and sell prices. For prices P above P t−1

b it holds that Dt(P ) = D0(P )
and for prices P below P t−1

s it holds that St(P ) = S0(P ). That is, because all buyers with
order above P t−1

b and all sellers with order below P t−1
s that were in the market at time t− 1

have been cleared. Hence, at these prices, there is no pent-up demand or supply in round
t. It follows from Lemma B.1 and the strict monotonicity of demand and supply that a
spread σt ≥ σt−1 that clears the market corresponds to a buy price P t

b ≥ P t−1
b and a sell

price P t−1
s ≤ P t−1

s in round t. Therefore, the revenue of such a spread in round t would
yield the revenue (P t

b − P t
s) ·Dt(P t

b ) = (P t
b − P t

s) ·D0(P t
b ). However, for all such spreads, the

baseline spread σ0 maximizes the revenue at (P 0
b − P 0

s ) ·D0(P 0
b ). Thus, it must hold that

σt = σ0 or σt < σt−1, which proves the induction step. Next, consider a spread σt < σt−1.
It follows again from Lemma B.1 and the strict monotonicity of demand and supply that
a spread σt < σt−1 that clears the market corresponds to a buy price P t

b < P t−1
b and a sell

price P t−1
s > P t−1

s in round t. Finally, it follows from the evolution of demand and supply,
that P t

b < P t−1
b implies Qt = Dt(Pt) > Dt−1(P − 1) = Qt+1.
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Lemma B.2 implies that the baseline spread σ0 is an upper bound for the evolution of
bid-ask spreads. No matter the history, the market platform at time t will never choose a
bigger spread.

Corollary B.3 (Upper bound on the bid-ask spread). For all t ≥ 1, it holds that σt ≤ σ0.

Next, I show that there also exists a lower bound on the bid-ask spread, that is, the
sequence of realized spreads cannot reach values, that are arbitrarily close to zero.

Lemma B.4 (Lower bound on the bid-ask spread). There exists a spread σ∗ > 0, such that
for all t > 1, it holds that σt ≥ σ∗.

Proof of Lemma B.4. Due to a non-zero departure rate, built-up demand and supply does
not grow to infinity. It follows from Lemma A.1, that in any round t it holds that Dt(P ) ≤
1−ϵt+1

1−ϵ
D0(P ) < 1

1−ϵ
and St(P ) ≤ 1−ϵt+1

1−ϵ
S0(P ) < 1

1−ϵ
. Consider time t with corresponding

demand Dt(·) and supply St(·). For any feasible spread σ, let Pb and Ps be the unique buy
and sell prices that correspond to the spread σ; recall that by Lemma B.1 this does not
depend on time t. It follows from Lemma B.4 that we can restrict our attention to spread
σ ≤ σ0, such that Pb ≤ P 0

b and Ps ≥ P 0
s . For such a spread, the revenue for the market

platform is thus equal to σ ·Dt(Pb). It follows from the evolution of demand and supply (see
Lemma A.1), that

Dt(Pb) ≤ D0(Pb) +
(
D0(Pb)−D0(P 0

b )
) 1− ϵt

1− ϵ
.

This implies the following crude upper bound on the trading volume at buy price Pb:
Dt(Pb) <

1
1−ϵ

D0(Pb) <
1

1−ϵ
. The first inequality corresponds to a market that has never been

cleared for an infinite period of time, that is, all demand up to price Pb has built up. The
second inequality is due to the fact that a unit mass of traders arrives in each round. Now,
consider the baseline spread σ0, which leads to a revenue equal to R0 = σ0 ·Q0 = σ0 ·D0(P 0

b ).
Consider σ∗ such that σ∗ · 1

1−ϵ
= R0. At no time t, the market platform would choose a

spread below σ∗, as they could strictly improve their revenue by charging the spread σ0.

The next Lemma shows that the baseline spread is repeated infinitely often, but that also
for infinitely many times, a strictly smaller spread is realized, proving the existence of cycles:

Lemma B.5 (Cycles). There exist infinitely many t, such that σt = σ0. If the departure rate
1− ϵ is sufficiently low, there exist infinitely many t′, such that σt ̸= σ0.

Proof of Lemma B.5. It follows from Lemma B.2 that for all t > 1, it holds that either (i)
σt = σ0 or (ii) σt < σt−1. First, assume that for all t ≥ 1, it holds that σt = σ0. The revenue
in each round is thus equal to σ0 · Q0, where Q0 = D0(P 0

b ) denotes the baseline trading
volume. Consider a small δ > 0. We will show that for sufficiently small δ, sufficiently large t
and sufficiently large ϵ, the spread σ − δ will strictly increase the revenue. This then implies
that it is not optimal to have σt = σ0 for all t. Consider now that up until round t, the market
was always cleared at the baseline spread σ. Clearing the market now at the spread σ − δ,
denote by Pb and Ps the corresponding buy and sell prices in round t. We need to estimate
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the corresponding trading volume Dt(Pb). As we clear at a smaller spread, we definitely
clear all traders, that we would have cleared at the baseline spread with a mass equal to Q0.
Moreover, decreasing the spread by δ means that it must either hold that P 0

b − Pb ≥ δ
2

or
Ps−Ps ≥ δ

2
. That is, either buy or sell price must have changed by at least δ

2
. By assumption,

the derivative of demand and supply are strictly bounded away from zero, that is, there
exists γ > 0, such that D′(P ) ≤ −γ and S ′(P ) ≥ γ for all P ∈ [0, 1]. Thus, it holds that
only considering the baseline demand and supply, the trading volume must have increased by
at least δ

2
γ, as the buy or sell price changed by at least δ

2
. However, as excess demand and

supply has built up for t rounds, as the market was always cleared at the baseline spread,
the following inequality holds for the trading volume: Qt ≥ Q0 + δ

2
γ 1−ϵt

1−ϵ
. Thus, in order for

the baseline spread to still be optimal in round t, it must hold that

σ0Q0 > (σ0 − δ) ·
(
Q0 + δγ

1− ϵt

1− ϵ

)
. (8)

Reordering the terms yields the inequality Q0 > (σ − δ)γ
2
1−ϵt

1−ϵ
. Note that Q0 < 1 and σ0 > 0

are constants given by the model. For sufficiently small δ > 0, for sufficiently large t and for
ϵ sufficiently close to 1, this yields a contradiction. Thus, it cannot be that for all t ≥ 1 it
holds that σt = σ0.

Next, assume by contradiction that σ0 is not realized infinitely often. Then, Lemma B.2
implies that there exists a T > 0, such that for all t ≥ T , σt is a strictly decreasing sequence.
Without loss of generality, assume that T = 1. It follows from Lemma B.4, that there exists
a lower bound σ∗. The sequence (σt)t≥1 must therefore converge to a limit σ∞ > σ∗ > 0.
Note that by Lemma B.2 the sequence of buy prices (P t

b )t≥1 is strictly decreasing with limit
P b
∞ and the sequence of sell prices (P t

s)t≥1 is strictly increasing with limit P s
∞. Thus, for

all δ > 0, there exists a time t′, such that for all t ≥ t′, it holds that P t
b − P t+1

b ≤ δ and
P t+1
s − P t

s ≤ δ. Clearing a spread of σt+1 has two effects: It clears the newly arriving buyers
and sellers, and it clears some additional pent-up demand and supply, that was not cleared
in the previous round. Note that for a strictly decreasing sequence of spreads, in round t+ 1,
you only clear excess demand and supply from the price intervals [P t+1

b , P t
b ] and [P t

s , P
t+1
s ].

The slope of baseline demand is lower bounded and the slope of baseline supply is upper
bounded, and the difference between prices in rounds t and t+ 1 is less than δ. Moreover,
the difference in slope between baseline demand and demand in round t is upper bounded by
the constant 1

1−ϵ
. Thus, the amount of excess demand and supply that is cleared from round

t to round t + 1 is upper bounded by δγ 1
1−ϵ

. Hence, the revenue in round t + 1 is strictly
upper bounded by σt+1 ·D0(P t+1

b ) + σt+1 · δγ 1
1−ϵ

. Letting t tend to infinity, the revenue thus
approaches σ∞ ·D0(P b

∞). However, the spread σ∞ is not optimal for baseline demand and
supply, contradicting the optimality of a strictly decreasing sequence of spreads (σt)t≥1. Thus,
the spread must jump back to the baseline spread infinitely often, proving the claim.
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B.3 Proof of Theorem 3.2

Proof. I first show that for all t ≥ tn−1, if σt ≥ σtn−1 , then σt = σt−tn−1 . Suppose that the
statement does not hold for some t. Then, there exists a first time, where Cn deviates from⋃n−1

i=1 Ci and this deviation is not a new global minimum. Suppose that this deviation occurs
at time t′, and suppose that t′ = tn−1 + k for some k > 0. Let σt′ be the associated spread.
By assumption σt′ ̸= σt′−tn−1 = σk, and σt′ ≥ σtn−1 . Note that at time tn−1 + 1, the cycle
Cn begins for the first time. At time tn−1, the spread σtn−1 was a new global minimum.
Let P

tn−1

b be the associated buy price and P tn−1
s the associated sell price. At time tn−1 + 1,

there is no excess demand for prices above P
tn−1

b and no excess supply for prices below P tn−1
s .

By assumption, t′ was the first deviation. That is, in the the two time intervals [1, k], and
[tn−1 + 1, t′], the market is cleared at exactly the same spreads, and all of these spreads are
greater or equal than σtn−1 . Thus, the only difference of built-up excess demand and supply
is for buy prices below P

tn−1

b and sell prices above P tn−1
s . However, until time t′, such prices

are never realized. This implies that for prices P ≥ P
tn−1

b , it holds that Dt′(P ) = Dk(P ).
Similarly, for prices P ≤ P tn−1

s , it holds that St′(P ) = Sk(P ). Note that both spread σt′ and
σk are greater or equal than σtn−1 . Thus, the buy prices associated both with spread σt′ and
σk are greater or equal to P

tn−1

b . Similarly, the sell prices associated both with spread σt′ and
σk are less or equal to P tn−1

s . Hence, Rt′(σt′) = Rt′(σk) and Rk(σt′) = Rk(σk). If σt′ were
optimal at time t′, it woulds also be optimal at time k. However, at this time, the spread
σk was optimal. This now yields a contradiction. Thus, if at any point in the cycle Cn the
spread is different from

⋃n−1
i=1 Ci, it must be a new global minimum.

Moreover, this implies that each cycle Cn is finite. Consider the spread σ2tn−1 ∈ Cn.
If there was no strict global minimum up to this time, then the statement above implies
that σ2tn−1 = σtn−1 . Thus, by definition of tn, the cycle ends, once the baseline spread σ0 is
realized again. It follows from Theorem 3.1, that for all t ≥ 2tn−1 the spread either strictly
decreases or jumps back up to σ0. However, as σ0 is realized infinitely often, it cannot be
that the sequence is strictly decreasing forever. Thus, tn is finite, which shows that the cycle
Cn has finite length.

B.4 Proof of Theorem 4.1

Proof. In order to shows that sequence of buy and sell prices is constant over time, recall that
P t
b = P t,eq + ΦB(P

t,eq) and P t
s = P t,eq − ΦS(P

t,eq). Thus, buy and sell prices are completely
determined by the market-clearing price P t,eq with respect to revealed demand and supply.
It is thus sufficient to show the following:

Lemma B.6. For all trading rounds t ≥ 1, it holds that P t,eq = P 0,eq.

Note that Lemma B.6 seems identical to Lemma B.1. However, the difference is that for
transparent transaction costs, the market-clearing price corresponds to revealed net demand
and supply instead of the true demand and supply. In the case of net demand and supply,
the proof is even simpler. In the first round, there is no built-up excess demand and supply.
Thus, P 0,eq is the market-clearing price with respect to D0,net(·) and S0,net(·), implying that
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P 1,eq = P 0,eq. Recall that for transparent transaction costs, the allocation is determined by
the market-clearing price, the transaction costs are added ex post. That is, all buy orders
with revealed value above P 0,eq and all sell orders with revealed value above P 0,eq are cleared.
Thus, excess demand only builds up below P 0,eq and excess supply only builds up above P 0,eq,
see Appendix A for a more formal discussion. For all P ≥ P 0,eq, it holds that D2(P ) = D0(P )
and for all P ≤ P 0,eq, it holds that S2(P ) = S0(P ). Thus, in the second clearing round, it
holds that D2(P 0,eq) = S2(P 0,eq). This proves that in the second clearing round, P 0,eq is
still the market clearing price, which implies P 2,eq = P 0,eq. Lemma B.6 now follows from a
straightforward inductive argument.

B.5 Proof of Theorem 5.1

Proof. First, I show that for every α ∈ R, it holds that E[uα(σ
H)] > uα(σ

0), and E[uα(σ
H)] <

uα(0) It follows from the law of total expectation that Ei[uα(σ
H)] =

∑
j≥0 uα(σ

j)Pi[σ
H = σj ].

It follows from Theorem 3.1 that for all j ≥ 0, it holds that σj ≤ σ0. Because the utility
is strictly decreasing in the spread, it holds that uα(σ

0) < uα(σ
j) for all j ≥ 0. Note that∑

j≥0 Pi[σ
H = σj] = 1. Hence, E[uα(σ

H)] ≥
∑

j≥0 uα(σ
0)Pi[σ

H = σj] = uα(σ
0). Thus, a

trader weakly prefers the platform with hidden transaction costs. However, by assumption,
there exists at least one j, such that σj ̸= σ0 and Pi[σ

H = σj] > 0. Because the utility is
strictly decreasing, this implies that the inequality is actually strict, that is E[uα(σ

H)] > ui(σ
0).

Thus, a trader strictly prefers a market platform with hidden transaction costs and associated
spread σH over a market with transparent transaction costs and spread σT , if σT = σ0. The
argument for E[uα(σ

H)] < uα(0) is analogous.

Existence: For a fixed level of risk-aversion α, consider the map σT 7→ uα(σ
T )−E[uα(σ

H)] for
σT ∈ [0, σ0]. This map is continuous and strictly decreasing, because uα(·) is continuous and
strictly decreasing. Moreover, it follows from the previous observation above, that evaluated
at the point σ0, the map is strictly negative, while evaluated at the point 0, the map is
strictly positive. Thus, the Intermediate Value Theorem implies the existence of a unique
zero point, which corresponds to the equilibrium.

Sub-monopoly pricing: It follows directly from the observation E[uα(σ
H)] > uα(σ

0) and
the strict monotonicity of uα(·), that in equilibrium, it must hold that σT < σ0.

Comparative statics: For a fixed transparent spread σT , consider the map α 7→ uα(σ
T ) −

E[uα(σ
H)]. This map is continuous and strictly increasing. To see that the map is con-

tinuous, note that uα(σ
T ) − E[uα(σ

H)] = uα(σ
T ) −

∑
j≥0 uα(σ

j)P[σH = σj] holds and the
map α 7→ uα(·) is continuous. The strict monotonicity follows from the fact that uα(·) has
constant relative risk aversion (CRRA). This implies that as α increases, the function uα(·)
becomes more and more concave. Thus, a trader will prefer the certainty of outcome σT over
the random nature of the outcome σH , proving that the map α 7→ uα(σ

T ) − E[uα(σ
H)] is

indeed strictly increasing. As the equilibrium corresponds to the unique zero of this function,
note that for a fixed transparent spread σT , an increase in α leads to a positive value of the

40



function. As, for fixed α, the function is continuous and strictly decreasing in α, in order
to have a zero point at a higher α, the transparent spread must also increase. Hence, in
equilibrium, the transparent spread is increasing as a function of α.

Efficiency Crossover. First, I will argue that if I let α go to ∞, in equilibrium, the transparent
spread converges to σ0. Moreover, if I let α go to −∞, in equilibrium, the transparent spread
converges to σ0. To see this, consider the equilibrium equality E[uα(σ

H)] = uα(σ
T ). Recall

that uα(σ) =
1−exp(−α·(1−σ))

α
for α ̸= 1. Recall that traders have beliefs about the realization

of σH , more specifically, full support beliefs over a set σH1 = σ0 > σH
1 ... > σH

n > 0 with
corresponding probabilities p1, ..., pn > 0. Hence, we have that

E[uα(σ
H)] =

n∑
i=1

piuασ
H
i =

n∑
i=1

pi ·
1− exp(−α · (1− σH

i ))

α
. (9)

Using linearity of expectation, we get that

E[uα(σ
H)] =

1

α

(
1−

n∑
i=1

pi · exp(−α · (1− σH
i ))

)
. (10)

Hence, the equilibrium equality implies that

1− exp(−α · (1− σT ))

α
=

1

α

(
1−

n∑
i=1

pi · exp(−α · (1− σH
i ))

)
. (11)

Using basic algebra, this yields the following analytical expression for the transparent spread
σT :

σT = 2 +
1

α
ln

(
n∑

i=1

pi · exp(−α · (1− σH
i ))

)
. (12)

Now, let’s analyze the behavior of σT as α → ∞ and α → −∞.
First, I analyze α → ∞. As α → ∞, the terms exp(−α · (1 − σH

i )) will be dominated
by the largest σH

i , i.e., the smallest 1− σH
i . Given the ordering σH

1 = σ0 > σH
2 > · · · > σH

n ,
the dominant term will be the one corresponding to the baseline spread exp(−α · (1− σ0)).
Therefore, for large α,

n∑
i=1

pi exp(−α · (1− σH
i )) ≈ p1 exp(−α · (1− σ0)). (13)

Thus, for large α, it holds that

σT ≈ 1 +
1

α
ln
(
p1 exp(−α · (1− σ0))

)
. (14)

Simplifying the logarithm yields

ln
(
p1 exp(−α · (1− σ0))

)
= ln(p1)− α · (1− σ0). (15)
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Hence, it holds that

σT ≈ 1 +
1

α
(ln(p1)− α · (1− σ0)). (16)

As α → ∞, the term ln(p1)
α

converges to 0, leaving: σT ≈ 1 − (1 − σ0) = σ0 Therefore, as
α → ∞, σT → σ0. For α → −∞, the other extreme term σH

n dominates. Thus, by the same
proof, we can conclude that σT converges to σH

n . In summary: As α → ∞, the transparent
spread σT , in equilibrium, converges to σH

1 . As α → −∞, the transparent spread σT , in
equilibrium, converges to σH

n .

Next, I prove that the long-run average efficiency of the market with transparent trans-
action costs is continuous and strictly decreasing as a α 7→ E∞(σT ). First, as the transparent
spread remains constant over time, note that the long-run average efficiency is equal to the
per-round efficiency. Moreover, it was just shown that a strict increase in the risk aversion,
in equilibrium, leads to a strict increase in the transparent spread. However, a strictly bigger
spread leads to strictly smaller realized gains of trade — equivalently a strictly bigger loss
— and hence strictly smaller efficiency. A formal argument can be found in Jantschgi et al.
(2023). Intuitively, see the right-hand side of Figure 1: For transparent transaction costs,
the loss is equal to the triangle between true demand and supply and the revenue rectangle.
A bigger spread scales down the rectangle, leading to a strictly larger loss-triangle. The
continuity follows from the fact that a slight increase in the spread continuously increases
the loss-triangle. Thus, the following observation holds:

Observation B.7. For sufficiently large α, it thus holds that E∞(σT ) is close to E∞(σ0),
and for sufficiently small α, E∞(σT ) is close to E∞(σ∞).

Next, I analyze the long-run average efficiency of the market with hidden transaction
costs, leading to the cyclical sequence of spreads. σH = (σHt)t≥1. Let σH

∞ be the spread that
converges to the global minimum — this is well defined by Theorems 3.1 and 3.2. Hence, we
study E∞(σH) = limT→∞

∑T
t=1 G

real(σH
t )

T ·Ggross .

Observation B.8. It holds that E∞(σ0) < E∞(σH) < E∞(σH
∞).

I start by showing that E∞(σ0) < E∞(σH). I define the following sequence of stopping
times: Let T1 be the first t ≥ 0, such that σHt ̸= σ0, that is, the first time the spread
is an improvement to the baseline spread σ0. Iteratively, let Tn be the first time after
Tn−1, when the spread is again an improvement to the baseline spread. It follows from
Theorem 3.1 that for any n, Tn is finite, as the realized spread is infinitely often not equal
to the baseline spread. However, the predictable price cycles from Theorem 3.2, allow to
tighten that statement. Recall that at the end of every price cycle Cn, a global minimum
occurs. However, Theorem 3.2 implies that n’th price cycle Cn repeats

⋃n−1
i=1 Ci, until it is

broken by a new global minimum. That is, the cycles repeat, until a new global minimum
spread is realized. This however implies that the time between Tn − Tn−1 is bounded by some
constant that does not depend on n. Hence, the time between spreads that are not equal to
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the baseline spread does not diverge, but is bounded by some finite number k. We rewrite
E∞(σH) = limT→∞

∑T
t=1 G

real(σH
t )

T ·Ggross as follows:

lim
T→∞

∑T
t=1 G

real(σH
t )

T ·Ggross
= lim

n→∞

∑n
i=1

∑Ti+1

t=Ti
Greal(σH

t )∑n
i=1(Ti+1 − Ti)Ggross

. (17)

Note that in every interval [Ti, Ti+1], there is one spread that is strictly less than σ0. As every
new realized spread is a global minimum (Theorem 3.2), it holds that this spread is also
bounded from above by some spread σ∗ < σ0. Note that no matter the build-up of excess
demand and supply, clearing at a spread σ∗ instead of σ0 improves the realized gains of trade
by at least some fixed δ > 0 (just accounting for the additional executed trades from newly
incoming demand and supply). Thus, for every i it holds that

Ti+1∑
t=Ti

Greal(σH
t ) ≥

Ti+1∑
t=Ti

Greal(σ0) + δ. (18)

Combining the two equations from above yields that E∞(σH) > E∞(σ0). To show that
E∞(σH) < E∞(σ∞), I use a similar argument. Note that every time, when the market clears
at σ∞ instead of σ0, there is an improvement in the realized gains of trade by at least δ > 0.
Next, define a similar sequence of stopping times for the events, when σH is equal to the
baseline spread σ0. It again follows from Theorems 3.1and 3.2 that these events not only
happen infinitely often, but that the time between these events is also upper bounded by
some uniform constant. The analogous argument to above — rewriting the sum over the
intervals of these stopping times and at least one δ improvement per interval – yields that
E∞(σH) < E∞(σ∞).

Combining Observation B.7 and Observation B.8 finishes the proof.

B.6 Proof of Theorem 6.2

Proof. Let σ∗ be the smallest spread, such that clearing the baseline demand and supply
yields a revenue of at least the revenue threshold R. If any smaller spread is realized at some
point, market failure occurs. Thus, it suffices to prove that for every k ≥ 1, it holds that
σinf,k < σ∗ for a sufficiently low departure rate. Suppose that for level k best responses, the
new baseline spread for the price cycles is σsup,k with revenue Rsup,k and let σinf,k be the
new infimum. I show that for a sufficiently low departure rate, it must hold that σinf,k < σ∗.
Suppose not. Let δ > 0 denote the mass of traders in the level k-baseline market, whose
order is executed at spread σ∗, but not at spread σinf,k. The orders of these traders are thus
never executed. At time t, mass of traders with such orders is 1−ϵt

1−ϵ
· δ. If the market were

to clear at spread σinf,k, the revenue from these traders alone would be 1−ϵt

1−ϵ
· δ · σinf,k. For

sufficiently large t and sufficiently small ϵ > 0, this revenue is greater than the fixed level
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k baseline revenue at σsup,k. Because this spread is realized infinitely often, there exists a
large t, where this revenue is realized. However, clearing at σinf,k would improve revenue.
This is a contradiction. Hence, for any k, for a sufficiently low departure rate, it must hold
σinf,k < σ∗, which means that there exist times, where a spread strictly smaller than σ∗ is
realized. However, for level k+1 best responses, the new baseline is smaller or equal to σinf,k

and thus strictly smaller than σ∗. Because σ∗ was the smallest spread, for which the market
without excess was profitable, this means that in round k + 1, market failure occurs.

B.7 Proof of Lemma A.1

Proof. I will prove the statement for the demand functions, the proofs for the supply functions
are analogous. For P

′

b > Pb, we are interested in the evolution of Dt(Pb) − Dt(P
′

b). The
pent-up demand in the range [Pb, P

′

b ] evolves as follows: First, every time step a new amount
of D0(Pb)−D0(P

′

b) is added to the pent-up demand. Whenever some P t
b is larger than Pb,

then all of this pent-up demand is supplied and the pent-up demand in that interval for time
t+ 1 is zero. When P t

b is larger than P
′

b , all of the pent-up demand remains and carries over
by the factor ϵ into the next. Whenever Pb < P t

b < P
′

b , then some of this demand is supplied
and some remains and carries over by the factor ϵ into the next round. More formally:

1. When P t−1
b < Pb < P

′

b , there is no pent-up demand Zt−1
D (Pb) = Zt−1

D (P
′

b) = 0 and thus

Dt(Pb)−Dt(P
′

b) = D0(Pb)−D0(P
′

b). (19)

2. When P t−1
b > P

′

b > Pb, we have that Zt−1
D (Pb) = Dt−1(Pb) − Qt−1 and Zt−1

D (P
′

b) =
Dt−1(P

′

b)−Qt−1. This implies Zt−1
D (Pb)− Zt−1

D (P
′

b) = Dt−1(Pb)−Dt−1(P
′

b) and thus

Dt(Pb)−Dt(P
′

b) = ϵ ·
(
Dt−1(Pb)−Dt−1(P

′

b)
)
+
(
D0(Pb)−D0(P

′

b)
)
. (20)

3. When Pb ≤ P t−1
b ≤ P

′

b , it holds that Zt−1
D (P

′

b) = 0, while Zt−1
D (Pb) = Dt−1(P b

) −Qt−1.
Because Dt−1(P

′

b) ≤ Qt−1 = Dt−1(P t−1
b ), it follows that

Dt−1(Pb)−Dt−1(P
′

b) ≥ Zt−1
D (Pb)− Zt−1

D (Pb). (21)

Note that the last equation holds in all three cases.

To prove (1), we observe that

Dt(Pb)−Dt(P
′

b) = ϵ · Zt−1
D (Pb) +D0(Pb)−

(
ϵ · Zt−1

D (P
′

b) +D0(P
′

b)
)

= ϵ ·
(
Zt−1

D (Pb)− Zt−1
D (P

′

b)
)
+
(
D0(Pb)−D0(P

′

b)
)

≤ ϵ ·
(
Dt−1(Pb)−Dt−1(P

′

b)
)
+
(
D0(Pb)−D0(P

′

b)
) (22)

Using the same reasoning, we get that

Dt−1(Pb)−Dt−1(P
′

b) ≤ ϵ ·
(
Dt−2(Pb)−Dt−2(P

′

b)
)
+
(
D0(Pb)−D0(P

′

b)
)
. (23)
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Combining these two inequalities gives

Dt(Pb)−Dt(P
′

b) ≤ ϵ2 ·
(
Dt−2(Pb)−Dt−2(P

′

b)
)
+ (1 + ϵ) ·

(
D0(Pb)−D0(P

′

b)
)
. (24)

Applying this reasoning inductively, we arrive at the final inequality

Dt(Pb)−Dt(P
′

b) ≤ (1 + ϵ+ ϵ2 + . . .+ ϵt) ·
(
D0(Pb)−D0(P

′

b)
)

=
1− ϵt+1

1− ϵ

(
D0(Pb)−D0(P

′

b)
)
≤ 1

1− ϵ

(
D0(Pb)−D0(P

′

b)
)
.

(25)

The proof for (2) is analogous, if the iterative reasoning from above is stopped after the first t−
T steps. For (3), we note that when P t−1

b ≥ P
′

b ≥ Pb, it holds that Zt−1
D (Pb) = Dt−1(Pb)−Qt−1

and Zt−1
D (P

′

b) = Dt−1(P
′

b) − Qt−1. Hence, Dt(Pb) − Dt(Pb) = ϵ · (Dt− 1Pb −Dt− 1Pb) −(
D0(Pb)−D0(P

′

b)
)
, and we get equality throughout the induction that is used to prove

(2). (4) and (5) follow as applications from (2) and (3) respectively, because it holds that
Zt

D(Pb) = Zt
D(Pb) = 0, if P t

b ≤ Pb ≤ P
′

b (or T = 0).

B.8 Proof of Theorem A.2

Proof. First, I prove the following auxiliary Lemma: The price cycles from myopic revenue
maximization improve the long-run average revenue compared to clearing at a constant spread.
Note that, while myopic revenue maximization offer a weak improvement in every round, this
does not directly yield the result. It is neccessary to show that these revenue improvements
happen sufficiently often to have an impact on the average revenue.

Lemma B.9. Let R∞(σc) be the long-run average revenue of clearing at constant spread σc,
and let R∞(σmyopic) be the long-run average revenue of the price cycles from myopic revenue
maximization in Theorems 3.1 and 3.2. There exists δ > 0, such that for all σc ≥ 0 it holds
that R∞(σc) ≤ R∞(σmyopic)− δ.

Proof. I will only prove this for the optimal baseline spread σ0. Any other spread has
weakly smaller revenue per round, and thus also weakly smaller long-run average revenue:
R∞(σc) ≤ R∞(σ0).

Let T1 be the first t ≥ 0, such that σH
t ≠ σ0, that is, the first time the spread is an

improvement to the baseline spread σ0. Iteratively, let Tn be the first time after Tn−1, when
the spread is again an improvement to the baseline spread. It follows from Theorem 3.1 that
for any n, Tn is finite, as the realized spread is infinitely often not equal to the baseline spread.
However, the predictable price cycles from Theorem 3.2 allow to tighten that statement. Recall
that at the end of every price cycle Cn, a global minimum occurs. However, Theorem 3.2
implies that the n’th price cycle Cn repeats

⋃n−1
i=1 Ci, until it is broken by a new global

minimum. That is, the cycles repeat until a new global minimum spread is realized. This
implies that the time between Tn − Tn−1 is bounded by some constant that does not depend
on n. Hence, the time between spreads that are not equal to the baseline spread does not
diverge, but is bounded by some finite number k.
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Rewrite the long-run average revenue by splitting it up over the intervals [Ti, Ti+1]:

lim
T→∞

1

T

T∑
t=1

Rt(σc) = lim
n→∞

∑n
i=1

∑Ti+1

t=Ti
Rt(σc)∑n

i=1(Ti+1 − Ti)
. (26)

It follows from Theorems 3.1 and 3.2 that the intervals Ti are finite and that in each
interval [Ti, Ti+1], there is at least one time point where the revenue is strictly greater than
the revenue from the baseline spread σ0. Moreover, it holds that there exists a lower bound
δ > 0 on the revenue improvements that does not depend on i.

In every interval [Ti, Ti+1], we have:

Ti+1∑
t=Ti

Rt(σ0) ≤
Ti+1∑
t=Ti

Rt(σmyopic)− δ. (27)

Since the length of the intervals [Ti, Ti+1] are bounded by some constant k that does not
depend on i, we can write:

lim
T→∞

1

T

T∑
t=1

Rt(σ0) ≤ lim
n→∞

1∑n
i=1(Ti+1 − Ti)

n∑
i=1

(
Ti+1∑
t=Ti

Rt(σmyopic)− δ

)
. (28)

This simplifies to:

lim
T→∞

1

T

T∑
t=1

Rt(σ0) ≤ lim
n→∞

(
R∞(σmyopic)− δ

k

)
. (29)

Hence, for any constant spread σc ≥ 0:

R∞(σc) ≤ R∞(σmyopic)− δ

k
. (30)

This completes the proof.

To show that no eventually monotone sequence of spreads maximizes the long-run average
revenue, I will construct an oscillatory sequence of spreads that strictly improves the long-run
average revenue.

For notational simplicity, I will only consider monotone sequences of spreads, that is,
eventually monotone sequences with t = 1. If the sequence or spreads starts with an oscillatory
part, the constructed improving sequence will simply choose the same sequence, up until
the round, when the sequence becomes weakly monotone. This assumption is without loss
of generality, as the revenue from the first t rounds is then the same, the only difference is
that there is already built-up excess demand and supply. However, the structure of built-up
excess will play no role in the proof.

I will consider the two cases of weakly monotone sequences separately: (i) a weakly
increasing sequence of spreads, and (ii) a weakly decreasing sequence of spreads.
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First, I consider the case of a weakly increasing sequence of spreads. It follows from the
evolution of demand and supply, that in no round, excess demand and supply is cleared. That
is, because a weakly bigger spread corresponds to a larger buy and a smaller sell price. Thus,
in every round, only newly incoming traders are matched, that is, the per round revenue is
equal to Rt(σt) = R0(σt). Note that for the baseline demand and supply, σ0 is the optimal
spread. Thus, in every round, and hence also for the long-run average, the baseline spread σ0

weakly improves the revenue and it holds that R∞(σt) ≤ R∞(σ0). However, it follows from
Lemma B.9 that the constant baseline spread is not optimal for long-run average revenue
maximization, as it can be strictly improved by the oscillatory spread from the myopic revenue
maximization in Theorems 3.1 and 3.2.

Second, I consider the case of a weakly decreasing sequence of spreads. Such a sequence
must converge to some spread σ∞ ≥ 0. Thus, the distance |σt − σt−1| converges to zero. It
was shown in the proof of Theorem 3.1, that the increased per-round revenue Rt(σt) converges
to R0(σt): Recall, the reason for this is that a small decrease in the spread only leads to a
small decrease in buy and sell prices, and thus only a small fraction of excess demand and
supply is cleared. Moreover, as the spreads σt converge to σ∞, it follows from the continuity
of revenue in the spread that R0(σt) converges to R0(σ∞). Hence, there exists a function
ϵt that converges to zero, such that Rt(σt) ≤ R0(σ∞) + ϵ(t). Next, we consider two cases
separately: (i) σ∞ ̸= σ0 and (ii) σ∞ = σ0.

For (i), that is σ∞ ̸= σ0, we note that there exists δ > 0, such that R0(σ∞) ≤ R0(σ0)− δ,
as the spread σ∞ is not optimal for baseline demand and supply. Hence, for t sufficiently
large (ϵ(t) ≤ δ), it holds that Rt(σt) ≤ R0(σ∞)+ ϵ(t) ≤ R0(σ0)− δ+ ϵ(t) ≤ R0(σ0). Thus, for
large t, the per-round revenue is weakly smaller than when clearing at the optimal baseline
spread σ0. It follows from Lemma B.9 that from this round onwards, the oscillatory spread
from myopic revenue maximization improves the long-run average revenue, which shows that
such a sequence is not optimal.

For (ii), that is σ∞ = σ0, note that Rt(σt) ≤ R0(σ∞) + ϵ(t) = R0(σ) + ϵ(t). For every
ϵ > 0, take t sufficiently large, such that ϵ(t) ≤ ϵ. Thus, for large t, the per-round revenue
improvement from σ0 to the sequence σt is upper bounded by ϵ. Hence, in that large t
regime, the improvement on long-run average revenue is also upper bounded by ϵ. Now, it
follows from Lemma B.9 that there exists δ > 0, such that the spreads from myopic revenue
maximization improve the long-run average revenue compared to the constant spread σ0 by
at least δ. If t is now chosen sufficiently large, such that ϵ(t) remains smaller than δ, then
this shows that in the large t-regime myopic revenue maximization again improves upon the
sequence of spreads σt.

B.9 Proof of Theorem A.3

Proof. In a first step, I show that for all σT it holds that AT (σT , σH) = [α∗(σT ),M ] for some
α∗(σT ) ∈ [−M,M ]. For a fixed spread σT , consider the map α 7→ uα(σ

T )− E[uα(σ
H)]. This

map is continuous and strictly increasing. To see that the map is continuous, note that
uα(σ

T ) − E[uα(σ
H)] = uα(σ

T ) −
∑

j≥0 uα(σ
j)P[σH = σj] holds and the map α 7→ uα(·) is

continuous. The strict monotonicity follows from the fact that uα(·) has constant relative
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risk aversion (CRRA). This implies that as α increases, the function uα(·) becomes more
and more concave. Thus, a trader will prefer the certainty of outcome σT over the random
nature of the outcome σH , proving that the map α 7→ uα(σ

T )− E[uα(σ
H)] is indeed strictly

increasing.
For fixed σT , consider α∗(σT ) such that a trader i is indifferent between the two platforms,

that is, uα(σ
T ) = E[uα(σ

H)]. This value corresponds to a zero of the map α 7→ uα(σ
T ) −

E[uα(σ
H)]. If such a value exists, it is unique, because this map is continuous and strictly

increasing. For any α > α∗(σT ), it holds that uα(σ
T ) > E[uα(σ

H)], and thus traders with risk
attitude above α∗(σT ) prefer the market with transparent transaction costs. Similarly, for
any α < α∗(σT ), it holds that uα(σ

T ) < E[uα(σ
H)], and thus traders with risk attitude below

α∗(σT ) prefer the market with hidden transaction costs. Thus, AT (σT , σH) = [α∗(σT ),M ]
and AH(σT , σH) = [−M,α∗(σT )] holds by construction. If this value does not exist, then for
all α ∈ [−M,M ] it either holds that (i) uα(σ

T ) < E[uα(σ
H)] or (ii) uα(σ

T ) > E[uα(σ
H)]. In

the first case, all traders prefer the market with hidden transaction costs, and it holds that
AT (σT , σH) = ∅ and AH(σT , σH) = [−M,M ]. In that case, I write by abuse of notation that
α∗(σT ) = M . In the second case, all traders prefer the market with transparent transaction
costs, and it holds that AT (σT , σH) = [−M,M ] and AH(σT , σH) = ∅. In that case, I write
by abuse of notation that α∗(σT ) = −M .

Next, I show that α∗(σT ) is continuous and strictly increasing in σT . If α∗(σT ) = M , then
for all σ > σT , it holds that α∗(σ) = M as well. That is, because α∗(σT ) = −M implies that
for all α ∈ [−M,M ] uα(σ

T ) < E[uα(σ
H)]. Increasing σT to σ only decreases uα(·). Thus, for

all α ∈ [−M,M ] uα(σ) < E[uα(σ
H)], and hence α∗(σ) = −M as well. A similar argument

shows that if α∗(σT ) = −M , then for all σ < σT , it holds that α∗(σ) = −M as well. Thus,
consider the set of σT , where α∗(σT ) ∈ (−M,M). Recall that α∗(σT ) is the unique zero of
the map α 7→ uα(σ

T )− E[uα(σ
H)], which is continuous and strictly increasing on [−M,M ].

Moreover, for fixed α ∈ [−M,M ], the map σT 7→ uα(σ
T ) − E[uα(σ

H)] is continuous and
strictly decreasing, because for every α, uα(·) is continuous and strictly decreasing. Then, a
standard analytical argument shows that the unique zero α∗(σT ) is continuous and strictly
increasing in σT .

The revenue from charging a transparent transaction costσT is equal to λ(AT (σT , σH))R0(σT ).
Using the above argument, it follows that the first factor is equal to λ(AT (σT , σH)) =∫M

α∗(σT )
fαdα, where f(α) is the continuous and strictly positive density function of risk

attitudes. Since α∗(σT ) is continuous, it follows that λ(AT (σT , σH)) is continuous in σT as
well. Moreover, for transparent transaction costs, it was shown in Jantschgi et al. (2023) that
R0(σT ) is continuous in the spread σT as well. Thus, the map σT 7→ λ(AT (σT , σH))R0(σT )
is continuous on [0, σ0].

Note that for any σ ≥ σ0, it follows from the same argument as in Theorem 5.1, that
λ(AT (σT , σH)) = ∅ and thus the revenue is zero. Let (σj)j≥0 denote all possible realization
of σH . Recall from Theorem 3.1 that the this sequence is lower bounded away from 0. For
any spread 0 < σ < infj≥1 σ

H , it holds that AT (σT , σH) = [−M,M ] and R0(σ) > 0. Thus,
there exists a spread σ ∈ (0, σ0) such that λ(AT (σT , σH))R0(σT ) > 0. Finally, for σ = 0, it
holds that R0(σT ) = 0. Hence, if an equilibrium exists, it must hold that σT ∈ (0, σ0). The
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existence of a spread σT ∈ (0, σ0) with σT ∈ argmaxλ(AT (σT , σH))R0(σT ) follows directly
from the Extreme Value Theorem. Together with σH , this spread σT forms an equilibrium.
This finishes the proof.
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