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Introduction



Motivation

Quantitative Macro Models
1. Heterogeneous Agents:
overlapping generations, continuum of agents, discrete types.

2. Multiple Assets:
liquid-/illiquid assets, housing.

3. Aggregate Risk:
realistically large shocks.

High-Accuracy Solutions
• Global Solution Techniques: when shocks are large.
• Curse of Dimensionality: infeasible in high dimensions!
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Related Literature

Standard Methods
grid size grows exponentially in dimensions. Infeasible for d > 3.

Advanced Methods
1. Sparse Grids: Brumm and Scheidegger (2017), Krueger and Kubler (2006), ...

• reduce grid sizes, focus on important points
• good in medium dimensions
• grids still grow to an overwhelming size for d > 20

2. Neural Nets: Azinovic et al. (2022), Fernandez-Villaverde et al. (2020), ...
• can handle large problems d > 20
• black-box optimization
• convergence depends on hyper-parameters

→ Still room for improvement!
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This Paper

Novel global solution technique based on the
Tensor-Train Decomposition.

4



Method



The Solution Technique in a Nutshell

1. Time Iteration:
fixed-point solution approach using non-linear solvers.

2. Selection of Points:
Sample from the ergodic set (no curse of dimensionality!)

3. Policy Approximations:
High-dimensional off-grid interpolation (→ high complexity!)

⇒ Tensor-Train Decomposition
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Approximation

• Products of one-dimensional basis-functions ϕ
• m basis-functions in each dimension 1, . . . ,d
• Combination i1, . . . , id weighted with A[i1, . . . , id]
• Sum up over all permutations, Richter et al. (2023)

f̂(⃗x) =
m∑
i1=1

. . .

m∑
id=1

︸ ︷︷ ︸
sum over all

dimensions 1, . . . , d
and bases 1, . . . ,m

A[i1, ..., id]

︸ ︷︷ ︸
tensor of
weights

·
(
ϕi1(x1)

︸ ︷︷ ︸
basis function i1
in dimension 1

· . . . · ϕid(xd)
)

︸ ︷︷ ︸
basis function i1
in dimension d

→ A is an order-d tensor with mdentries!
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Handling the exponential size of A

1. Exploit Structure:
Symmetry, smoothness, linearity (→ latent low rank!)

2. Decomposition:
Decompose A into a sequence of smaller objects with lower rank.

3. Oseledets (2011):
Decompose order-d tensor of size md into a sequence of
d order-3 tensors with size mr2.

→ Tensor-Train Decomposition
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Tensor-Train Decomposition – 2D Special Case

• Approximate (m×m)-matrix A
• outer-product of (m× r)-matrices U1,U2
• error ε low if A has low rank

A

(m×m)

= U1

(m×r)

◦ U2
(r×m)

+ ε

(m×m)
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Generalization

Matrix Completion

U1︷ ︸︸ ︷
(m× r)

◦

U2︷ ︸︸ ︷
(r×m)︸ ︷︷ ︸

(m×m)

≈ A

Tensor Completion

U1︷ ︸︸ ︷
(m× r) ◦

U2︷ ︸︸ ︷
(r×m× r) ◦

U3︷ ︸︸ ︷
(r×m)︸ ︷︷ ︸

(r×m×m)︸ ︷︷ ︸
(m×m×m)

≈ A

same principle for d > 3!
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≈ A
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Tensor-Train Decomposition

General Case

m×...×m︷︸︸︷
A︸ ︷︷ ︸

O(md)

≈
m×r︷︸︸︷
U1 ◦

r×m×r︷︸︸︷
U2 ◦ . . . ◦

r×m×r︷︸︸︷
Ud−1 ◦

r×m︷︸︸︷
Ud︸ ︷︷ ︸

O(mdr2)

Scaling Example

d #A
∑

#U
2 100 100
5 105 850
10 1010 2100
100 10100 24600

Table 1: Object size for different d with m = 10 and r = 5.
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Back to the Approximation

Approximation

• Replace A by its decomposition U1, . . . ,Ud
• Sequential contractions from end to end

f̂(x) = U1 ◦ . . . ◦
((

Ud−1 ◦
(
Ud ◦ ϕ(xd)

)
◦ ϕ(xd−1)

)
◦ . . . ◦ ϕ(x1)

)

Computing the Decomposition

• Non-linear approximation problem
• Decomposed in a sequence of linear problems, Holtz et al. (2012)
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Economic Application



Economic Application

Model Setup

• Large Scale OLG: with yearly calibration, portfolio choice,
endogenous labor.

• NK-Production: with Rotemberg price adjustment costs and
union bargaining.

• Government: faces large spending shocks, 20% of GPD every
decade.

• Aggregate Risk: persistent large shocks.

Research Questions

1. Impact of large shocks on debt, inflation and taxation?
2. How are expenses financed depending on the policy?
3. Intergenerational impact of different policy?
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Computational Problem

State Space
• 60 Generations
• two types of assets
• three aggregate shocks
• five policy parameters

Policy Functions
• 120 individual policies
• 4 aggregate policies

→ Computationally very challenging!
→ The proposed method solves the problem in 2h on a PC!

13



Computational Problem

State Space
• 60 Generations
• two types of assets
• three aggregate shocks
• five policy parameters

Policy Functions
• 120 individual policies
• 4 aggregate policies

→ Computationally very challenging!
→ The proposed method solves the problem in 2h on a PC!

13



Computational Problem

State Space
• 60 Generations
• two types of assets
• three aggregate shocks
• five policy parameters

Policy Functions
• 120 individual policies
• 4 aggregate policies

→ Computationally very challenging!
→ The proposed method solves the problem in 2h on a PC!

13



Computational Problem

State Space
• 60 Generations
• two types of assets
• three aggregate shocks
• five policy parameters

Policy Functions
• 120 individual policies
• 4 aggregate policies

→ Computationally very challenging!

→ The proposed method solves the problem in 2h on a PC!

13



Computational Problem

State Space
• 60 Generations
• two types of assets
• three aggregate shocks
• five policy parameters

Policy Functions
• 120 individual policies
• 4 aggregate policies

→ Computationally very challenging!
→ The proposed method solves the problem in 2h on a PC!

13



Results

• Average relative error in consumption 0.014%
• Average market clearing error 0.036%
• Q99 consumption error < 0.08%

Q99 AVG Q50
Euler-Equation 1 7.40E-04 1.31E-04 8.03E-05
Euler-Equation 2 7.97E-04 1.40E-04 8.40E-05
Labor Supply 1.13E-03 3.43E-04 2.57E-04
Phillips-Curve 1.03E-03 2.08E-04 1.63E-04
Market Clearing 1.29E-03 3.61E-04 2.35E-04
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Conclusion

1. We present a new global solution technique for
high-dimensional economic problems.

2. We exploit the Tensor-Train Decomposition
for efficient approximations.

3. We solve a high-dimensional economic application
with high accuracy, at low computational cost.
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