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Quantitative Macro Models
1. Heterogeneous Agents:
overlapping generations, continuum of agents, discrete types.

2. Multiple Assets:
liquid-/illiquid assets, housing.

3. Aggregate Risk:
realistically large shocks.

High-Accuracy Solutions

- Global Solution Techniques: when shocks are large.

- Curse of Dimensionality: infeasible in high dimensions!
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Standard Methods
grid size grows exponentially in dimensions. Infeasible for d > 3.

Advanced Methods

1. Sparse Grids: Brumm and Scheidegger (2017), Krueger and Kubler (2006), ...
- reduce grid sizes, focus on important points
- good in medium dimensions

- grids still grow to an overwhelming size for d > 20

2. Neural Nets: Azinovic et al. (2022), Fernandez-Villaverde et al. (2020), ...
- can handle large problems d > 20
- black-box optimization

- convergence depends on hyper-parameters

s Still room for improvement!



This Paper

Novel global solution technique based on the
Tensor-Train Decomposition.
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1. Time Iteration:
fixed-point solution approach using non-linear solvers.

2. Selection of Points:
Sample from the ergodic set (no curse of dimensionality!)

3. Policy Approximations:
High-dimensional off-grid interpolation (— high complexity!)

= Tensor-Train Decomposition
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- Products of one-dimensional basis-functions ¢
- m basis-functions in each dimension 1,...,d
- Combination iy, ..., Ig weighted with Aliy, ..., i4]

- Sum up over all permutations, Richter et al. (2023)

m m
JR = 3> Al (6000) < 6,0k)
= fg=1 tensor of " “
—— weights basis function iy basis function iy
sum over all in dimension 1 in dimension d
dimensions 1, ...,
and bases1,...,m

s Ais an order-d tensor with m3entries!
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Handling the exponential size of A

1. Exploit Structure:
Symmetry, smoothness, linearity (— latent low rank!)

2. Decomposition:
Decompose A into a sequence of smaller objects with lower rank.

3. Oseledets (2011):
Decompose order-d tensor of size m? into a sequence of
d order-3 tensors with size mr?.

— Tensor-Train Decomposition
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Tensor-Train Decomposition — 2D Special Case

- Approximate (m x m)-matrix A
- outer-product of (m x r)-matrices Uy, U,

- error ¢ low if A has low rank

A o[ b ]

(rxm)

+
™

(mxm) (mxr) (mxm)
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Generalization

Matrix Completion

Uy Uy
(mxf)o(fxm) ~A

(mxm)

Tensor Completion

Uy Uz Us
(mMxf)o (rxmxf)yo(fxm) ~A

(Xxmxm)

(mxmxm)

same principle for d > 3!
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Tensor-Train Decomposition

General Case

mx...Xxm mxr rxmxr rxmxr r<m

= = = e N
A ~ U o Uy o...0 Uy_q o Uy
N——
O(m9) O(mdr?)

Scaling Example

d| #A S #U
2| 100 100
5| 105| 850

10 | 10 | 2100
100 | 1079 | 24600

Table 1: Object size for different d with m =10 and r = 5.
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Approximation

- Replace A by its decomposition Uy, ..., Uy
- Sequential contractions from end to end

f(X)=Ujo...0 ((Ud_1 o (Ud o (j)(Xd)) o ¢(Xd_1)) 0...0 ¢(X1)>

Computing the Decomposition

- Non-linear approximation problem
- Decomposed in a sequence of linear problems, Holtz et al. (2012)

1
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Economic Application

Model Setup

- Large Scale OLG: with yearly calibration, portfolio choice,
endogenous labor.

- NK-Production: with Rotemberg price adjustment costs and
union bargaining.

- Government: faces large spending shocks, 20% of GPD every
decade.

- Aggregate Risk: persistent large shocks.

Research Questions

1. Impact of large shocks on debt, inflation and taxation?
2. How are expenses financed depending on the policy?
Intergenerational impact of different policy?

w
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Computational Problem

State Space Policy Functions
- 60 Generations - 120 individual policies
- two types of assets - 4 aggregate policies

- three aggregate shocks
- five policy parameters

> Computationally very challenging!
— The proposed method solves the problem in 2h on a PC!



- Average relative error in consumption 0.014%

- Average market clearing error 0.036%

- Q99 consumption error < 0.08%

Q99 AVG Q50
Euler-Equation 1 7.40E-04 1.31E-04 8.03E-05
Euler-Equation 2 7.97E-04 1.40E-04 8.40E-05
Labor Supply 1.13E-03  3.43E-04 2.57E-04
Phillips-Curve 1.03E-03 2.08E-04 1.63E-04
Market Clearing  1.29E-03 3.61E-04 2.35E-04

14
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Conclusion

1. We present a new global solution technique for
high-dimensional economic problems.

2. We exploit the Tensor-Train Decomposition
for efficient approximations.

3. We solve a high-dimensional economic application
with high accuracy, at low computational cost.
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