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Abstract. We consider a market of risky financial assets where the participants are an informed
trader, a mass of uniformed traders and noisy liquidity providers. We prove the existence of a
market-clearing equilibrium when the insider internalizes her power to impact prices. In the price-
impact equilibrium the insider strategically reveals a noisier (compared to when the insider takes
prices as given) signal, and prices are less reactive to the publicly available information. In contrast
to the related literature, we show that in the price-impact equilibrium, the insider’s ex-ante welfare
monotonically increases in the signal precision. This clarifies when a trader with market power
is motivated to both obtain and refine her private information. Furthermore, even though the
uniformed traders act as price-takers, the effect of price impact is ex-ante welfare improving for
them. By contrast, internalization of price impact may reduce insider ex-ante welfare. This happens
provided the insider is sufficiently risk averse and the uninformed traders are sufficiently risk tolerant.

Introduction

It is well-documented that large financial institutions possess the power to affect markets
(see, for example, Koijen and Yogo [2019] and the related discussion in Rostek and Yoon [2023]).
Compared to other traders, orders coming from large investors impact both transaction prices and
volumes, and large investors are aware of this impact (see Rostek and Weretka [2015a]). Large
financial institutions are additionally known to invest considerable capital to acquire information
regarding the payoffs of the assets they trade (c.f. Kacperczyk and Pagnotta [2019]). In sum, it
is natural to assume that large investors are both (1) aware of their impact on prices and (2) in
possession of private information and hence are “insiders” compared to the other traders.

That large investors are informed traders is not a secret. Indeed, the rest of the market knows
large investors have private information (see Subrahmanyam [1991]), and as such, the uninformed
traders’ account for the insider’s superior information, and expect that in equilibrium there is a
partial transmission of private information. In both the price-taking (see Grossman and Stiglitz
[1980]) and price-impact (see Kyle [1985]) cases, it is shown that in the presence of noise traders,
the insider’s private signal is partially revealed to the uniformed traders through equilibrium prices,
a mechanism that creates a market (or public) signal. Therefore, it is reasonable to assume that
not only will the insider, who is also aware of her market power, strategically choose the signal she
reveals to the market, but also that the uniformed traders recognise, and account for, this fact.

Using the above as motivation, our goal is to study how the insider’s awareness of price impact
affects equilibrium prices, information transmission and agent welfare. We work in the classic single
period normal-CARA setting, seeking a linear price-impact equilibrium where a risk averse insider
(endowed with private information) trades a bundle of risky assets with a mass of uniformed risk-
averse traders, as well as liquidity providers (noise traders). We use this model to predict how
the insider (partially) reveals her signal; how the uniformed agents correspondingly adjust their
demands; and if the informational content within equilibrium prices is reduced compared to when
all agents act as price takers.

We are also interested in agent welfare. Here, we wish to know if internalization of price
impact is welfare improving for the insider and/or the uninformed agent, and especially if the

Date: August 27, 2024.

1



2 MICHAIL ANTHROPELOS AND SCOTT ROBERTSON

insider’s welfare increases with her signal precision. The latter question arises because in the price-
taking equilibrium of Grossman and Stiglitz [1980], insider welfare does not always increase with
the signal precision. More precisely, if the insider receives the signal G = X + ZI where X is the
asset payoff and ZI is a noise term with precision pI , then the map “pI → Insider Welfare” is not
monotonically increasing. This is shown in comparison to the price-impact case in Figure 1 below,
but qualitatively the map takes the two forms shown in the figure. This is problematic, because

Precision

Welfare
Insider Welfare vs Signal Precision (price taking)

either it is never advantageous to obtain the signal (the dot-dashed line) or it is beneficial to obtain
the signal, but not to refine it beyond a certain precision level (solid line). As presumably there is a
cost (in terms of money and/or effort) to produce the signal, the former case suggests price taking
equilibria with private signals are somewhat artificial, and the latter case requires the insider to
estimate model parameters (which are very hard to estimate especially for other agents) to know if
she should try and improve her signal.

Given this, we would like to know in what environment the insider can be assured that a better
quality signal is always better for her, and evidently this is not the case when all agents take prices as
given. Furthermore, lack of monotonicity was also shown in the recent Nezafat and Schroder [2023]
where all agents account for price impact. However, in our model, by differentiating the insider
on two fronts: private information and internalization of market power, we establish monotonicity
with respect to the signal precision (Proposition 3.2), and avoid the paradoxical situations where
the insider is not motivated to refine her signal, even if doing so does not incur additional costs.

Methodology and Main Contributions. We adjust the single period CARA-normal setting
of Grossman and Stiglitz [1980]1 by allowing the insider to internalize her price impact, while
maintaining the presence of price-taking uniformed traders and liquidity providers2. Following the
related literature (e.g. Kyle [1985], Rochet and Vila [1994]), we study a linear impact equilibrium
where the insider perceives the market price to be an affine function of the sum of her and the noise
traders’ demand3, with the affine coefficients endogenously determined through market clearing.

Our first main result (Theorem 1.6) establishes existence of an affine price impact equilibrium.
The affine coefficients (which are not the same as in the price-taking case), are governed by the
unique positive root of a certain cubic equation, given in (18)4. For the sake of comparison, we

1Grossman and Stiglitz [1980] assumes all traders are price takers, an assumption ubiquitous in the literature
on equilibrium under heterogeneous information. Indeed, it was assumed in the seminal papers of Grossman [1976],
Grossman and Stiglitz [1980] and Hellwig [1980], and with the exception of the literature strand started by Kyle [1985],
Back [1992], Rochet and Vila [1994] and Subrahmanyam [1991], price taking has remained the dominant assumption.

2Assuming the uninformed traders are price takers is realistic, as they represent a mass of small risk-averse traders
who rationally optimize their positions, but do not have the power to move prices.

3Linear price-impact is common in the literature (see among others Kyle [1989], Vayanos [1999], Vives [2011]), and
the affine structure of price impact is also seen (though not perceived a-priori by the insider) in the price taking, or
competitive, equilibrium (see (26) below).

4This stands in contrast to Subrahmanyam [1991] where equilibria are governed by solutions to a quintic equation.
The difference arises because, consistent with Grossman and Stiglitz [1980] (see also Rochet and Vila [1994]) we
assume the insider, by viewing both her demand and the resultant price, is able to deduce the noise trader’s demand.
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summarize the price-taking results of Grossman and Stiglitz [1980] in Proposition 1.7, and for both
the price taking and price impact cases we establish equilibria absent private information by showing
it coincides with the zero precision limit: see Proposition 1.11.

Having established existence of equilibria we perform a comparison analysis. While analysis
of information transmission and price reactivity yields expected conclusions, the study of indirect
utilities (or welfare) results in surprising and novel outcomes that stand in sharp contrast to the
literature. Relating to information transmission, we show (similarly to Kacperczyk et al. [2023])
that the insider’s price impact makes the market signal fuzzier than in the competitive setting
(see Proposition 2.1). This is reasonable, as the insider has a motive to hide her signal when
submitting her demand, and hence her trading lowers the precision of the signal revealed by the
prices. Conversely, the uniformed traders recognize the insider reveals a muddied signal, and respond
with a less elastic demand function, which in turn makes the equilibrium price less reactive to the
public information (consistent with the adverse-selection concerns of Kyle [1989] and Lou and Rahi
[2023]). These results are robust across model parameter values (in particular the uninformed
traders and insider need not have the same risk aversion) and we conclude that by assuming the
insider is a price taker, one is implicitly assuming the market gets a more precise signal, and prices
are more reactive to public information, than if the insider had internalized price impact.

We then turn our attention to traders’ indirect utility, which (with a slight abuse of terminol-
ogy) we refer to as “welfare”. Our main result is that when the insider internalizes price impact (and
the uninformed agents do not), insider ex-ante welfare is monotonically increasing in the private
signal precision. As discussed above, this result does not hold when either (i) all agents are price
takers (e.g. Grossman and Stiglitz [1980]) or (ii) all agents internalize price impact (e.g. Nezafat
and Schroder [2023]). Thus, in the reasonable setting of a strategic insider, price-taking uniformed
traders and noisy liquidity providers, the meaningful statement “better information increases wel-
fare” always holds, and there is always an incentive to refine the signal. Qualitatively, this result
holds because the insider’s strategic trading increases the value of her private signal, and hence
refining her signal is attractive.

Our second welfare result stems from a desire to isolate the effects of price impact internal-
ization and private information on insider welfare. In other words, we ask: can one attribute any
gain (or loss) in agent welfare to just price impact internalization or just asymmetric information?
To answer this, we must turn on and off both the internalization of impact and private information
(hence the need for the four equilibria established in Section 1). Our comparison analysis yields
several interesting outcomes. First, we show that absent a private signal, internalizing price impact
always improves insider welfare. While this result may be expected at the ex-ante level, remarkably
it holds for any realization of the noise trader demand. Hence, under symmetric information, the
equilibrium at which the insider acts strategically (solely due to her market power) yields a higher
utility gain. We conclude that price impact internalization alone increases insider welfare.

The situation changes when we layer in the private signal. While typically (i.e. across the bulk
of the parameter space) internalization of price impact yields higher insider welfare, insider welfare
does not always increase. Indeed, when the insider is sufficiently risk averse, the uninformed traders
are sufficiently risk tolerant and the variance of noise demand is sufficiently low5, internalization of
price impact actually reduces the insider’s welfare (the exact condition is given in equation (36) of
Proposition 3.6).

This holds because having private information reduces the asset’s risk for the insider, which in
turn increases her expected demand (in line with the empirical evidence of Kacperczyk and Pagnotta
[2019]). On the other hand, internalization of price impact makes her “hide” her private signal,
and this is expected to reduce her demand. This means that price impact and private signal have
opposite expected effects on the insider’s demand. While the equilibrium price decreases due to

5Note that the variance of noise traders demand can be seen as a proxy for the size of their trading. This approach
has been used by Kovalenkov and Vives [2014a] and more recently by Nezafat and Schroder [2023].
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price impact, the insider’s demand is lower under the presence of signal when she is also sufficiently
risk averse. If, in addition, the uniformed traders are highly risk tolerant, their demand increases
and the insider’s trade at market-clearing equilibrium is reduced even further. In other words,
under a large deviation of the traders’ risk aversions, the effect of price impact is dominated by the
that of heterogeneous information, the insider’s demand is reduced and her utility gain is lower.
However, when the traders have the same risk aversion, the effect of price-impact internalization is
always beneficial for the insider. We conclude that both asymmetric information and deviation of
agent risk aversions may reduce insider welfare in the price-impact equilibrium. Further details are
given in Section 4.

The above results underscore an important (and clarifying) fact. As long as the insider in-
ternalizes her price impact, equilibrium prices cannot be driven to the corresponding price-taking
equilibrium ones. This stems from the uniformed traders’ optimal demand. Although they are price
takers, when determining their optimal demand, they do recognize that the insider internalizes her
price impact. As mentioned above, price impact reduces public signal’s precision, and hence uni-
formed traders demand becomes less elastic than in the competitive equilibrium, and this is true
for any realization of the public signal and level of prices. The lower sensitivity on the public
signal alters the intercept point of their demand function (as it depends on public signal). Hence,
in the price-impact equilibrium the insider trades against a different residual demand than in the
price-taking equilibrium, which implies that price-taking equilibrium cannot be written as a special
case of the price-impact one.

Finally, analysis of the uniformed traders’ welfare also yields quite interesting outcomes. First,
traders are at the same side of trade in both the price-impact and price taking equilibria (e.g. in
both equilibria, all agents either buy or sell off their initial endowments). As the insider’s price
impact decreases the equilibrium prices, the uniformed traders satisfy their optimal demand at a
discount, due to the insider’s price impact. This holds regardless the presence of private signal,
which means that price impact is ex-ante beneficial for the uniformed traders with and without
asymmetric information, as shown in Proposition 3.5. This allows us to conclude that for the bulk
of the parameter space, aggregate welfare of both insider and uniformed traders increases due to
the internalization of price impact, and this holds with and without the private signal.

Connection with the related literature. Our paper contributes to the on-going literature on
price-impact equilibria under asymmetric information, on market participants’ welfare and on the
informativeness of equilibrium prices.

In our price-impact equilibrium, the insider does not act as price-taker. Usually, the price-
taking assumption is made for tractability, as in its absence one must specify a price impact model,
and depending upon the specification, it may be very difficult to establish equilibria. In the afore-
mentioned Kyle [1985], Back [1992], Rochet and Vila [1994], the insider’s demand is combined with
exogenous noise traders’ demand before being sent to a risk neutral market maker who prices in a
competitive environment. In Subrahmanyam [1991], market makers are allowed to be risk averse
while quoting prices to remain at utility indifference (as opposed the uninformed agent of Grossman
and Stiglitz [1980] who can be thought of as a market maker who quotes utility-optimal prices), but
the insider does not know the noise trader demand before submitting her order (as in Kyle [1985]).
Regarding Subrahmanyam [1991], our analysis updates in two directions. First, by assuming the
uninformed agent is a utility optimizer, and second, by allowing the insider to the identify the noise
trader demand through the public equilibrium price (as in Rochet and Vila [1994]).

In the spirit of the seminal work of Kyle [1989], several models on normal-CARA setting
with price-impact and asymmetric information have been developed. For example, Vayanos [2001]
and Rostek and Weretka [2015a] study dynamic thin markets with and without market makers
respectively, Rostek and Weretka [2015b] emphasizes on the traders’ interdependent preferences
and correlated private signals, while Malamud and Rostek [2017] and Anthropelos and Kardaras
[2024] consider decentralized exchanges and restricted participation settings respectively. Also,
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Bergemann et al. [2021] studies a market of divisible goods where agents receive correlated signals
and their demand affects the revealed signal at equilibrium, as in our model. In these works, as in
Kyle [1989] and Vives [2011], strategic agents submit demand schedule forming a Nash equilibrium.
In contrast to our model, they consider all non-noise agents to be strategic, with private information
mostly appearing only on investors’ endowments. An extensive recent overview of this literature is
provided in Rostek and Yoon [2023].

While it is an undoubted fact that large financial institutions invest to obtain private informa-
tion, even when trading in markets that are not thin, theoretical studies that justify the positive
relation between better information and higher gains from trading are scarce. We highlight that
a key factor which always leads to this positive relationship is the insider’s market power in a
markets with a mass of small uniformed traders and noisy liquidity providers. Under a competitive
market setting, the fact that private information has positive value if an investor acts strategically
was pointed out back in Hirshleifer [1971], while similar positive effect of private signal on traders’
welfare is shown in a competitive model with a continuum of traders in Morris and Shin [2002].

Under non-competitive market settings, information acquisition has been relatively recently
studied in Vives [2011], Rostek and Weretka [2012] and Vives [2014], where insiders with correlated
noisy signals are considered. An extension of these papers to a two-stage model has been recently
developed in Nezafat and Schroder [2023]. Therein, at the first stage, one type of traders can choose
the precision of the private signal that they will get before trading. This situation is comparable to
our model when the rest of the non-noise traders are uniformed (no private signal). In contrast to
our model however, both the insider and uniformed traders are assumed strategic, which essentially
implies that the market is thin despite the presence of noise traders. Strategic uniformed traders,
together with specific conditions on noise traders’ demand, lead to an equilibrium at which private
information is welfare-deteriorating. We show that the existence of zero-information equilibria is
not possible if the uniformed traders are price takers. In this case, the insider’s ex-ante welfare
is always increasing with respect to signal’s precision, which means that the private information
does have positive value for the insider. In addition, we show that under Pareto-allocated initial
endowments, private information has positive value for uniformed traders too (even though they
are assumed as price-takers).

On the other hand, Kacperczyk et al. [2023] considers strategic informed and price-takers
uniformed traders as we do, where the role of initial endowments is highlighted for different types of
informed traders. In Gong et al. [2022] the insider is assumed risk neutral and the role of uniformed
traders is played by an ambiguous market maker with a quadratic objective. A linear equilibrium,
similar to Kyle [1985], is derived where the price is underreacted to public signal, as in our case.

Strategic agents and asymmetric information have been included in Lou and Rahi [2023], where
in a non-competitive market (in line with Kyle [1989] and Rostek and Weretka [2015a]) traders
receive different ex-ante random values of a single asset (and potentially different private signals
too). In contrast to our model (and to Kyle [1989]) there are no liquidity providers, which essentially
implies that price informativeness does not change due to price impact. As in our model, there are
conditions that lead to higher ex-ante expected utility for the uniformed traders than the insider.
We reach a similar conclusion, but without assuming that uniformed traders act strategically.

Another channel on the valuation of private information that leads to insider’s lower gains
from trading due to private information is the information sharing. For example, Goldstein et al.
[2023] reach to this result in a novel model (based on Kyle [1989]) where informed traders share
their private signals before trading (as in Indjejikian et al. [2014]).

Structure of the paper. The rest of the paper is organized as follows. In Section 1 provide the
model and establish existence of the equilibria under consideration. Section 2 develops quantitative
analysis and qualitative discussion on information transmission and signal and price sensitivities.
Section 3 focuses on welfare comparison at different equilibria and Section 4 is dedicated to equilibria
structure regarding prices and risk allocation and concludes with a discussion on model’s predictions.
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An extension to a general multi asset model is provided in Appendix A and all proofs are given,
starting in Appendix B.

1. The Equilibrium

We now present the model and construct the equilibrium. To both isolate the effects of price
impact internalization and asymmetric information, and to keep the presentation/notation as simple
as possible, we consider a simplified model with only one risky tradeable asset whose payoff has
zero mean and unit variance, and where the initial endowments are at Pareto optimality absent
private information6. The single asset model, and all the main results, are generalized in Appendix
A removing the afore-mentioned assumptions. With the exception of Proposition 1.5, proofs of all
statements made in this section are given for the general case in Appendix B.

Model and Uncertainty. The model has one period. The risky asset has terminal payoff X ∼
N(0, 1) and has positive supply Π > 0. The risk-less asset is in 0 net supply, with price normalized to
1. Following the literature (see Subrahmanyam [1991], Spiegel and Subrahmanyam [1992], Grossman
[1976], Grossman and Stiglitz [1980] amongst many others), there is an insider I who at time 0
obtains a private signal G which is a noisy version of X, taking the form

(1) G = X + ZI ; ZI =
1

√
pI

EI ,

where EI ∼ N(0, 1) is independent of X and pI > 0 is the signal precision. There is also a mass
of uniformed traders who do not receive a private signal, but who in the equilibrium established
below, will receive a market signal through the time 0 price. In contrast to Nezafat and Schroder
[2023], we assume the uninformed traders are price-takers, and following convention, we consider
a representative agent U , hereafter called the uniformed trader. We assume both traders have
exponential preferences with respective risk tolerances αI , αU . Lastly, there are liquidity providers
(also called noise traders), denoted by N , with exogenous demand

ZN =
1

√
pN

EN ,

where EN ∼ N(0, 1) is independent of both X and EI . pN measures the noise trader demand
precision, and, as mentioned in Kovalenkov and Vives [2014b] can be thought of as a measure of the
volume of the price inelastic demand. Traders I and U are endowed with (constant) share positions
{πi,0} which are Pareto optimal absent private information7

(2) πi,0 = αiΠ̂ i ∈ {I, U} , Π̂ :=
Π

αI + αU
.

6Even though traders have CARA preferences, equilibrium quantities under price-impact do depend on the traders’
initial endowments. Intuitively, this is because it is insider’s trade off her initial position that impacts equilibrium
prices. Prices then depend on the insider’s initial endowment, and through market-clearing also on the uniformed
traders’ initial position. Assuming initial endowments are Pareto optimal absent private information turns off the
channel where welfare differences arise due to hedging demands based on the initial position, independently of private
information, and allows us to focus solely on information and internalization effects. While the main discussion of
the paper is developed under this assumption, all the equilibrium formulas are stated in the Appendices for general
initial positions consistent with the outstanding supply.

7Since the uninformed agent, being a price taker, can be seen as a representative agent for a group of CARA
traders, πU,0 stands for their aggregate initial position and αU denotes their aggregate risk tolerance. Also, one may
allow the liquidity providers to have initial endowment πN,0 ̸= 0, but this could just be absorbed into the supply Π.
As such, we take πN,0 = 0.
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By Pareto optimality of the initial endowments we mean that agents’ marginal utility from endowed
wealth is proportional to the density

(3)
dQ0

dP
=

e−Π̂′X

E
[
e−Π̂′X

] .
We will use Q0 below when expressing equilibrium prices.

At time 0 when the signal arrives, I and U , using their respective information sets, choose
positions πI , πU to take in the risky asset, financing this choice by trading in the riskless asset.
Writing the to-be-determined equilibrium price as p, the terminal wealth is

Wπi := πi,0p+ πi(X − p); i ∈ {I, U} .
The equilibrium clearing condition is Π = π̂I + π̂U +ZN , where π̂I , π̂U are the optimal positions for
I and U , and ZN the noise trader demand. As it is more natural to present results for risk-aversion
adjusted strategies, we write

ψi :=
πi
αi

; i ∈ {I, U} .

With this notation the clearing condition is

(4) Π = αI ψ̂I + αU ψ̂U + ZN ,

and the risk-aversion adjusted terminal wealth is

(5) Wψi :=
1

αi
Wαiψi = Π̂p+ ψi(X − p); i ∈ {I, U} .

Equilibrium Construction. We now construct the price impact equilibrium. At the end of
the section we will also summarize the associated price-taking equilibrium (which is known in
the literature, dating to Grossman and Stiglitz [1980]), and consider when there is no private
information. These latter summaries are made with an eye towards the comparison results of
Sections 2 and 3. Proofs of all results are in Appendix B (for the general market model).

Consider when the insider perceives, and hence looks to exploit, her market power, and inter-
nalizes her price impact through trading. As the insider’s private information is partially revealed
to the market through her demand (which affects the uniformed trader’s optimal demand and hence
the equilibrium price), by accounting for her ability to impact the market, she controls the signal
revealed to the market. Therefore we expect the insider’s internalization of impact to affect not
only equilibrium prices, but also equilibrium information transmission. By contrast, we assume
the uniformed agent takes prices, and hence time 0 information, as given. We believe this setting
is reasonable, as the uniformed trader is a representative agent for a mass of “small” uniformed
traders who do not impact the market.

As is common in the literature, we seek a linear impact equilibrium. In other words, the insider
perceives that if she changes her position from πI,0 = αIψI,0 to πI = αIψI , then the price will be
an affine function of her trade combined with the noise trader demand,

(6) pι(ψI , ZN ) = V +M

(
ψI − ψI,0 +

ZN
αI

)
,

for constants V,M that are determined in equilibrium8, and where throughout we use the subscript
“ι” to stand for “impact”. Next, following the analysis of Rochet and Vila [1994] we assume the
insider can see both her private signal and, for a given trade ψ, the price pι of (6). This will imply
that the noise trader demand ZN is revealed to the insider through her signal and the time 0 price.9

8The affine structure could also be deduced by the insider if she first examined the equilibrium structure in the
price taking case - see Remark 1.9 below. However, as affine impact is so common, we take it as a primitive.

9This is in contrast to Spiegel and Subrahmanyam [1992] and Subrahmanyam [1991] and leads to a different
equilibrium, but we believe it is a realistic assumption, given that the equilibrium price (as will be shown) is linear
in the signal and noise.
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To make this assumption precise, note that G and ZN are the only random quantities revealed
at time 0, and hence every insider strategy must be known using the information generated by G
and ZN . Therefore, if the insider uses a strategy ψ which reveals the noise trader demand ZN
through the price, it must also be that ZN is known given the information generated by G and
pι(ψ,ZN ). As such, we define set of acceptable trading strategies for the insider to be

(7) AI := {ψ ∈ σ(G,ZN ) | ZN ∈ σ(G, pι(ψ,ZN ))} 10.

Here, “ψ ∈ σ(G,H)” means that ψ is σ(G,H) measurable, and note that for any ψ ∈ AI , one has
σ(G, pι(ψ,ZN )) = σ(G,ZN ).

As the insider knows the noise demand, the public quantity ψ+ZN/αI is (partially) controlled
by insider, and its effect on equilibrium can be understood as her price impact. Indeed, when
the uniformed trader acts optimally as price taker, the price will take the affine form in (6). As
the price is public, the combined insider and noise trader demand changes the public information
set, effectively altering the precision of a public signal (taking the same form as in (1) just with
a different noise term). Therefore, when the insider accounts for her price impact, the uniformed
trader also recognizes that the precision of the public signal will change with the insider’s policy.
This is in contrast to the price-taking case and in fact implies the public signal is always of a lower
quality when the insider internalizes impact (as we prove in Proposition 2.1).

Identifying the equilibrium is equivalent to identifying M and V which clear the market. The
first step is to characterize the insider’s optimal demand for any fixed M and V , which is the
solution to

inf
ψ∈AI

E
[
e−ψI,0pι(ψ,ZN )−ψ(X−pι(ψ,ZN ))

∣∣σ(G,ZN )] .(8)

To identify the optimal ψ̂I , it is useful to express M in terms of 1 + pI , the precision of X given
the insider signal G

M =M(y) =
y

1 + pI
.(9)

The dependence of M on y will force V to depend on y as well, so we write V = V (y). As we will
see, 1+2y > 0 ensures well-posedness of the minimization problem (8) but realistically we expect a
positive impact function so that y > 0. The following lemma identifies the insider’s optimal demand
in terms of y.

Lemma 1.1. Let g, z ∈ R. On the set {G = g, ZN = z}, the unique optimizer of (8) enforces

ψ̂I,ι(g, z)− ψI,0 +
z

αI
=

pI
1 + 2y

(g + Λι(y)z)−
Π̂ + (1 + pI)V (y)

1 + 2y
,(10)

where

Λι(y) =
1 + y

αIpI
.(11)

Remark 1.2. ψ̂I,ι is in fact optimal among all functions ψ (not just those in AI) because ψ̂I,ι is
invertible in z. Therefore, the class AI poses no restriction.

Turning to the uninformed agent, the clearing condition (4) implies in equilibrium ψ̂I,ι−ψI,0+
ZN/αI is publicly observable, and using (10) it is natural to define the market signal

(12) Hι := G+ ΛιZN = X + ZI + ΛιZN ,

10We will show the optimal strategy among all σ(G,ZN ) measurable policies lies in AI , so AI poses no restriction.
However, if one does not restrict toAI a-priori, it is not clear how to obtain the law ofX conditional on σ(G, pι(ψ,ZN )).
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which is of the same form as the insider signal G, except with lower precision

(13) pU,ι(y) =

(
1

pI
+

pN
Λ2
ι (y)

)−1

= pI ×
α2
IpIpN

(1 + y)2 + α2
IpIpN

.

By observing the price, the uniformed trader has time 0 information σ(Hι) and written as a function
of Hι, the price is p(Hι) where

pι(hι) =M(y)

(
ψ̂I,ι − ψI,0 +

ZN
αI

)
+ V (y) =

pIy

(1 + pI)(1 + 2y)

(
hι −

Π̂

pI

)
+

1 + y

1 + 2y
V (y).(14)

As the uninformed is a price taker and the risk aversion adjusted initial wealth ψU,0pι(Hι) factors
out, his optimization problem is

inf
ψ∈σ(Hι)

E
[
e−ψ(X−pι(Hι))

∣∣σ(Hι)
]
.

Similarly to Lemma 1.1 we obtain

Lemma 1.3. The uninformed agent has risk-aversion adjusted optimal demand

(15) ψ̂U,ι = pU,ιHι − (1 + pU,ι)pι(Hι).

Relations (12)-(15) quantify the insider’s impact on the market signal Hι, the market signal

precision PU,ι, the price pι(Hι), and the uninformed trader’s optimal demand ψ̂U,ι. It is important
to note that these impacts are not consistent with the price-taking equilibrium discussed below.
When the insider internalizes her price impact, the uniformed trader takes it into account, and the
coefficients of her affine demand function change (in fact, the reactions to the public signal and its
precision are lower as we show in Section 2). This means that even when the insider submits her
optimal price-impact demand in the price taking equilibrium, the market will not equilibrate to the
price-impact price, as the uniformed trader’s optimal demand alters. We return to this point in
Remark 1.10.

We now identify y and V (y) by enforcing the market-clearing condition (4) using the initial
endowments of (2),

(αI + αU )Π̂ = αI

(
ψ̂I,ι(G,ZN )− ψI,0 +

ZN
αI

)
+ αIΠ̂ + αU ψ̂U,ι(Hι).

Taking into account (10), (14) and (15), this reduces to

(αI + αU )Π̂ = αI

(
pI

1 + 2y
hι −

Π̂ + (1 + pI)V (y)

1 + 2y

)
+ αIΠ̂

+ αU

((
pU,ι(y)−

(1 + pU,ι)pIy

(1 + pI)(1 + 2y)

)
hι +

1 + pU,ι
1 + 2y

(
yΠ̂

1 + pI
− V (y)

))
,

(16)

which will hold provided y satisfies a certain cubic equation, as

Lemma 1.4. Equation (16) holds provided V (y) = −Π̂ and y solves

0 = (1 + y)2
(
1− αUy

αI(1 + pI)

)
+ α2

IpIpN

(
αU
αI
y +

αI + αU
αI

)
.

As such, (positive) solutions to a cubic equation11 for y are in one-to-one correspondence with
equilibrium, with the positivity needed to ensure the pricing function is increasing in the combined

11This differs from the quintic equation in Subrahmanyam [1991] when the insider does not see the noise trader
demand.
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trade ψ̂I,ι + ZN/αI (see (9)). Next, to ease the notation, define

(17) κ := α2
IpN ; λ :=

αI
αI + αU

,

as the precision of ZN/αI and the insider’s proportion of the total risk tolerance respectively. The
cubic equation becomes

(18) 0 = (1 + y)2
(
1− 1− λ

λ(1 + pI)
y

)
+
κpI
λ

((1− λ)y + 1) ,

and the following proposition shows

Proposition 1.5. There exists a unique solution ŷ > 0 to (18).

Given this proposition we establish equilibria in the main result of the section. To state it,
recall the measure Q0 from (3) and define

(19) p0 := EQ0 [X] = −Π̂,

as the equilibrium price, absent private information, given the initial endowments satisfy (2). By
expressing quantities in terms of p0 we provide an intuitive way to gauge how private information
and price impact alter prices.

Theorem 1.6. ŷ > 0 from Proposition 1.5 induces a price-impact equilibrium. The market signal
is Hι from (12), and the equilibrium price is pι(Hι) for the price function

pι(hι) = p0 +
pI ŷ

(1 + pI)(1 + 2ŷ)
(hι − p0) .(20)

The insider has optimal policy π̂I,ι = ψ̂I,ι(G,ZN )/αI where

ψ̂I,ι(g, z) =
1

1 + ŷ
(pIg − (1 + pI)pι(hι(g, z))− ŷp0) .

The uninformed agent has optimal policy π̂U,ι = ψ̂U,ι(Hι)/αU where from (15)

ψ̂U,ι(hι) = pU,ιhι − (1 + pU,ι)pι(hι).

Price-taking equilibrium. For comparison purposes (i.e. to provide a benchmark case), herein
we consider when all traders are price takers. As this result is well known (see Grossman and
Stiglitz [1980]), we summarize the equilibrium structure in the following proposition. To state the
proposition, assume there is a market signal H revealed through the time 0 price p = p(H), and
both traders take p(H) as given. The insider has time 0 information σ(H,G) while the uninformed
trader uses σ(H). Using (5), the insider and uninformed trader’s optimal investment problems are
respectively

(21) inf
ψ∈σ(G,H)

E
[
e−Wψ ∣∣σ(G,H)

]
; inf

ψ∈σ(H)
E
[
e−Wψ ∣∣σ(H)

]
.

We say (H, p(H)) is a price-taking equilibrium if the clearing condition (4) holds for the optimal
policies.

Proposition 1.7. There is a price-taking equilibrium. The market signal is

(22) H := G+ ΛZN = X + ZI + ΛZN , Λ =
1

αIpI
.

H is of the same form as G, but with lower precision (see (17))

(23) pU = pI ×
κpI

1 + κpI
.
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The equilibrium price is p = p(H) for the price function (recall (19))

p(h) := p0 +
αIpI + αUpU

αI(1 + pI) + αU (1 + pU )
(h− p0).(24)

The optimal policies for I and U are ψ̂I(G,ZN ) and ψ̂U (H) respectively, where

ψ̂I(g, z) = pIg − (pI + 1)p(h(g, z)), ψ̂U (h) = pUh− (pU + 1)p(h).(25)

Remark 1.8. Note that as X is P independent of the noise terms ZI , ZN in (12), from the definition
of Q0 in (3) X is Q0 independent fo ZI , ZN as well, and p0 = EQ0 [X] = EQ0 [Hι] = EQ0 [pι(Hι)] and
similarly p0 = EQ0 [p(H)]. Therefore, on average under Q0, the prices with price impact/private
information and without price impact/private information coincide.

Remark 1.9. Our assumption of linear price impact is motivated by the price-taking case, where
the impact is indeed linear. To see this, note from (22), (24) and (25), on the set {G = g, ZN = z},
the combined trade of the insider and noise trader is

ψ̂I(g, z)− ψI,0 +
z

αI
= pIh(g, z)− (pI + 1)p(h(g, z))− ψI,0 =

αU (pI − pU )

αIpI + αUpU
(p(h)− p0) .

This combined demand function, and the corresponding uniformed trader’s optimal demand, clears
the market at the price p(h). Solving this for p(h) = p(h(g, z)) we obtain

p(h(g, z)) = p0 +
αIpI + αUpU
αU (pI − pU )

(
ψ̂I(g, z)− ψI,0 +

z

αI

)
.(26)

This is the reverse combined demand function at equilibrium, and indicates linear price impact.
Indeed, even though the insider does not internalize impact in the price-taking case, in equilibrium
it turns out the price is linearly impacted by her trade, combined with the noise trader’s demand.
The price takes the form (6), where

(27) V = p0, M =
αIpI + αUpU
αU (pI − pU )

.

Remark 1.10. As discussed above, as long as the insider internalizes her price impact and the uni-
formed trader takes this into account, the price taking and price impact equilibria cannot coincide.
In fact, even if the insider submits the demand which is optimal in the price-taking equilibrium, if
she internalizes price impact, the market will not equilibrate to the price-taking equilibrium price.
This would be the case if the uniformed trader did not perceive the change in market signal precision
due to the insider’s demand (i.e., if he ignored the insider’s internalization of the price impact and
assumed pU,ι(y) = pU for all y.)

On the other hand, there is a y∗ > 0 such thatM(y∗) = y∗/(1+pI) coincides withM from (27).

For this M(y∗), if the insider used the price taking optimal demand ψ̂I from (25), it would reveal
the same signal to the uniformed trader as in the price-taking equilibrium. This would lead to the
same uniformed trader’s demand and hence the same clearing price as in price-taking equilibrium.

However, when M =M(y∗) and V = 0, ψ̂I from (25) is not optimal for the insider. This is because
of (11), which identifies the optimal demand under any linear price impact is not consistent with
this choice of M and V .

No private signal (NS) equilibrium. The price-taking results of the previous section allow us to
isolate the effects of price-impact in the presence of information asymmetry. In this section, we turn
off the asymmetric information channel to analyze the effects due solely to internalization of price
impact. We envision a situation where there is a market maker who is capable of moving prices, but
who is not privately informed about the asset’s terminal payoff. She wants to move prices against
a mass of (small) uninformed traders in a way to maximize her utility. Now, to formally establish
equilibrium, one would have to repeat the analysis of this section removing the private signal, giving
all agents the same information set. However, it turns out that the no-signal equilibrium (in both
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the price-impact and price-taking cases) coincides with the previously established equilibrium in
the limit pI → 0. The resultant equilibrium prices and optimal positions are summarized in the
following proposition, the proof of which is given in Appendix B.

Proposition 1.11. The no-signal equilibrium corresponds to pI = 0. In the price-taking case, the

equilibrium price and the risk aversion adjusted optimal positions are pns(ZN ) and ψ̂ns,I = ψ̂ns,U =

ψ̂ns(ZN ) where (recall (2) and (19))

(28) pns(z) = p0 + λ
z

αI
; ψ̂ns(z) = Π̂− λ

z

αI
,

where λ is from (17). In the price-impact case, the equilibrium price is pns,ι(ZN ) and the risk

aversion adjusted optimal policies for I and U are ψ̂ns,ι,I(ZN ) and ψ̂ns,ι,U (ZN ), where

pns,ι(z) = p0 +
λ

1− λ2
z

αI
; ψ̂ns,ι,I(z) = Π̂− λ

1 + λ

z

αI
; ψ̂ns,ι,U (z) = Π̂− λ

1− λ2
z

αI
.

2. Comparison Analysis: Signals and Price Sensitivity

In this section, we compare the public signals and price sensitivity with respect to signals of
the two equilibria. We label the price impact equilibria as “PI” and the price taking equilibria as
“PT”. We show the PI public signal is of a worse quality, and prices are less responsive to not only
the market and insider signals, but also to the publicly observable (risk-tolerance weighted) insider’s

and noise trader residual demand ψ̂I − ψI,0 + ZN/αI . Thus, the main message of this section is

By assuming the insider is a price taker, one overestimates the quality of the public
signal and the reactivity of equilibrium prices.

Throughout, we include the subscript ι when describing any quantity obtained internalizing price
impact. Proofs of all results are in Appendix C. Lastly, using (17), we see that pU,ι from (13) and
pU from (23) take the form

pU,ι =
κp2I

(1 + y)2 + κpI
; pU =

κp2I
1 + κpI

.(29)

Signal quality. As we have seen, in both the PI and PT equilibria a signal of the form “X+Noise”
is communicated to market. It is natural to ask which signal is of a higher quality, or even more
pointedly, is the public signal less informative in the presence of price impact? To address these
questions we write the market signals as functions of the insider signal G and noisy demand ZN ,
and using (11), (12) and (22) we obtain

hι(g, z) = g +
1 + ŷ

pI

z

αI
; h(g, z) = g +

1

pI

z

αI
.(30)

From Theorem 1.6 we know ŷ > 0, which implies

Proposition 2.1. The market signal is noisier in the PI equilibria: pU > pU,ι.

That the public signal is less informative under price impact is associated with the way the
uniformed trader determines his demand. Indeed, because the uniformed trader accounts for the
insider’s internalization of price impact, in his optimization problem he considers pU,ι instead of
pU (see the demand functions (15) and (25)). In other words, he recognizes the insider reveals a
wangled signal, and responds with a less elastic demand function.

Remark 2.2. Accounting for price impact changes the public signal in the direction of the noise
traders’ (liquidity providers’) order. As ŷ > 0, we have (hι(g, z) − h(g, z))z ≥ 0 for all (g, z).
In words, the strategically revealed signal by the insider is higher if and only if there is positive
demand from the noise traders. As we will analyze in Section 4, positive z implies the insider and
uniformed trader take short positions at equilibrium, and hence the strategically enhanced public
signal increases the price that the traders sell the assets to the liquidity providers.
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Price reactivity. In both the PI and PT equilibria, prices are affine functions of the respective
public signals. However, the coefficients in the functions differ. This leads one to ask whether price
impact increases or decreases the sensitivity of prices with respect to public signaling. To answer
this, we first re-express the prices from (20) and (24) using the notation of (17) and (29).

Proposition 2.3. The pricing functions take the form

pι(hι) = p0 +
pI ŷ

(1 + pI)(1 + 2ŷ)
(hι − p0) ;

p(h) = p0 +
pI(κpI + λ)

1− λ+ (1 + pI)(κpI + λ)
(h− p0) .

(31)

Given this, we now consider reactivity to the market and, equivalently in view of (30), insider
signals. To do so, define the slopes

mg,ι =
pI ŷ

(1 + pI)(1 + 2ŷ)
, mg =

pI(κpI + λ)

1− λ+ (1 + pI)(κpI + λ)
.(32)

The following proposition shows that prices are always more reactive to the insider, and hence to
the market signal, when the insider does not internalize price impact. This is directly linked with
the lower elasticity of the uniformed trader’s demand function due to price impact. Note that this
is an endogenously derived outcome. The insider has a motive to make the public signal noisier,
which in turn makes uniformed trader less elastic and yields prices which are less sensitive to the
public signal.

Proposition 2.4. The equilibrium price is less sensitive to the market signal in the PI equilibria:
mg,ι < mg.

We conclude this discussion with the price reactivity with respect to the publicly observable
(weighted risk-tolerance adjusted) combined demand

χ̂ι := ψ̂I,ι(G,ZN )− ψI,0 +
1

αI
ZN , χ̂ := ψ̂I(G,ZN )− ψI,0 +

1

αI
ZN .

Using (9), (14), (17), (26) and (29), prices are affine in the combined demand with respective slopes

mχ̂,ι =
ŷ

1 + pI
, mχ̂ =

λ+ κpI
1− λ

.

As expected from the preceding analysis, when the insider internalizes her impact, prices are less
sensitive to the publicly observable combined demand (similarly to the public signal). Again, we
stress this is an endogenous outcome, arising from the insider’s strategy when she internalizes her
price impact. The next proposition formally states this result.

Proposition 2.5. The equilibrium prices is less sensitive to the publicly observable combined de-
mand in the PI equilibria: mχ̂,ι < mχ̂.

3. Welfare Analysis

Overview. This section is dedicated to analyzing the traders’ welfare. We primarily study two
issues: how the insider’s signal quality is translated to her welfare from trading; and the effect of
price-impact internalization on traders’ welfare. We again label the price impact equilibrium PI
and the price taking equilibrium PT.

Following Laffont [1985], we define welfare at both the ex-ante level (i.e. at time 0−, prior
to signal revelation) and interim level (at time 0, after the signal revelation) in terms of certainty
equivalents. As such one can alternatively think of this comparison as a comparison of indirect
utility gains from trading. We use the subscripts 0− and 0 to indicate ex-ante and interim welfare
respectively. Welfare will always be computed using the overall wealth in (5). Given this, we denote
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by ŴI,ι, ŴU,ι the optimal terminal wealths in the PI equilibrium, and ŴI , ŴU those in the PT case.
Then, for k ∈ { , ι} the corresponding interim certainty equivalents are

CEI0,k = −αI log
(
E
[
e−(1/αI)ŴI,k

∣∣σ(G,Hk)
])
,

CEU0,k = −αU log
(
E
[
e−(1/αU )ŴU,k

∣∣σ(Hk)
])
,

while the ex-ante certainty equivalents are

CEj0−,k = −αj log
(
E
[
e−(1/αj)Ŵj,k

])
; j ∈ {I, U} .

We now summarize our main findings. First, in the PI equilibrium, insider welfare is monotonically
increasing in the precision pI . As mentioned in the introductory section, this is not a standard
result, as in the majority of private-information models, better precision does not always imply
higher utility gains. For instance, this result stands in direct contrast to Nezafat and Schroder
[2023], and shows the conclusions there-in are a consequence of assuming the uninformed trader
also internalizes his impact on prices. Additionally, this result is also in contrast to Grossman
and Stiglitz [1980], where all traders are price takers. Therefore, one only obtains the reasonable
conclusion that a better signal is better for the insider (if not, why would the insider expend effort
to obtain the signal?) when there is a differential between the insider and uniformed traders, not
only in terms of information, but also in terms of their internalization of price impact.

Second, insider ex-ante welfare is not always higher in the PI equilibrium. While typically
this is true, as the insider becomes increasingly more risk averse, PT welfare will exceed PI welfare
when also the uninformed trader has sufficiently high risk tolerance, and provided the insider signal
quality is not too low. However, in contrast to the insider, uninformed ex-ante welfare is always
higher in the PI case.

Third, absent private information, insider welfare is always higher in the PI case, and remark-
ably this holds at the interim level. In fact, when insider and uniformed traders have the same risk
tolerance we can order interim welfare as follows

U(PI) > I(PI) > U(PT) = I(PT),

so that uninformed trader’s welfare exceeds insider’s welfare in the price-impact case. We use the
notation in (17) and, aside from Proposition 3.4, all proofs in this section are in Appendix E.

Certainty Equivalents. We start by calculating the certainty equivalents. Propositions D.4 and
D.5 explicitly compute ex-ante welfare for both types of traders in the PI and PT equilibria under
the general model of Appendix A. While the formulas there-in are very long in the generalized
model, a significant simplification occurs in the model of Section 1 and using the notation in (17).
To state the proposition define

(33) CEinsn := −αi
2
Π̂2, i ∈ {I, U} ,

as the certainty equivalents absent private information for the initial allocations in (2).

Proposition 3.1. In the PI equilibrium, with ŷ from Proposition 1.5

CEI0−,ι = CEInsn +
αI
2

log

(
1 +

κpI(1 + pI) + ŷ2

κ(1 + pI)(1 + 2ŷ)

)
,

CEU0−,ι = CEUnsn +
αU
2

log

(
1 +

λ2(κpI + (1 + ŷ)2)

(1− λ)2κ(1 + 2ŷ)2

)
.
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In the PT equilibrium

CEI0− = CEInsn +
αI
2

log

(
1 +

(1− λ)2κp+ (1 + pI)(λ+ κpI)
2

κ(1 + λpI + κpI(1 + pI))2

)
,

CEU0− = CEUnsn +
αU
2

log

(
1 +

λ2(1 + κpI)

κ(1 + λpI + κpI(1 + pI))2

)
.

Welfare and the insider’s signal precision. Here we analyze insider welfare with respect to the
signal precision pI . Though not modeled, it presumably costs effort, time and/or money to both
obtain and refine the signal. In fact, one of the most important questions in the related literature
is whether it is worth for the traders who have the ability and resources to obtain a private signal
to actually pay the cost and obtain it. As such, one should examine whether the benefits of the
private signal (as measured by welfare) are increasing with respect to the quality of a signal (as
measured by signal precision). This is of course connected with the related cost, in the sense that
better signal is normally linked to higher cost.

In the PI equilibrium, using Proposition 3.1 for fixed κ, λ, it suffices to study the map

(34) pI → ϕι(pI) :=
κpI(1 + pI) + ŷ(pI)

2

κ(1 + pI)(1 + 2ŷ(pI))
,

where ŷ = ŷ(pI) is the unique positive solution of (18). Numerically, this can easily seen to be
increasing in pI by randomly sampling κ > 0, λ ∈ (0, 1), solving for ŷ(pI) and then plotting
pI → ϕι(pI). However, we offer an analytic proof in the following proposition.

Proposition 3.2. For fixed κ > 0 and λ ∈ (0, 1) the map ϕι defined in (34) is strictly increasing
in pI . Therefore, CEI0−,ι is strictly increasing in the precision pI .

On the other hand, for the price-taking equilibrium, we have the map

pI → ϕ(pI) :=
(1− λ)2κpI + (1 + pI)(λ+ κpI)

2

κ(1 + λpI + κpI(1 + pI))2
.

As ϕ(0) = λ2/κ and ϕ(∞) = 0, this map is clearly not increasing. In fact, it is not monotonic
because

ϕ′(0) = 1− λ2 +
λ2

κ
(1− 2λ).

When λ ≤ 1/2 (equivalently αI ≤ αU or that insider is less risk tolerant than uniformed traders),
ϕ is increasing at 0. However, when the insider is relatively more risk tolerant (λ > 1/2), ϕ will be
decreasing at 0 for κ = α2

IpN small enough (which can happen if the noise trader variance/volume
is very large).

Interestingly enough, there are cases where the certainty equivalents with and without price
impact have the opposite monotonicity with respect to signal’s precision. This is pictured in Figure
1 which shows when insider does not internalize her price impact the better quality of her signal, the
lower her ex-ante expected utility becomes; while under price impact we have the more reasonable
situation where price impact materializes the better quality of the signal to higher insider’s certainty
equivalent.

Remark 3.3. The above discussion highlights a very interesting feature of the price-impact model.
If the insider does not internalize her price impact, her welfare created by the private signal is
not necessarily increasing in the signal’s quality. This means that in the PT equilibrium, it is not
always worth it to obtain a better signal, as it may decrease utility. On the other hand, when she
does internalize her price impact (and the other traders are price-takers), it is always beneficial for
the insider to try and improve the quality of her private signal, as long as this improvement comes
with marginally lower cost than the corresponding increase of certainty equivalent12.

12Note that beneficial price-impact for the insider does not mean that the uniformed traders suffer loss of utility
because of price impact. On the contrary, when uniformed traders are the same side of trade with the insider, not
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Figure 1. Plot comparing CEI0−,ι and CEI0− as a function of pI . Parameters are
αI = αU = .3, µX = .5, PX = 1, pN = 1,Π = 0.

Price-impact and price-taking welfare comparison. Next, we focus on how price impact
internalization affects both informed and uniformed trader’s welfare. In particular, we examine
whether the internalization of price impact implies higher welfare for the insider and the uniformed
trader, when compared to the price taking case. Using Proposition 3.1 we readily get the relations

CEI0−,ι ≥ CEI0− ⇐⇒ κpI(1 + pI) + ŷ2

(1 + pI)(1 + 2ŷ)
≥ (1− λ)2κp+ (1 + pI)(λ+ κpI)

2

(1 + λpI + κpI(1 + pI))2
;

CEU0−,ι ≥ CEU0− ⇐⇒ κpI + (1 + ŷ)2

(1− λ)2(1 + 2ŷ)2
≥ 1 + κpI

(1 + λpI + κpI(1 + pI))2
.

(35)

Our first result shows that insider welfare need not increase when she internalizes her price impact.

Proposition 3.4. Both CEI0−,ι > CEI0− and CEI0−,ι < CEI0− are possible.

Proof of Proposition 3.4. Numerically, this is demonstrated in Figure 2. Indeed, in the joint com-
bination of high αU (uninformed close to risk neutrality) and low-to-moderate pI ∈ (0, 2) (modest
signal quality) welfare may decrease. Analytically, this will be shown in Proposition 3.6. □

While no uniform statement can be made for the insider, our next result shows for the unin-
formed trader, at the ex-ante level the insider’s internalization of price impact is always beneficial.

Proposition 3.5. CEU0−,ι ≥ CEU0−.

As already mentioned, we give the economic intuition behind these model’s predictions in
Section 4. For now, we state a couple of additional results which will clarify more the situation.

Risk tolerance asymptotics. It is rather complicated to precisely describe the set of input pa-
rameters that characterizes the order of insider’s certainty equivalents

{
(κ, pI , λ) | CEI0−,ι ≥ CEI0−

}
.

From Figure 2, we conjugate however that the situation becomes clearer when we consider the
asymptotics with respect to traders’ risk tolerances. For this, in the following proposition, we take
limits as the insider and uninformed traders’ risk tolerance go to 0 and ∞.

Proposition 3.6. Fix pI , pN . Then,

(1) Fix αI . As αU → 0, CEI0− remains bounded while CEI0−,ι → ∞. As αU → ∞,

lim
αU→∞

(
CEI0−,ι − CEI0−

)
> 0.

only they gain welfare due to price impact, but their gain may be even higher than the insider’s (e.g. under absence
of private signal, see Proposition E.1 and Remark 3.8 below).
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Figure 2. Plot comparing CEI0−,ι and CEI0− as a function of αU (x-axis) and pI
(y-axis) for pN = 1 and αI = .2 (upper left), αI = .1 (upper right), αI = .05 (lower).
The shaded region is where CEI0−,ι > CEI0−. The white region is where CEI0−,ι <

CEI0−

(2) Fix αU . As αI → 0, limαI→0(CE
I
0−,ι − CEI0−)/αI = 0 but

lim
αI→0

CEI0−,ι − CEI0−
α3
I

=
d

2

(1 + pI)
2(1 + pI − α2

UpIpN )

α2
U (α

2
UpIpN + 1 + pI)

.

Thus, for αI small, CEI0−,ι ≥ CEI0− if and only if 1 + pI − α2
UpIpN ≥ 0. As αI → ∞,

lim
αI→∞

(
CEI0−,ι − CEI0−

)
> 0.

(3) If αI = αU , then CEI0−,ι ≥ CEI0−.

Proposition 3.6 implies the risk aversion is a crucial parameter for the certainty equivalents’
comparisons. Indeed, when traders have the same risk aversion internalizing price impact always
increases agents’ welfare. On the other hand, fixing αU , pN , insider welfare may be lower than in
the price-taking case when she is very risk averse and the following structure condition holds

(36) α2
UpN >

1

pI
+ 1.

For example, this condition holds if the uninformed trader is sufficiently risk tolerant, or/and the
noise traders’ demand (approximated by its variance) is sufficiently low.

Welfare in the absence of private information. We conclude our welfare analysis proving that
if one turns off the asymmetric information channel, and focuses solely on effects due to internalizing
of price impact, then remarkably, insider welfare increases at the interim level. As mentioned above,
the situation with no private signal assumes only the insider possesses and exploits her price impact.
The other (non-noise) traders act as price takers. This corresponds to when a (large) risk averse
agent acts strategically, even when she does not have access to a private signal, and when the
uninformed traders represent the mass of all other rational agents who are relatively small (i.e.
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possess no market power) and who also have no private signal. In sum, we are measuring the effects
of assuming heterogeneity, not in information, but in internalization of price impact.

For this, recall from Proposition 1.11 that the no-signal equilibrium corresponds to taking
pI → 0. Using the interim welfare formulas in Lemmas D.1 and D.2 in Appendix D, we obtain the
associated no-signal equilibrium quantities in the following proposition. To state it, recall λ from
(17).

Proposition 3.7. As pI → 0 we obtain the almost sure limits for the insider

lim
pI→0

CEI0(G,ZN ) = CEInsn +
λ2

2αI
Z2
N , lim

pI→0
CEI0,ι(G,ZN ) = CEInsn +

λ2

2(1− λ2)αI
Z2
N .

Therefore, insider interim welfare always increases when internalizing price impact. For the unin-
formed agent we obtain almost surely

lim
pI→0

CEU0 (H) = CEInsn +
αUλ

2

2α2
I

Z2
N , lim

pI→0
CEU0,ι(Hι) = CEInsn +

αUλ
2

2α2
I(1− λ2)2

Z2
N ,

and hence interim welfare also always increases when the insider internalizes price impact.

Remark 3.8. Two quite surprising consequences stem from the above proposition. First, that the
insider’s welfare might be higher in the PT equilibrium is directly attributable to the presence of the
private signal, as when there is no private signal, internalization of price impact is always beneficial
for the insider. Second, assuming no private signal and that both I, U have the same risk tolerance,
which forces λ = 1/2 we have the following almost sure order of interim certainty equivalents

CEU0,ι > CEI0,ι > CEU0 = CEI0.

Amazingly, not only it is better for the uninformed agent when the insider internalizes her price im-
pact, the uninformed agent’s welfare actually exceeds that of the insider. We explain the mechanism
behind these predictions in the next section.

4. Equilibria Structure

In this section, we analyze and compare the equilibrium quantities (allocation and prices) in
order to infer the economic intuition behind the models predictions on the effects of price-impact
internalization (“internalization”) and insider’s private signal (“private information”). As will be
shown, internalization and private information may have competing affects on the insider’s demand,
and hence equilibrium quantities. Broadly, internalization has the effect of dampening the position
size, while private information may increase the insider’s equilibrium allocation of risk.

We will compare when the insider (1) takes prices as given versus internalizing price impact,
and (2) when the insider has a private signal versus when there is no private signal. This leads
to four cases. The first two sections deal with the effect of information asymmetry, starting with
the price taking (PT) equilibrium and then moving on to the price impact (PI) equilibrium. The
last two sections deal with the effect of price impact internalization, staring when there is no
private information, and then considering the private signal case. In each section we compare the
equilibrium structure of demands and prices. Throughout we use the notation in (17).

Private information effects when price taking. We start with the PT equilibrium, identifying
the effect of the signal on the demands, as well as the price. Using (19), (24), (25) and (28) the
insider’s optimal demand functions satisfy

(37) ψ̂I(g, z)− ψ̂ns,I(z) =
(1− λ)(pI − pU )

1 + λpI + (1− λ)pU
(g − p0)−

(1− λ)(pI(λpI + (1− λ)pU ) + pU )

pI(1 + λpI + (1− λ)pU )

z

αI
.
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As (23) implies pI > pU we see that (as expected) insider optimal demand relative to the no-signal
case is increasing in the signal. By contrast, insider relative demand is decreasing in the noise trader
demand.

Another interesting effect concerns the outstanding supply, Π = (αI + αU )Π̂ = −(αI + αU )p0.
At the ex-ante level, the expected demand change is

(38) E
[
ψ̂I(G,ZN )− ψ̂ns,I(ZN )

]
=

(1− λ)(pI − pU )

1 + λpI + (1− λ)pU
Π̂ > 0,

so that on average the insider’s position increases due to the private signal. Intuitively, positive
supply means that the insider and the uniformed trader are expected to buy the tradeable asset at
the equilibrium and for the insider the presence of private signal means that her estimated variance
of the tradeable asset (i.e. its risk) is lower. This increases her demand, implying that ex-ante she
is more confident to hold higher part of asset supply.

The private signal’s affect on insider demand is transferred to the equilibrium price, as an
increase in the insider’s demand tends to increase the price as well. Indeed, from (24) and (28) we
find

p(h(g, z))−pns(z) =
λpI + (1− λ)pU

1 + λpI + (1− λ)pU
(g−p0)+

λ[(1− λ)(pI − pU )− pI(consbpI + (1− λ)pU )]

pI(1 + λpI + (1− λ)pU )

z

αI
.

This shows the equilibrium price is increasing in the signal (the factor in front of z/αI can be
positive or negative). At the ex-ante level

(39) E [p(h(G,ZN ))− pns(ZN )] =
λpI + (1− λ)pU

1 + λpI + (1− λ)pU
Π̂ > 0.

Thus, the presence of the signal increases both the insider’s expected demand and expected equi-
librium price. Additionally, the equilibrium clearing condition (4) implies the private signal has the
opposite effect on the uniformed trader’s demand13. Summarizing,

The presence of private information in the PT equilibria is expected to increase the
insider’s demand and the price and to decrease the uniformed trader’s demand.

Private information effects when internalizing price impact. The effects of private signal
on equilibrium prices and demands in the PI equilibrium are similar as in the PT equilibrium. Using
(11), Theorem 1.6 and Proposition 1.11 we obtain

ψ̂I,ι(g, z)− ψ̂ns,ι,I(z) =
pI

1 + 2ŷ
(g − p0) +

(
λ

1 + λ
− ŷ

1 + 2ŷ

)
z

αI
.

As expected, the insider demand (relative to the no-signal case) is increasing with the private signal.
Similarly, by noting the right side of (18) is positive at y = λ/(1 − λ) one can use the arguments
in the proof of Proposition 2.4 to show ŷ > λ/(1 − λ) and hence the coefficient in front of z/αI is
negative. As in the PT equilibrium, at the ex-ante level the presence of signal increases the insider’s
demand because

(40) E
[
ψ̂I,ι(G,ZN )− ψ̂ns,ι,I(ZN )

]
=

pI
1 + 2ŷ

Π̂.

As for the equilibrium prices, using (11), (20) and Proposition 1.11 we obtain

pι(hι(g, z))− pns,ι(z) =
pI ŷ

(1 + pI)(1 + 2ŷ)
(g − p0) +

(
ŷ(1 + ŷ)

(1 + pI)(1 + 2ŷ)
− λ

1− λ2

)
z

αI
.

13The uninformed agent sees ZN (through the price) in the no-signal equilibrium, but does not see ZN in the PT
equilibrium. Therefore, we are not saying the uninformed agent sees ZN in the PT equilibrium and then adjusts her
position accordingly. Rather, we are saying the effect of noise trading in the PT equilibrium is to increase the trade
size of the uninformed agent over the no-signal equilibrium.
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Therefore, due to the increased insider demand, the relative price change is increasing in the signal
and outstanding supply. At the ex-ante level

E [pι(hι(G,ZN ))− pns,ι(ZN )] =
pI ŷ

(1 + pI)(1 + 2ŷ)
Π̂,

which shows a positive difference. This is the same as in the PT case, and in fact, using (39), along
with (31) and (32) we obtain

E [p(h(G,ZN ))− pns(ZN )]− E [pι(hι(G,ZN ))− pns,ι(ZN )] = (mg −mg,ι)Π̂.(41)

Proposition 2.4 thus implies the expected price change caused by the presence of the private signal
is lower when accounting for price impact, consistent with the reduced sensitivity with respect to
public signal that internalization yields.

As in the PT equilibrium, market clearing implies the effects of the signal on the uniformed
trader’s demand are in thee opposite direction of the insider. Indeed, direct calculation shows

E
[
ψ̂U,ι(ZN )− ψ̂ns,ι,U (ZN )

]
= − pIλ

(1− λ)(1 + 2ŷ)
Π̂,

which means that in contrast to the insider, the uniformed trader’s demand is expected to decease
due to price impact. Thus, we may conclude

For both the PT and PI equilibria, the presence of a private signal is expected to
increase the insider’s demand and price (albeit with a lower change in the PI equi-
librium) and decrease the uniformed trader’s demand.

Price impact internalization effects when there is no information asymmetry. We now
turn our attention to the effect of price impact, first assuming absence of private information.

According to Proposition 1.11, and recalling that ψI,0 = Π̂ we see the trades satisfy

(42)
(
ψ̂ns,ι,I(z)− ψI,0

)
= − λ

1 + λ

z

αI
,

(
ψ̂ns,I(z)− ψI,0

)
= −λ z

αI
.

Therefore, internalization of price impact keeps the insider at the same side of the trade as in the
non-internalization case, but it reduces the magnitude of the trade. Intuitively, the insider accounts
for price impact by taking a smaller position, which in turn changes the equilibrium price. Indeed,
we readily get that

(43) pns,ι(z)− pns(z) =
λ3

1− λ2
z

αI
.

The above implies that in the PI equilibrium, the insider has a lower demand when compared to the
PT equilibrium and obtains a better price (price-impact increases the per-unit price when insider
sells and decreases it when she buys). Indeed, positive z means that both insider and uniformed
trader sell at equilibrium. In the view of Remark 2.2, positive z makes the insider reveal a higher
public signal. This increases the demand of the uniformed trader (covers less of noise demand)
and hence the interim effect is an increase in the equilibrium price. Lastly, the uniformed trader’s
equilibrium allocations imply the relative trade size(

ψ̂ns,ι,U (z)− ψU,0

)
= − λ

1− λ2
z

αI
,

(
ψ̂ns,U (z)− ψU,0

)
= −λ z

αI
.

Therefore, when z < 0 both the insider and uninformed trader buy the risky asset in each equilib-
ria. However, in the PI equilibrium, the insider reduces her position while the uninformed trader
increases it. Conversely, when z > 0 traders sell the risky asset, with the uniformed trader selling
more. In particular, the uninformed increases his volume at a better price-per-unit, due to price
impact. In other words, when insider buys the asset, internalization reduces her demand which in
turn decreases the price and makes the uniformed trader buys more. Summarizing,
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Internalization with no signal results in a lower (resp. higher) equilibrium position
for the insider (resp. uniformed trader) at a better price.

Price impact internalization effects when there is information asymmetry. We finally
consider the effect of price-impact internalization on equilibrium demands and prices in the presence
of private information, which associates with our main case. To simplify the presentation and
highlight the key points, we state the results at the expected value level, rather than for each
realization.

We have seen that the presence of signal is expected to increase the volume of the insider’s
order, while the internalization is expected to decrease it (under no private signal). In other words,
price impact and presence of the signal have ex-ante opposite expected effects on the insider’s
demand. In particular, using (38), (40), (42) and E [ZN ] = 0 we obtain

E
[
ψ̂I,ι(G,ZN )− ψ̂I(G,ZN )

]
=

(
pI

1 + 2ŷ
− (1− λ)(pI − pU )

1 + λpI + (1− λ)pU

)
Π̂,

= pI

(
1

1 + 2ŷ
− (1− λ)

1 + λpI + κpI(1 + pI)

)
Π̂,

(44)

where the second equality follows using (29) and simplifying. The following shows the right side
above may be either positive or negative. In short, the effect of price impact prevails over the one of
asymmetric information when the insider is sufficiently risk tolerant resulting is a higher expected
order.

Proposition 4.1. The quantity in (44) is positive as αI → ∞ and negative as αI → 0. Therefore,
price impact internalization is expected to increase (resp. decrease) the insider’s position when she
is sufficiently risk tolerant (resp. risk averse). By market clearing, the opposite is expected for the
uninformed trader.

Remark 4.2. By inspecting the proof of Proposition 4.1 we can identify other instances when

E
[
ψ̂I,ι(G,ZN )− ψ̂I(G,ZN )

]
is positive or negative. For example, with other parameters fixed,

it is positive as (i) pI → ∞, or (ii) as αU → 0,∞ if α2
IpIpN is sufficiently large. Conversely, it is

negative as (i) pI → 0 or (ii) as αU → 0,∞ if α2
IpIpN is sufficiently small.

Lastly, for the equilibrium prices, (41), (43) and E [ZN ] = 0 give

E [pι(Hι)− p(H)] = (mg,ι −mg)Π̂.

Proposition 2.4 implies the right side above is negative, which means that internalization is expected
to decrease (resp. increase) the price when insider is expected to buy (resp. sell). In other words,
the expected change of the price benefits both traders (as the uniformed trader remains at the same
side of trade). Connecting this fact to the expected demand changes, we may conclude that

Due to internalization of price impact, a sufficiently low (resp. high) risk tolerant
insider is expected to buy less (resp. more) units at a better price, while uniformed
trader buys more (resp. less).

Intuition and model’s predictions. We conclude by providing economic intuition about the
predictions induced by the model. First, we have seen that asymmetric information is ex-ante
expected to increase the insider’s demand for the tradeable asset. Intuitively, the private signal
reduces the asset’s risk (measured by variance) for the insider, which makes her willing to hold
a higher allocation. Without strategic trading, higher insider demand is expected to increase the
price. Private information tends to increase the insider’s demand even under price impact. The
main ex-ante expected difference is the lower increase of the price, as internalization of price impact
affects the price in favor of the insider. When the insider trades strategically, she uses her private
signal to affect the equilibrium. In fact, it is exactly when the insider internalizes price impact and
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uninformed agents are price-takers that insider’s welfare is monotonically increasing with respect
to the signal precision. In other words, insider’s strategic trading increases the value of her private
signal making the acquisition of better signal reasonable.

Internalization of price impact keeps the traders at the same side of trade. As we have seen,
the insider hides part of her private signal, which is expected to reduce her demand and hence the
equilibrium price. In other words, price impact has the opposite expected effect than the private
signal. Provided that insider has long position at equilibrium, the price always decreases due to
price impact, under both price impact and private signal. However, the insider’s demand is lower
under the presence of signal when she is also sufficiently risk averse. This is intuitive in the sense
that a sufficiently risk averse trader wants to undertake less risk. If in addition to high insider’s risk
aversion inequality (36) holds, the price impact equilibrium lowers the insider’s welfare. Note that
(36) implies the uniformed traders are highly risk tolerant. This reduces the insider’s allocation even
further, since the uniformed traders’ demand is higher and hence at market-clearing the insider’s
share is lower. Such lower insider’s demand may lead to lower ex-ante expected utility gains, as a
signal of good quality (consistent with (36)) means the insider feels more confident to hold a higher
position at equilibrium. However, under a large deviation of risk aversions, internalization of price
impact prevails, demand is reduced and utility gains are lower. Note that when traders have the
same risk aversion, the effect of internalization is always beneficial for the insider.

Interestingly enough, in the absence of a private signal, internalization of price impact induces
higher utility gains for the insider. This is because under symmetric information, the insider does
not have motive to increase her demand due to a lower asset risk, and hence the effect of price
impact, i.e. buying lower quantity at a lower price, increases the expected welfare. We conclude
that it is the presence of asymmetric information and the deviation on risk aversions that potentially
make the price-impact equilibrium disadvantageous for the insider.

We should also emphasize that as long as the insider internalizes her price impact, equilibrium
prices cannot be driven to the corresponding PT equilibrium. This is because the uniformed trader,
although he is a price-taker, realizes the insider internalizes her price impact. This makes him
reduce his perceived public signal precision, and hence alters his demand function to a less elastic
one. Under the Pareto initial allocation, he remains at the same side of trade with the insider and
the lower equilibrium prices caused by the internalization imply higher demand for the uniformed
trader, who (although price-taker) is benefited by price impact. In other words, price impact
decreases the price when traders buy the asset, and at equilibrium the uniformed trader satisfies
his optimal demand but at a discount. This is the reason why price impact ex-ante benefits the
uniformed trader with and without asymmetric information.
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Appendix A. The Equilibrium: General Case

We extend the model of Section 1 to d risky assets with general values for the model inputs, out-
standing supply, and agent initial endowments. The assets have terminal payoff X ∼ N(µX , P

−1
X ),

written

X = µX + P
−1/2
X EX ,

where EX ∼ N(0, 1d). The outstanding supply is Π ∈ Rd. The riskless asset price is still normalized
to 1. The private signal G takes the form

(45) G = X + ZI ; ZI = P
−1/2
I EI ,

where EI ∼ N(0, 1d) is independent of X, so that PI is the signal precision matrix. The noise
traders have demand

ZN = P
−1/2
N EN ,

where En ∼ N(0, 1d) is independent of both X and EI . The matrices PX , PI , PN lie in Sd++, the

set of d × d strictly positive definite symmetric matrices, and µX ∈ Rd. Lastly, the insider I and
uninformed agent U are endowed with share positions {πi,0} consistent with equilibrium in that
(with πi,0 = αiψi,0) Π = αIψI,0 + αUψU,0.

For a given strategy πi, if the time 0 price vector is p then agent i has risk aversion adjusted
terminal wealth (see (5))

(46) Wψi = (ψi,0)
′p+ ψ′

i(X − p); i ∈ {I, U} .

where the symbol ′ denotes transposition. The insider perceives linear price impact so that if she

changes her position from πI,0 = αIΠ̂ to πI = αIψI , the price will be as in (6) (for a to-be-
determined vector V and matrixM). The set of acceptable strategies for the insider AI is the same
as in (7) and the insider’s optimal investment problem is

inf
ψ∈AI

E
[
e−(ψ

′
I,0pι(ψ,ZN )+ψ′(X−pι(ψ,ZN )))∣∣σ(G,ZN )] .(47)

Write PX|G as the precision of X given the insider signal G, and similarly to (9) expressM in terms
of PX|G and a to-be-determined matrix Y.

PX|G := PI + PX ; M =M(Y) = P
−1/2
X|G Y P

−1/2
X|G .(48)

We also write V = V (Y) to stress the dependence, and expect Y + Y ′ ∈ Sd++. Analogously to
Lemma 1.1 we obtain a unique solution to the insider’s optimal investment problem

Lemma A.1. Let g, z ∈ R. On the set {G = g, ZN = z}, the unique optimizer of (47) enforces

ψ̂I,ι(g, z)− ψI,0 +
z

αI
= M (g + Λιz + V) ,(49)

where

M = M(Y) := P
1/2
X|G(1d + Y + Y ′)−1P

−1/2
X|G PI ,

Λι = Λι(Y) :=
1

αI
P−1
I P

1/2
X|G(1d + Y ′)P

−1/2
X|G ,

V = V(Y) := P−1
I

(
PXµX − ψI,0 − PX|GV (Y)

)
.

(50)
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Motivated by (49) we define the market signal and its precision

Hι := G+ ΛιZN = X + ZI + ΛιZN ,

PU,ι = PU,ι(Y) :=
(
P−1
I + Λι(Y)P−1

N Λ′
ι(Y)

)−1
.

(51)

By observing the price, the uniformed trader has time 0 information σ(Hι) and written as a function
of Hι, the price is p(Hι) where

pι(hι) =MM(hι + V) + V.(52)

As the uninformed is a price taker, his optimization problem is

inf
ψ∈σ(Hι)

E
[
e−(ψ

′
U,0pι(Hι)+ψ

′(X−pι(Hι)))∣∣σ(Hι)
]
.

Similarly to Lemma A.1 we obtain

Lemma A.2. Let hι ∈ R. On the set {Hι = hι}, the uninformed agent has risk-aversion adjusted
optimal demand

(53) ψ̂U,ι(hι) = PU,ιhι + PXµX − (PU,ι + PX)pι(hι).

The market-clearing condition is

Π = αI

(
ψ̂I,ι(G,ZN )− ψI,0 +

ZN
αI

)
+ αIψI,0 + αU ψ̂U,ι(Hι).(54)

Taking into account (49), (50) and (53), the above will induce the equilibrium conditions on Y and
V , as stated in the next proposition. To state it, as in (19) but for the general setup, define

(55) p0 := EQ0 [X] = µX − P−1
X Π̂.

As before, p0 is the equilibrium price absent any private signals, and provided the initial endowments
satisfy (2).

Proposition A.3. Assume Ŷ enforces the matrix equality

0d = PU,ι(Ŷ)M(Y)−1 +
αI
αU

1d − (PU,ι(Ŷ) + PX)M(Ŷ),(56)

where M , M and PU,ι are from (48), (50) and (51). Then, there exists a price-impact equilibrium.

The market signal is Hι from (51), and the equilibrium price pι is of the form (52) with M =M(Ŷ)
from (48), and

(57) V = V (Ŷ) = p0 + P−1
X Pι(Ŷ)(PI − Pι(Ŷ))−1

(
ψI,0 − Π̂

)
; Pι(Ŷ) :=

αIPI + αUPU,ι(Ŷ)

αI + αU
.

Lastly, the price function pι takes the form

pι(hι) = p0 +M(Ŷ)M(Ŷ) (hι − p0)

+
(
P−1
X −M(Ŷ)M(Ŷ)

(
Pι(Ŷ)−1 + P−1

X

))
Pι(Ŷ)(PI − Pι(Ŷ))−1

(
ψI,0 − Π̂

)
.

(58)

In light of Proposition A.3, our goal is to find solutions Ŷ to (56). This is a matrix-valued cubic

equation for Y and the primary difficulty in establishing existence of solutions Ŷ arises due to the
interaction between the precision matrices PI , PN and PX . While techniques exist for solving such
equations (see Benzi and Viviani [2023]), technically this would take us far beyond the intended
scope of the paper, and therefore we make the following assumption, which is always valid in the
case of a single asset (as in our simplified model of Section 1).

Assumption A.4. PI = pIPX and PN = pNP
−1
X for scalars pI , pN > 0.
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Under this assumption we guess that Y = y1d for a scalar y > 0. The quantities in (48), (50)
and (51) take the form

M =
y

1 + pI
P−1
X , M =

pI
1 + 2y

PX , Λι =
y + 1

αIpI
P−1
X , PU,ι =

(
α2
Ip

2
IpN

(1 + y)2 + α2
IpIpN

)
PX .(59)

Note the constant in front of PU,ι is exactly (13). Plugging these values and simplifying one can
show that (56) holds if and only if y solves (18). Therefore, using Proposition 1.5 we obtain the
following generalization of Theorem 1.6.

Theorem A.5. Let Assumption A.4 hold. Then a price-impact equilibrium exists. Using ŷ from
Proposition 1.5, the market signal is Hι from (51). The equilibrium price is pι(Hι) for pι from (58).

The insider uses the optimal policy π̂I,ι = (1/αI)ψ̂I,ι(G,ZN ) from (49). The uninformed agent uses

the optimal policy π̂U,ι = (1/αU )ψ̂U,ι(H) for ψ̂U,ι from (53).

Price-taking equilibrium. To state the price taking results, assume there is a market signal H
revealed through the time 0 price p = p(H), and both traders take p(H) as given. The insider
has time 0 information σ(H,G) while the uninformed trader uses σ(H). Using (46), the insider
and uninformed trader’s optimal investment problems are as in (21), where again (H, p(H)) is a
price-taking equilibrium if the clearing condition (4) holds for the optimal policies. As this result
does not require Assumption A.4 we state it for general parameter values (it generalizes Proposition
1.7).

Proposition A.6. There is a price-taking equilibrium. The market signal is

(60) H := G+
1

αI
P−1
I ZN = X + ZI +

1

αI
P−1
I ZN .

H is of the same form as G, but with lower precision

PU :=

(
P−1
I +

1

α2
I

P−1
I P−1

N P−1
I

)−1

.

With p0 from (55), the equilibrium price is p = p(H) for the price function

p(h) := p0 + (PX + P )−1 P (h− p0) ; P :=
αIPI + αUPU
αI + αU

.(61)

The optimal policies for I and U are ψ̂I(G,H) and ψ̂U (H) respectively, where

(62) ψ̂I(g, h) = PXµX + PIg − (PI + PX)p(h); ψ̂U (h) = PXµX + PUh− (PU + PX)p(h).

No private signal (NS) equilibrium. Continuing, we state the equilibrium results (generalizing

Proposition 1.11) where there is no private signal, recalling Π̂ and p0 from (55).

Proposition A.7. The no-signal equilibrium corresponds to pI = 0. In the price-taking case, the

equilibrium price and the risk aversion adjusted optimal positions are pns(ZN ) and ψ̂ns,I = ψ̂ns,U =

ψ̂ns(ZN ) where

(63) pns(z) = p0 + λP−1
X

z

αI
; ψ̂ns(z) = Π̂− λ

z

αI
,

where λ is defined in (17). In the price-impact case, the equilibrium price is pns,ι(ZN ) where

pns,ι(z) = p0 +
λ

1− λ2
P−1
X

z

αI
+

λ2

1− λ2
P−1
X

(
ψI,0 − Π̂

)
.
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The risk aversion adjusted optimal policies for I and U are ψ̂ns,ι,I(ZN ) and ψ̂ns,ι,U (ZN ), where

ψ̂ns,ι,I(z) = ψI,0 −
λ

1 + λ

z

αI
− 1

1 + λ

(
ψI,0 − Π̂

)
,

ψ̂ns,ι,U (z) = ψI,0 −
λ

1− λ2
z

αI
− 1

1− λ2

(
ψI,0 − Π̂

)
.

Appendix B. Proofs from Section 1 and Appendix A

Let us first provide a mapping between the results of Section 1 and Section A. First, Lemmas
1.1, 1.3 follow directly from Lemmas A.1, A.2 respectively. Next, while Lemma 1.4 could be deduced
from Proposition A.3, the algebra is quite complicated so we will provide a short stand alone proof.
Proposition 1.5 requires its own proof. In Theorem 1.6, the statement regarding the price function

pι follows from Proposition A.3, and that regarding ψ̂U,ι follows from Lemma A.2. As for ψ̂I,ι we
will offer a stand-alone derivation. Lastly, Propositions 1.7, 1.11 follow from Propositions A.6, A.7
respectively. Therefore, we will first provide the necessary proofs from Section 1 and then move on
to Appendix A.

Proof of Lemma 1.4. (16) can be written

0 = αI

(
pI

1 + 2y
(hι + Π̂)− 1 + pI

1 + 2y
(V (y) + Π̂)

)
+ αU

((
pU,ι −

(1 + pU,ι)pIy

(1 + pI)(1 + 2y)

)
(hι + Π̂)−

(1 + pU,ι)(1 + y)

1 + 2y
(V (y) + Π̂)

)
+ αU

(
−1 +

(1 + pU,ι)y

(1 + pI)(1 + 2y)
− pU,ι +

(1 + pU,ι)pIy

(1 + pI)(1 + 2y)
+

(1 + pU,ι)(1 + y)

1 + 2y

)
Π̂.

Direct calculation shows the term on the third line above vanishes, so that if V (y) = −Π̂ the clearing
condition will hold provided

0 = αI
pI

1 + 2y
+ αU

(
pU,ι −

(1 + pU,ι)pIy

(1 + pI)(1 + 2y)

)
,

=
αIpI

(1 + 2y)((1 + y)2 + α2
IpIpN

(
(1 + y)2

(
1− αUy

αI(1 + pI)

)
+ α2

IpIpN

(
αU
αI
y +

αU + αI
αI

))
.

(64)

□

Proof of Proposition 1.5. Define g(y) as the cubic function on the right side of (18). It is clear that
g(0) > 0 and limy→∞ g(y) = −∞. This shows there exists a solution ŷ > 0 to g(ŷ) = 0. As for
uniqueness of positive solutions, straight-forward computations show for any solution to g(y) = 0
that

(1 + y)ġ(y) = −1− λ

λ
(1 + y)κpI − κpI − (1 + y)3

1− λ

λ(1 + pI)
< 0.

Thus, for any solution y > −1, g strictly decreasing at y and hence there is a unique solution
exceeding −1, which is in fact positive.

□
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Derivation of ψ̂I,ι(g, z) in Theorem 1.6. From (10), (11), V (y) = Π̂, (19) and (20) we obtain

ψ̂I,ι(g, z) = −p0 +
pI

1 + ŷ
(g − hι) +

pI
1 + 2ŷ

(hι − p0),

= −
(
1 +

pI
1 + ŷ

)
p0 +

pI
1 + ŷ

g − pI ŷ

(1 + ŷ)(1 + 2ŷ)
(hι − p0),

= −
(
1 +

pI
1 + ŷ

)
p0 +

pI
1 + ŷ

g − 1 + pI
1 + ŷ

(pι(hι)− p0),

=
1

1 + ŷ
(pIg − (1 + pI)pι(hι)− ŷp0) .

Above, the third equality used (20).
□

Proof of Lemma A.1. The law of X given σ(G,ZN ) has density

(65)
P
[
X ∈ dx

∣∣σ(G,ZN )]
P [X ∈ dx]

=
P
[
X ∈ dx

∣∣σ(G)]
P [X ∈ dx]

=

 e−
1
2
x′PIx+x

′PIg

E
[
e−

1
2
X′PIX+X′PIg

]
 ∣∣∣∣

g=G

.

Using this in (47), on {G = g, ZN = z} the insider minimizes over ψ = ψ(g, z) with ψ(G,ZN ) ∈ AI

(ψ − ψI,0)
′pι (ψ, z) + log

E
[
e−ψ

′X− 1
2
X′PIx+X

′PIg
]

E
[
e−

1
2
X′PIX+X′PIg

]
 .

As X ∼ N(µX , P
−1
X ), this specifies to

(ψ − ψI,0)
′pι (ψ, z) +

1

2
ψ′(PI + PX)

−1ψ − ψ′ (PI + PX)
−1 (PIg + PXµX) .

Plugging in for pι, using ψ
′Mψ = (1/2)ψ′(M +M ′)ψ, and grouping by powers of ψ gives

1

2
ψ′
I,0M

(
ψI,0 −

z

αI

)
− ψ′

I,0V +
1

2
ψ′ (M +M ′ + (PI + PX)

−1
)
ψ

− ψ′(PI + PX)
−1

(
PIg + PXµX + (PI + PX)

(
(M +M ′)ψI,0 −M

z

αI
− V

))
.

(66)

Plugging in for M and using PX|G from (48), the optimizer ψ̂I is

ψ̂I,ι(g, z) = P
1/2
X|G(Y + Y ′ + 1d)

−1P
−1/2
X|G

(
PIg + PXµX − PX|GV + P

1/2
X|G(Y + Y ′)P

−1/2
X|G ψI,0

− P
1/2
X|GYP

−1/2
X|G

z

αI

)
.

(67)

The identity in (49) with M,Λι,V from (50) follow by direct computations. □

Proof of Lemma A.2. As the uninformed is a price taker, this follows immediately from Proposition
A.6 below, with the appropriate substitutions p→ pι, H → Hι. □

Proof of Proposition A.3. Throughout we suppress the dependence of all quantities on Y. Now,
(49), (52) and (53) show the right side of (54) is affine in the signal Hι, and after dividing by αU
and right-multiplying by M−1, (56) is precisely the equation which eliminates the Hι terms. As
for the constant terms, we need

Π = (αI1d − αU (PU,ι + PX)M)MV + αIψI,0 + αU (PXµX − (PU,ι + PX)V ) .
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As (56) does not involve V , if Ŷ is such that (56) holds, the above becomes

Π = −αUPU,ιV + αIψI,0 + αU (PXµX − (PU,ι + PX)V ) ,

= −αUP−1
I PU,ι

(
PXµX − ψI,0 − PX|GV

)
+ αIψI,0 + αU (PXµX − (PU,ι + PX)V ) ,

= αU (PI − PU,ι)P
−1
I PX(µX − V ) + (αIPI + αUPU,ι)ψI,0,

where the last equality follows from (50), (48) and simplifying. Therefore, using Π̂ and p0 from
(55), and Pι from (57) we deduce

Π̂ =
αU

αI + αU
(PI − PU,ι)P

−1
I PX (µX − V ) +

αUPU,ι + αIPI
αI + αU

P−1
I ψI,0,

= (PI − Pι)P
−1
I PX (p0 − V ) + (PI − Pι)P

−1
I Π̂ + PιP

−1
I ψI,0.

This yields

V = p0 + P−1
X PI (PI − Pι)

−1 PιP
−1
I

(
ψI,0 − Π̂

)
.

(57) now follows as PI(PI − Pι)
−1PιP

−1
I = Pι(PI − Pι)

−1. As for (58), we have from (52) that

pι(hι) = p0 +MM(hι − p0) + (MM− 1d) p0 +MMV + V.

Next,

(MM− 1d) p0 +MMV + V

= (MM− 1d) p0 + V +MMP−1
I

(
PXp0 + Π̂− ψI,0 − PX|GV

)
,

= (MM− 1d) p0 + p0 + P−1
X Pι(PI − Pι)

−1
(
ψI,0 − Π̂

)
+MMP−1

I

(
PXp0 −

(
ψI,0 − Π̂

)
− PX|Gp0 − PX|GP

−1
X Pι(PI − Pι)

−1
(
ψI,0 − Π̂

))
.

Because PX|G = PI + PX the p0 terms cancel out. The ψI,0 − Π̂ terms are

−MMP−1
I +

(
1d −MMP−1

I (PX + PI)
)
P−1
X Pι(PI − Pι)

−1

=
(
P−1
X −MM(P−1

ι + P−1
X )
)
Pι(PI − Pι)

−1.

□

Proof of Proposition A.6. Assume the market signal takes the form H = G + ΛZN , for a to-be-
determined matrix Λ, and the time 0 price is a function p = p(H) of the market signal. Clearly,
σ(G,H) = σ(G,ZN ), and hence (21) is equivalent to

inf
ψ∈σ(G,ZN )

E
[
e−ψ

′
I,0p(H)−ψ′(X−p(H))

∣∣σ(G,ZN )] .
We may ignore the ψ′

I,0p(H) term, and using (65), on the set {G,H} = {g, h} the insider solves

inf
ψ

ψ′p(h) + log

E
[
e−ψ

′X− 1
2
X′PIX+X′PIg

]
E
[
e−

1
2
X′PIX+X′PIg

]
 .

Using that X ∼ N(µX , P
−1
X ), this problem is equivalent to minimizing

1

2
ψ′
I(PI + PX)

−1ψI − ψ′
I(PI + PX)

−1 (PXµX + PIg − (PI + PX)p(h)) ,

which yields ψ̂I from (62). Next, the clearing condition (4) mandates that ψ̂I + ZN/αI be σ(H)
measurable in equilibrium. Using (62), this in turn implies

ψ̂I(G,H) +
ZN
αI

= PI

(
G+

1

αI
P−1
I ZN

)
+ PXµX − (PI + PX)p(H),
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must be σ(H) measurable, which is achieved setting H as in (60). Turning to U , as H is of the
same form as G, we may repeat the steps for the insider, but using (PU , H) rather than (PI , G), to

conclude that ψ̂U as in (62) is optimal. We now use (4) to identify p(H). Indeed, in equilibrium we
must have

Π = αI

(
ψ̂I(G,H) +

ZN
αI

)
+ αU ψ̂U (H),

which, using Π̂ from (2) and P from (61), implies

Π̂ =
αI

αI + αU
(PIH + pXµX − (PI + PX)p(H)) +

αU
αI + αU

(PUH + pXµX − (PU + PX)p(H)) ,

= PH + PXµX − (PX + P )p(H).

Therefore, using (2) again, p(H) = (PX +P )−1 (PH + PXp0) which gives (61), finishing the result.
□

The proof of Proposition A.7, as well as those in both Sections C and D simplify if we adjust
the notation in (17) by defining

(68) β := κpI = α2
IpIpN ; λI := λ =

αI
αI + αU

; λU := 1− λ =
αU

αI + αU
, R :=

1

1 + pI
.

The cubic equation (18) becomes

(69) 0 = (1 + y)2
(
1− λUR

λI
y

)
+ β

(
λU
λI

(1 + y) + 1

)
.

Next, recall that in the general setup of Appendix A

(70) X = µX + P
−1/2
X EX ; G = X +

1
√
pI
P

−1/2
X EI ; ZN =

1
√
pN

P
1/2
X EN ,

where EX , EI , EN are three independent N(0, 1d) random variables.

Proof of Proposition A.7. We use the notation in (68), and suppress ŷ from the M,M,V, V func-
tions. We start with the price taking equilibria. From (45), (60), (68), as well as the general pricing
formulas in (73) below we obtain after some computation

p(H) = p0 +
β + λI

λUR+ β + λI

(
(1−R)X +

√
R(1−R)P

−1/2
X EI +

1

αI
RP−1

X ZN − (1−R)p0

)
.

In (68) note that pI → 0 corresponds to R→ 1, β → 0. Therefore, almost surely

lim
pI→0

p(H) = p0 +
λI

(λU + λI)
P−1
X

ZN
αI

= p0 + λIP
−1
X

ZN
αI

,

because λU + λI = 1. This gives the pricing formula in (63) as λ = λI . As for the positions, first
note from (72) below that

PU =
(1−R)β

R(1 + β)
PX → 0; PIG =

1−R

R
PX

(
X +

√
R

1−R
P

−1/2
X EI

)
→ 0,

PUH =
(1−R)β

R(1 + β)
PX

(
X +

√
R

1−R
P

−1/2
X EI +

R

αI(1−R)
P−1
X ZN

)
→ 0.

(63) follows from (55) and (62). We next consider the price impact case. From (68) and (69) we
see that pI → 0 additionally implies (1−R)/pI → 1 and ŷ → λI/λU . From (45), (51), and (73)

pι(Hι) = p0 +
ŷ

1 + 2ŷ
×
(
(1−R)X +

√
R(1−R)P

−1/2
X EI +

R(1 + ŷ)

αI
P−1
X ZN − (1−R)p0

)
+
λI ŷ

(
β + (1 + ŷ)2

)
λU (1 + 2ŷ)(1 + ŷ)2

× P−1
X

(
ψI,0 − Π̂

)
.
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Therefore, almost surely, and using λU + λI = 1

lim
pI→0

pι(Hι) = p0 +
λI(λU + λI)

(λU + 2λI)λU
P−1
X

ZN
αI

+
λ2I

λU (λU + 2λI)
P−1
X

(
ψI,0 − Π̂

)
,

= p0 +
λI

1− λ2I
P−1
X

ZN
αI

+
λ2I

1− λ2I
P−1
X

(
ψI,0 − Π̂

)
.

As for I’s optimal policy, from (6)

ψ̂(G,ZN ) = ψI,0 −
ZN
αI

+M−1(pι(Hι)− V ).

From (59) and (68) we find thatM−1 → (λU/λI)PX , and we have just computed the limit of pι(Hι).
As for V , from (57) as well as (74) and (75) below we deduce

V = p0 +
β + λI(1 + ŷ)2

λU (1 + ŷ)2
P−1
X (ψI,0 − Π̂).(71)

Therefore, V → p0 + (λI/λU )P
−1
X (ψI,0 − Π̂). Putting everything together

lim
pI→0

ψ̂I,ι(G,ZN ) = ψI,0 −
ZN
αI

+
λU
λI
PX

(
p0 +

λI
1− λ2I

P−1
X

ZN
αI

+
λ2I

1− λ2I
P−1
X

(
ψI,0 − Π̂

)
− p0 −

λI
λU

P−1
X (ψI,0 − Π̂)

)
,

= ψI,0 −
(
1− λU

1− λ2I

)
ZN
αI

−
(
1− λIλU

1− λ2I

)
(ψI,0 − Π̂),

= ψI,0 −
λI

1 + λI

ZN
αI

− 1

1 + λI

(
ψI,0 − Π̂

)
.

The result for ψ̂ns,U,ι can be deduced from the clearing condition (4), which using the current
notation implies that in the limit

ψ̂ns,U,ι =
1

1− λI

(
Π̂− λI

ZN
αI

− λI ψ̂ns,I,ι

)
.

□

Appendix C. Proofs from Sections 2 & 4

Proof of Proposition 2.1. The first statement follows directly from (30) and ŷ > 0. For the second,
direct calculation shows for pU , pU,ι from (29) and using the notation in (68) that

pU =
1−R

R

β

1 + β
; pU,ι =

1−R

R

(
β

(1 + ŷ)2 + β

)
.(72)

Thus, pU > pU,ι is equivalent to 1 < (1 + ŷ)2, which holds as ŷ > 0. □

We next prove Proposition 2.3 in the general setting of Appendix A. Proposition 2.3 will follow

as in Section 1 we have (see (19)) p0 = ψI,0 = Π̂.

Proposition C.1. Let Assumption A.4 hold and recall (55). The pricing functions from (58) and
(61) specify to

pι(hι) = p0 +
pI ŷ

(1 + pI)(1 + 2ŷ)
× (hι − p0) +

λŷ
(
κpI + (1 + ŷ)2

)
(1− λ)(1 + 2ŷ)(1 + ŷ)2

× P−1
X

(
ψI,0 − Π̂

)
,

p(h) = p0 +
pI(κpI + λ)

1− λ+ (1 + pI)(κpI + λ)
× (h− p0) .

(73)
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Proof of Proposition C.1. We start with p(h) from (61). From (61), (72) and λI+λU = 1 we obtain

P =
(1−R)(β + λI)

R(1 + β)
PX ; P + PX =

λUR+ β + λI
R(1 + β)

PX ; (PX + P )−1P =
(1−R)(β + λI)

λUR+ β + λI
1d,

and hence the formula for p(h). We next consider pι(h) from (58) and drop the explicit dependence
on ŷ in M,M,V, V . First, (59) implies MM = (1−R)ŷ/(1 + 2ŷ)1d which gives the hι − p0 term.

As for the ψI,0 − Π̂ term, using (57), (72) we find

(74) Pι =
(1−R)(β + λI(1 + ŷ)2)

R(β + (1 + ŷ)2)
PX .

This implies

P−1
ι + P−1

X =
β + (λUR+ λI)(1 + ŷ)2

(1−R)(β + λI(1 + ŷ)2)
P−1
X ,

P−1
X −MM

(
P−1
ι + P−1

X

)
=

(1 + ŷ)
(
β + λI(1 + ŷ)2 − λURŷ(1 + ŷ)

)
(1 + 2ŷ)(β + λI(1 + ŷ)2)

P−1
X ,

as well as

(75) PI − Pι =
(1−R)λU (1 + ŷ)2

R(β + (1 + ŷ)2)
PX .

Therefore, (
P−1
X −MM

(
P−1
ι + P−1

X

))
Pι(PI − Pι)

−1 =
β + λI(1 + ŷ)2 − λURŷ(1 + ŷ)

λU (1 + 2ŷ)(1 + ŷ)
.

(69) implies λURŷ(1 + ŷ) = λI(1 + ŷ) + λUβ + λIβ/(1 + ŷ) and hence

β + λI(1 + ŷ)2 − λURŷ(1 + ŷ) =
λI ŷ(β + (1 + ŷ)2)

1 + ŷ
,

which gives the result.
□

Proof of Proposition 2.4. We retain the notation in (68) and suppress ŷ from the M,M,V, V func-
tions. First, direct calculation using (32) shows

2

1−R
(mg −mg,ι) =

1

1 + 2ŷ
+
β + λI − λUR

β + λI + λUR
.

This gives the result when β + λI > λUR. When λUR > β + λI define ỹ through

1

1 + 2ỹ
=
λUR− (β + λI)

λUR+ β + λI
.

Thus, mg > mg,ι if and only if ŷ < ỹ. In the proof of Proposition 1.5 we showed if we define g by
the right side of (18) (see also (69)) , then g is strictly decreasing at ŷ. Thus, if g(ỹ) < 0 it must
be that ŷ < ỹ. Indeed, ŷ = ỹ is not possible, and if ŷ > ỹ then there must be some y̌ > 0 with
g(y̌) = 0, but by the uniqueness statement in Proposition 1.5 we know this is not possible as well.

It therefore suffices to show that g(ỹ) < 0. To this end, write p := λUR and q := β + λI so
that by assumption p > q and ỹ = q/(p− q) and ỹ + 1 = p/(p− q). In (69) we obtain

g(ỹ) =
p2

(p− q)2

(
1− pq

λI(p− q)

)
+

λUpβ

λI(p− q)
+ β.

As the common denominator λI(p − q)3 is positive, we need only show the numerator is negative.
The numerator is

λIp
2(p− q)− p3q + λUpβ(p− q)2 + βλI(p− q)3.
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If we group terms by powers of p the cubic terms vanish, leaving

(76) − (2β + λI(1 + β)) qp2 + (λU + 3λI)βq
2p− βλIq

3.

Since p > q, the derivative of the above expression is bounded above by −q2 (3β + 2λI) < 0. Thus,
(76) is decreasing in p when p > q and hence bounded above by −q3 (β + λI) < 0. The numerator
is negative, finishing the result. □

Proof of Proposition 2.5. We again retain the notation in (68) and suppress ŷ from the M,M,V, V
functions. Using (61), (59) and (72) calculation shows

mχ̂ =
β + λI
λU

; mχ̂,ι = Rŷ.

Therefore, mχ̂ > mχ̂,ι if and only if ŷ < ỹ := (β + λI)/(λUR). We will show g(ỹ) < 0 for g defined
by the right side of (69), and this will give the result, as the proof of Proposition 2.4 showed for
y > 0 that g(y) < 0 if and only if y > ŷ. To this end, from (69)

g(ỹ) =
(λUR+ β + λI)

2

λ2UR
2

(
1− β + λI

λI

)
+
β(λUR+ β + λI)

RλI
+ β,

=
−β

λIλ2UR
2

(
(λUR+ β + λI)

2 − λ2UR(λUR+ β + λI)− λIλ
2
UR

2
)
,

=
−β

λIλ2UR
2

(
λUR(β + λI)(1 + λI) + (β + λI)

2
)
,

where we have used that λI + λU = 1. The result follows as β, λI , λU , R > 0. □

Proof of Proposition 4.1. The expected value in (44) is negative if and only if

ŷ > y :=
(1 + pI)(λ+ κpI)

2(1− λ)
.

Next, as shown in the proof of Proposition 2.4, if we define the function g by the right side of (18)
then ŷ > y if and only if g(y) > 0. Calculations show

g(y) =
(λ− κpI) ((λ+ κpI)(1 + pI) + 2(1− λ))2

8(1− λ)2λ
+
κpI((1 + pI)(λ+ κpI) + 2)

2λ
.

The sign of the right hand side above coincides with that of

(λ− κpI) ((λ+ κpI)(1 + pI) + 2(1− λ))2 + 4(1− λ)2κpI((1 + pI)(λ+ κpI) + 2)

= (λ+ κpI)
(
((1 + pI)λ+ 2(1− λ))2 − 4λ(1− λ)κpI(1 + pI)− κ2p2I(1 + pI)

2
)
.

Therefore ŷ > y if and only if

κ < κ :=
1

pI(1 + pI)

(√
(2λ(1− λ))2 + (λ(1 + pI) + 2(1− λ))2 − 2λ(1− λ)

)
.

Using (17) we see that as the insider becomes very risk averse (αI → 0) we have λ → 0 and hence
κ→ 2/(pI(1+pI)) while κ→ 0. Thus ŷ > y. On the other hand, as the insider becomes sufficiently
risk tolerant (αI → ∞), κ→ 1/pI but κ→ ∞. Thus, in this instance ŷ < y.

□
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Appendix D. Welfare formulas used in Section 3

We prove results for the general setup in Appendix A and use the notation (68) throughout.
We begin by identifying interim certainty equivalents in the price taking case. From (21), the insider
has certainty equivalent function (recall (60) implies σ(G,H) = σ(G,ZN ))

1

αI
CEI0(g, z) = − log

(
E
[
e−ψ

′
I,0p(h)−ψ̂I(G,ZN )′(X−p(H))

∣∣σ(G,ZN )]) ∣∣(G,ZN )=(g,z)
,

= ψ′
I,0p(h)−

1

2
ψ̂I(g, z)

′(PI + PX)
−1ψ̂I(g, z)

+ ψ̂I(g, z)
′(PI + PX)

−1 (PXµX + PIg − (PI + PX)p(h)) ,

where we used (65) and X ∼ N(µX , P
−1
X ). Therefore, (62) implies

1

αI
CEI0(g, z) = ψ′

I,0p(h) +
1

2

∥∥∥(PI + PX)
−1/2ψ̂I(g, z)

∥∥∥2 .(77)

The uninformed has the same signal type as the insider, giving

1

αU
CEU0 (h) = ψ′

U,0p(h) +
1

2

∥∥∥(PU + PX)
−1/2ψ̂U (h)

∥∥∥2 ,(78)

where ψ̂U is from (62). In the price impact equilibrium (recall (51) implies σ(G,Hι) = σ(G,ZN ))
we first obtain

1

αI
CEI0,ι(g, z) = − log

(
E
[
e−ψ

′
I,0pι(ψ̂I ,ZN)−ψ̂

′
I,ι(X−pι(ψ̂I ,ZN))

∣∣σ(G,ZN )]) ∣∣(G,ZN )=(g,z)
.

Using (6) and (65), we see that −(1/αI)CE
I
0,ι(g, z) is (66), evaluated at ψ̂I,ι. Therefore

1

αI
CEI0,ι(g, z) = −ψ′

I,0M

(
ψI,0 −

z

αI

)
+ ψ′

I,0V

+
1

2

∥∥∥(M +M ′ + (PI + PX)
−1
)1/2

ψ̂I,ι(g, z)
∥∥∥2 ,(79)

which below will be further specified plugging in for M from (48) and ψ̂I,ι from (67). For the
uninformed agent U , as she is a price taker, the formulas are the same as in the non-impact case
except with Hι, PU,ι, pι replacing H,PU , p. As such

1

αU
CEU0,ι(hι) = ψ′

U,0pι(hι) +
1

2

∥∥∥(PU,ι + PX)
−1/2 ψ̂U,ι(hι)

∥∥∥2 ,(80)

where ψ̂U,ι is from (53). Using the above general formulas, the first Lemma identifies interim welfare
in the price taking equilibrium under Assumption A.4 and using the notation in (68).

Lemma D.1.

1

αI
CEI0(g, z) = ψ′

I,0µX +
(1−R)(β + λI)

λUR+ β + λI
ψ′
I,0P

−1/2
X

(
P

1/2
X (g − µX) +

R

1−R
P

−1/2
X

z

αI

− R(1 + β)

(1−R)(β + λI)
P

−1/2
X Π̂

)
+

λ2UR(1−R)2

2(λUR+ β + λI)2

∥∥∥∥P 1/2
X (g − µX)−

β + λI
λU (1−R)

P
−1/2
X

z

αI
+

1 + β

λU (1−R)
P

−1/2
X Π̂

∥∥∥∥2.
And

1

αU
CEU0 (h) = ψ′

U,0µX +
(1−R)(β + λI)

λUR+ β + λI
ψ′
U,0P

−1/2
X

(
P

1/2
X (h− µX)−

R(1 + β)

(1−R)(β + λI)
P

−1/2
X Π̂

)
+

R(1 + β)λ2I(1−R)2

2(R+ β)(λUR+ β + λI)2

∥∥∥∥P 1/2
X (h− µX)−

R+ β

λI(1−R)
P

−1/2
X Π̂

∥∥∥∥2.
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Proof of Lemma D.1. Proposition C.1 and (55) imply p(h) = µX −P−1
X Π̂ +mg

(
h− µX + P−1

X Π̂
)
,

where mg is from (32). Therefore, from (60) and (62) we find

ψ̂I(g, h) = PXµX + PIg − (PI + PX)

(
µX − P−1

X Π̂ +mg

(
g + P−1

I

z

αI
− µX + P−1

X Π̂

))
.

Grouping terms by g − µX , z/αI and Π̂ we obtain

g − µX : PI − (PI + PX)mg =
λU (1−R)

λUR+ β + λI
PX ,

z

αI
: −(PI + PX)mgP

−1
I = − β + λI

λUR+ β + λI
1d,

Π̂ : (PI + PX)P
−1
X − (PI + PX)mgP

−1
X =

1 + β

λUR+ β + λI
1d.

Therefore

ψ̂I(g, z) =
1

λUR+ β + λI

(
λU (1−R)PX (g − µX)− (β + λI)

z

αI
+ (1 + β)Π̂

)
.(81)

Similar calculations show

p(h) = µX +
(1−R)(β + λI)

λUR+ β + λI

(
g − µX +

R

1−R
P−1
X

z

αI
− R(1 + β)

(1−R)(β + λI)
P−1
X Π̂

)
.(82)

As (PI + PX)
−1 = RP−1

X we obtain from (77)

1

αI
CEI0(g, z) = ψ′

I,0µX +
(1−R)(β + λI)

λUR+ β + λI
ψ′
I,0

(
g − µX +

R

1−R
P−1
X

z

αI
− R(1 + β)

(1−R)(β + λI)
P−1
X Π̂

)
+

Rλ2U (1−R)2

2(λUR+ β + λI)2

∥∥∥∥P 1/2
X (g − µX)−

β + λI
λU (1−R)

P
−1/2
X

z

αI
+

1 + β

λU (1−R)
P

−1/2
X Π̂

∥∥∥∥2.
The result follows factoring out P

−1/2
X from the linear expression. The calculations are similar for

the uniformed trader. From (60) and (62) we obtain

ψ̂U (h) = PXµX + PUh− (PU + PX)
(
µX − P−1

X Π̂ +mg

(
h− µX + P−1

X Π̂
))

.

From (72) we see PU + PX = (R + β)/(R(1 + β))PX , and hence grouping terms by h− µX and Π̂
we obtain

h− µX : PU − (PU + PX)mg = − λI(1−R)

λUR+ β + λI
PX ,

Π̂ : (1−mg) (PU + PX)P
−1
X =

R+ β

λUR+ β + λI
1d.

Therefore,

ψ̂U (h) = − λI(1−R)

λUR+ β + λI
PX(h− µX) +

R+ β

λUR+ β + λI
Π̂.

As (PU + PX)
−1 = R(1 + β)/(R+ β)P−1

X , we conclude from (30), (78) and (82)

1

αU
CEU0 (h) = ψ′

U,0µX +
(1−R)(β + λI)

λUR+ β + λI
ψ′
U,0

(
h− µX − R(1 + β)

(1−R)(β + λI)
P−1
X Π̂

)
+

R(1 + β)λ2I(1−R)2

2(R+ β)(λUR+ β + λI)2

∥∥∥∥P 1/2
X (h− µX)−

R+ β

λI(1−R)
P

−1/2
X Π̂

∥∥∥∥2.
The result follows factoring out P

−1/2
X from the linear expression.

□
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The next Lemma identifies interim welfare in the price impact equilibrium.

Lemma D.2.

1

αI
CEI0,ι(g, z) = ψ′

I,0µX + ψ′
I,0P

−1/2
X

(
ŷRP

−1/2
X

z

αI
− (ŷ + 1)2 + β

λU (ŷ + 1)2
P

−1/2
X Π̂

− βŷ

(ŷ + 1)2
P

−1/2
X ψI,0

)
+

(1−R)2

2R(1 + 2ŷ)

∥∥∥∥P 1/2
X (g − µX)−

ŷR

1−R
P

−1/2
X

z

αI
+

(ŷ + 1)2 + β

λU (1−R)(ŷ + 1)2
P

−1/2
X Π̂

+
ŷ
(
R(ŷ + 1)2 + β

)
(1−R)(ŷ + 1)2

P
−1/2
X ψI,0

∥∥∥∥2.
And

1

αU
CEU0,ι(hι) = ψ′

U,0µX + ψ′
U,0P

−1/2
X

(
(1−R)ŷ

1 + 2ŷ
P

1/2
X (hι − µX)

+
ŷλI(β + (1 + ŷ)2)

λU (1 + 2ŷ)(ŷ + 1)2
P

−1/2
X ψI,0 −

β + (1 + ŷ)2

λU (1 + 2ŷ)(1 + ŷ)
P

−1/2
X Π̂

)
+

1

2

λ2I(1−R)2(β + (1 + ŷ)2)

λ2UR(1 + 2ŷ)2(β +R(1 + ŷ)2)

∥∥∥∥P 1/2
X (hι − µX) +

(β +R(1 + ŷ)2)ŷ

(1 + ŷ)2(1−R)
P

−1/2
X ψI,0

− β +R(1 + ŷ)2

(1 + ŷ)(1−R)λI
P

−1/2
X Π̂

∥∥∥∥2.
Proof of Lemma D.2. We start by analyzing ψ̂I,ι from (67), using (48) and (59). This gives

ψ̂I,ι(g, z) =
1

1 + 2ŷ

(
PIg + PXµX − (PI + PX)V + 2ŷ

(
ψI,0 −

z

2αI

))
.

Using the notation in (68), plugging in for V from (71), and recalling (55) we obtain

ψ̂I,ι(g, z) =
1

1 + 2ŷ

(
1−R

R
PX(g − µX) +

1

R
Π̂− β + λI(1 + ŷ)2

λUR(1 + ŷ)2
(ψI,0 − Π̂)

+ 2ŷ

(
ψI,0 −

z

2αI

))
.

Grouping terms by PX(g − µX), Π̂ and z/αI we obtain

PX(g − µX) :
1−R

R(1 + 2ŷ)
, Π̂ :

(1 + ŷ)2 + β

λUR(1 + ŷ)2(1 + 2ŷ)
,

z

αI
: − ŷ

1 + 2ŷ
.

The ψI,0 terms are

1

R(1 + 2ŷ)

(
2Rŷ − β + λI(1 + ŷ)2

λU (1 + ŷ)2

)
.

As ŷ solves (69) we know

(83)
β + λI(1 + ŷ)2

λU (1 + ŷ)2
= Rŷ − βŷ

(1 + ŷ)2
.

Plugging this in and simplifying gives the ψI,0 terms

ŷ(β +R(1 + ŷ)2)

R(1 + 2ŷ)(1 + ŷ)2
.
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Therefore

ψ̂I,ι(g, z) =
1−R

R(1 + 2ŷ)
PX(g − µX) +

(1 + ŷ)2 + β

λUR(1 + ŷ)2(1 + 2ŷ)
Π̂− ŷ

1 + 2ŷ

z

αI

+
ŷ(β +R(1 + ŷ)2)

R(1 + 2ŷ)(1 + ŷ)2
ψI,0.

(84)

Next, specifying M,PI , PX from (59) and V from (71) in (79) gives

1

αI
CEI0,ι(g, z) = −Rŷψ′

I,0P
−1
X

(
ψI,0 −

z

αI

)
+ ψ′

I,0

(
µX − (ŷ + 1)2 + β

λU (ŷ + 1)2
P−1
X Π̂

+
(ŷ + 1)2 + β

(ŷ + 1)2

(
λI
λU

+
β

(ŷ + 1)2 + β

)
P−1
X ψI,0

)
+

1

2
R(1 + 2ŷ)

∥∥∥∥P−1/2
X

(
1−R

R(1 + 2ŷ)
PX(g − µX) +

(1 + ŷ)2 + β

λUR(1 + ŷ)2(1 + 2ŷ)
Π̂

− ŷ

1 + 2ŷ

z

αI
+
ŷ(β +R(1 + ŷ)2)

R(1 + 2ŷ)(1 + ŷ)2
ψI,0

)∥∥∥∥2.
By factoring out (1−R)/(R(1+2ŷ)) we obtain the quadratic term in the statement of the Lemma.

We also immediately obtain the ψ′
I,0µX , ψ

′
I,0P

−1
X z/αI and ψ

′
I,0P

−1
X Π̂ terms. As for the ψ′

I,0P
−1
X ψI,0

terms, we have

−Rŷ + λI(β + (1 + ŷ)2

λU (1 + ŷ)2
+

β

(1 + ŷ2)
= − βŷ

(1 + ŷ)2
,

where the equality follows from (83). This gives the expression for CEI0,ι(g, z). As for the uninformed

trader, in view of (80), let us calculate ψ̂U,ι from (53) using pι(hι) from (73).

ψ̂U,ι(hι) = PXµX + PU,ιhι − (PU,ι + PX)

(
µX − P−1

X Π̂ +
(1−R)ŷ

1 + 2ŷ

(
hι − µX + P−1

X Π̂
)

+
λI ŷ(β + (1 + ŷ)2)

λU (1 + 2ŷ)(1 + ŷ)2
P−1
X

(
ψI,0 − Π̂

))
.

Using (59) and (17) we find

PU,ι =
(1−R)β

R(β + (1 + ŷ)2)
PX , PU,ι + PX =

β +R(1 + ŷ)2

R(β + (1 + ŷ)2)
PX .

Grouping the PX(hι − µX) and ψI,0 terms

PX(hι − µX) :
(1−R)(1 + ŷ)(β −Rŷ(1 + ŷ))

R(1 + 2ŷ)(β + (ŷ + 1)2)
, ψI,0 : −

λI ŷ(β +R(1 + ŷ)2)

λUR(1 + 2ŷ)(1 + ŷ)2
.

We may simplify this, as (69) implies

β −Rŷ(1 + ŷ) = −λI(β + (1 + ŷ2))

λU (1 + ŷ)
,

so that the terms are

PX(hι − µX) : −
(1−R)λI
λUR(1 + 2ŷ)

, ψI,0 : −
λI ŷ(β +R(1 + ŷ)2)

λUR(1 + 2ŷ)(1 + ŷ)2
.

As for Π̂ we have

β +R(1 + ŷ)2

R(β + (1 + ŷ)2)

(
1− (1−R)ŷ

1 + 2ŷ
+

λI ŷ(β + (1 + ŷ)2)

λU (1 + 2ŷ)(1 + ŷ)2

)
,

=
β +R(1 + ŷ)2

R(β + (1 + ŷ)2)

(
1 +Rŷ + ŷ

1 + 2ŷ
+

λI ŷ(β + (1 + ŷ)2)

λU (1 + 2ŷ)(1 + ŷ)2

)(85)
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Again, using (69)

λU (1 + ŷ)2(1 +Rŷ) = (1 + ŷ)2 + β(1 + λU ŷ).

The Π̂ terms are thus
β +R(1 + ŷ)2

λUR(1 + ŷ)(1 + 2ŷ)
.

Therefore,

ψ̂U,ι(hι) = − (1−R)λI
λUR(1 + 2ŷ)

PX(hι − µX) +
β +R(1 + ŷ)2

λUR(1 + 2ŷ)(1 + ŷ)
Π̂

−
λI ŷ

(
β +R(1 + ŷ)2

)
λUR(1 + 2ŷ)(1 + ŷ)2

ψI,0.

(86)

From (80) we obtain

1

αU
CEU0,ι(hι) = ψ′

U,0

(
µX − P−1

X Π̂ +
(1−R)ŷ

1 + 2ŷ

(
h− µX + P−1

X Π̂
)

+
λI ŷ(β + (1 + ŷ)2)

λU (1 + 2ŷ)(1 + ŷ)2
P−1
X

(
ψI,0 − Π̂

))
+

1

2

R(β + (1 + ŷ)2)

β +R(1 + ŷ)2

∥∥∥∥ (1−R)λI
λUR(1 + 2ŷ)

P
1/2
X (hι − µX)−

β +R(1 + ŷ)2

λUR(1 + 2ŷ)(1 + ŷ)
P

−1/2
X Π̂

+
λI ŷ

(
β +R(1 + ŷ)2

)
λUR(1 + 2ŷ)(1 + ŷ)2

P
−1/2
X ψI,0

∥∥∥∥2.
The quadratic term in the statement of the lemma now follows. We also immediately obtain the

ψ′
U,0µX , ψ

′
U,0P

−1
X (hι − µx) and ψ

′
U,0P

−1
X ψI,0 terms. As for the ψ′

U,0P
−1
X Π̂ terms, we have

−
(
1− (1−R)ŷ

1 + 2ŷ
+

λI ŷ(β + (1 + ŷ)2)

λU (1 + 2ŷ)(1 + ŷ)2

)
The term within the parentheses is the same as in (85). This gives ψ′

I,0P
−1
X Π̂ terms

− β + (1 + ŷ)2

λU (1 + 2ŷ)(1 + ŷ)
,

finishing the result.
□

We now compute ex-ante welfare for the insider in the two equilibria, using Lemmas D.1 and
D.2. Throughout we recall from (51), (60), (59), (68), and (70), that

P
1/2
X (G− µX) = EX +

√
R

1−R
EI =:

√
1

1−R
EG; EG ∼ N(0, 1d),

P
−1/2
X

ZN
αI

=

√
1−R

βR
EN ,

P
1/2
X (H − µX) = EX +

√
R

1−R

(
EI +

1√
β
EN
)

=:

√
β +R

β(1−R)
EH ; EH ∼ N(0, 1d),

P
1/2
X (Hι − µX) = EX +

√
R

1−R

(
EI +

ŷ + 1√
β

EN
)

=:

√
β + (1 + ŷ)2R

β(1−R)
EHι ; EHι ∼ N(0, 1d),

(87)

where EG and EN are independent. To compute the ex-ante welfare, we also need the following
lemma.
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Lemma D.3. Let EA, EB be independent N(0, 1d) random variables. For constants C1, C2, C3, C4

with C3 > 0, and vectors V1, V2, V3 in Rd

− log
(
E
[
e−C1−V ′

1(EA+C2EB−V2)− 1
2
C3∥EA−C4EB+V3∥2

])
= C1 − V ′

1V2 +
d

2
log
(
1 + C3 + C3C

2
4

)
+

1

2

C3

1 + C3 + C3C2
4

V ′
3V3

+
C3(C2C4 − 1)

1 + C3 + C3C2
4

V ′
1V3 −

1 + C3C
2
4 + C2

2 (1 + C3) + 2C2C3C4

2(1 + C3 + C3C2
4 )

V ′
1V1.

Proof of Lemma D.3. If E ∼ N(0, 1k), M ∈ Sk is such that 1k +M ∈ Sk++, and W ∈ Rk then

(88) log
(
E
[
e−

1
2
E ′ME+W ′E

])
= −1

2
log (|1k +M |) + 1

2
W ′(1k +M)−1W.

Next, note that

−C1 − V ′
1 (EA + C2EB − V2)−

1

2
C3 ∥EA − C4EB + V3∥2 = −K − 1

2
E ′ME +W ′E ,

for K = C1 − V ′
1V2 + (1/2)C3V

′
3V3 and

E =

(
EA
EB

)
; M =

(
C31d −C3C41d

−C3C41d C3C
2
41d

)
; W =

(
−V1 − C3V3

−C2V1 + C3C4V3

)
.

It can easily be checked that 12d +M ∈ S2d++ with

|12d +M | = (1 + C3 + C3C
2
4 )
d; (12d +M)−1 =

1

1 + C3 + C3C2
4

(
C3C

2
41d C3C41d

C3C41d C31d

)
.

Therefore, using (88) we obtain

− log
(
E
[
e−C1−V ′

1(EA+C2EB−V2)− 1
2
C3∥EA−C4EB+V3∥2

])
= K +

1

2
log (|12d +M |)− 1

2
W ′(12d +M)−1W.

The result follows by plugging in for K,W, 12d +M and simplifying. □

Using Lemma D.3 we now compute ex-ante welfare. We start in the price taking case.

Proposition D.4.

1

αI
CEI0− =

d

2
log

(
1 +

(1−R)(λ2UβR+ (β + λI)
2)

β(λUR+ β + λI)2

)
+ ψ′

I,0µX − 1

2
ψ′
I,0P

−1
X ψI,0

+
1

2

λ2UβR(1 + β)2

β(λUR+ β + λI)2 + (1−R)(λ2UβR+ (β + λI)2)

∥∥∥P−1/2
X (ψI,0 − ψU,0)

∥∥∥2
and

1

αU
CEU0− =

d

2
log

(
1 +

R(1 + β)λ2I(1−R)

β(λURβ + λI)2

)
+ ψ′

U,0µX − 1

2
ψ′
U,0P

−1
X ψU,0

+
1

2

λ2IRβ(1 + β)(R+ β)

β(λUR+ β + λI)2 +R(1 + β)λ2I(1−R)

∥∥∥P−1/2
X (ψU,0 − ψI,0)

∥∥∥2 .
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Proof of Proposition D.4. We start with the insider. From Lemma D.1 and using (87), the interim
certainty equivalent becomes

1

αI
CEI0(G,ZN ) = ψ′

I,0µX

+

√
1−R(1 + β − λU )

λUR+ β + λI
ψ′
I,0P

−1/2
X

(
EG +

√
R

β
EN − R(1 + β)√

1−R(β + λI)
P

−1/2
X Π̂

)

+
λ2UR(1−R)

2(λUR+ β + λI)2

∥∥∥∥EG − β + λI
λU

√
βR

EN +
1 + β

λU
√
1−R

P
−1/2
X Π̂

∥∥∥∥2.
We obtain CEI0− by applying Lemma D.3, using EA = EG, EB = EN and

C1 = ψ′
I,0µX ; C2 =

√
R

β
; C3 =

λ2UR(1−R)

(λUR+ β + λI)2
; C4 =

β + λI
λU

√
βR

,

V1 =

√
1−R(β + λI)

λUR+ β + λI
P

−1/2
X ψI,0, ; V2 =

R(1 + β)√
1−R(β + λI)

P
−1/2
X Π̂; V3 =

1 + β

λU
√
1−R

P
−1/2
X Π̂.

The remainder of the proof simplifies the expression for CEI0− from Lemma D.3. We know C1. Next

V ′
1V2 =

R(1 + β)

λUR+ β + λI
ψ′
I,0P

−1
X Π̂.

Continuing

1 + C3 + C3C
2
4 =

β(λUR+ β + λI)
2 + (1−R)(λ2UβR+ (β + λI)

2)

β(λUR+ β + λI)2
.

Let us define the numerator above as

V := β(λUR+ β + λI)
2 + (1−R)(λ2UβR+ (β + λI)

2).

With this notation,

C3

1 + C3 + C3C2
4

V ′
3V3 =

βR(1 + β)2

V
Π̂′P−1

X Π̂,

C3(C2C4 − 1)

1 + C3 + C3C2
4

V ′
1V3 =

R(1−R)λI(1 + β)2(β + λI)

(λUR+ β + λI)V
ψ′
I,0P

−1
X Π̂,

1 + C3C
2
4 + C2

2 (1 + C3) + 2C2C3C4

1 + C3 + C3C2
4

V ′
1V1 =

(1−R)(1 + β)(β + λI)
2

V
ψ′
I,0P

−1
X ψI,0,

where to obtain the last equality we used 1 + C3C
2
4 + C2

2 (1 + C3) + 2C2C3C4 = (1 + β)/β. At this
point, we may conclude

1

αI
CEI0− = ψ′

I,0µX − 1

2
ψ′
I,0P

−1
X ψI,0 +

d

2
log

(
1 +

(1−R)(λ2UβR+ (β + λI)
2)

β(λUR+ βλI)2

)
+

(
R(1−R)λI(1 + β)2(β + λI)

(λUR+ β + λI)V
− R(1 + β)

λUR+ β + λI

)
ψ′
I,0P

−1
X Π̂

+
1

2

βR(1 + β)2

V
Π̂′P−1

X Π̂

+
1

2

(
1− (1−R)(1 + β)(β + λI)

2

V

)
ψ′
I,0P

−1
X ψI,0.
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The ψ′
I,0P

−1
X Π̂ terms are

R(1 + β)

V(λUR+ β + λI)
(λI(1−R)(1 + β)(β + λI)−V) = −βR(1 + β)2

V
.

and the ψ′
I,0P

−1
X ψI,0 terms on the last line are

1

2V

(
V − (1−R)(1 + β)(β + λI)

2
)
=
βR(1 + β)2

2V
.

Therefore,

1

αI
CEI0− = ψ′

I,0µX − 1

2
ψ′
I,0P

−1
X ψI,0 +

d

2
log

(
1 +

(1−R)(λ2UβR+ (β + λI)
2)

β(λUR+ β + λI)2

)
+

1

2

βR(1 + β)2

V

∥∥∥P−1/2
X

(
ψI,0 − Π̂

)∥∥∥2 .
The result for I follows because from (4), (2) and (17)

(89) Π̂ = λUψU,0 + λIψI,0.

We work similarly for the uniformed trader’s case. Again by Lemma D.1 and (87) we have

1

αU
CEU0 (H) = ψ′

U,0µX +

√
(1−R)(R+ β)

β

β + λI
λUR+ β + λI

ψ′
U,0P

−1/2
X

(
EH

−

√
β

(1−R)(β +R)

R(1 + β)

β + λI
P

−1/2
X Π̂

)
+

1

2

R(1 + β)(λI)
2(1−R)

β(λUR+ β + λI)2

∥∥∥∥EH −
√
β(β +R)

1−R

1

λI
P

−1/2
X Π̂

∥∥∥∥2.
We apply Lemma D.3 again using EA = EH and the constants

C1 = ψ′
U,0µX ; C2 = 0; C3 =

R(1 + β)λ2I(1−R)

β(λUR+ βλI)2
; C4 = 0,

V1 =

√
(β +R)(1−R)

β

β + λI
λUR+ β + λI

P
−1/2
X ψU,0; V2 =

√
β

(β +R)(1−R)

R(1 + β)

β + λI
P

−1/2
X Π̂,

V3 = −
√
β(β +R)

1−R

1

λI
P

−1/2
X Π̂.

As C2 = C4 = 0 there are a number of cancellations and hence

1

αU
CEU0− = C1 − V ′

1V2 +
d

2
log (1 + C3) +

1

2

C3

1 + C3
V ′
3V3 −

C3

1 + C3
V ′
1V3 −

1

2

1

1 + C3
V ′
1V1.

As with I, the remainder of the proof simplifies the expression for the certainty equivalent. We
already know C1. Next,

V ′
1V2 =

R(1 + β)

λUR+ β + λI
ψ′
U,0P

−1
X Π̂.

Continuing

1 + C3 = 1 +
R(1 + β)λ2I(1−R)

β(λUR+ β + λI)2
=

V

β(λUR+ β + λI)2
,

where

V := β(λUR+ β + λI)
2 +R(1 + β)λ2I(1−R).
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Next,

C3

1 + C3
V ′
3V3 =

Rβ(1 + β)(R+ β)

V
Π̂′P−1

X Π̂,

− C3

1 + C3
V ′
1V3 =

R(1 + β)(1−R)λI(R+ β)(β + λI)

(λUR+ β + λI)V
ψ′
U,0P

−1
X Π̂,

1

1 + C3
V ′
1V1 =

(1−R)(R+ β)(β + λI)
2

V
ψ′
U,0P

−1
X ψU,0.

At this point, we may conclude

1

αU
CEU0− = ψ′

U,0µX − 1

2
ψ′
U,0P

−1
X ψU,0 +

d

2
log

(
1 +

R(1 + β)λ2I(1−R)

β(λUR+ β + λI)2

)
+

(
R(1 + β)(1−R)λI(R+ β)(β + λI)

(λUR+ β + λI)V
− R(1 + β)

λUR+ β + λI

)
ψ′
U,0P

−1
X Π̂

+
1

2

Rβ(1 + β)(R+ β)

V
Π̂′P−1

X Π̂

+
1

2

(
1− (1−R)(R+ β)(β + λI)

2

V

)
ψ′
U,0P

−1
X ψU,0.

The ψ′
U,0P

−1
X Π̂ terms are

R(1 + β)

(λUR+ β + λI)V
((1−R)λI(R+ β)(β + λI)−V) = −Rβ(1 + β) (R+ β)

V
,

and the ψ′
U,0P

−1
X ψU,0 terms on the last line are

1

2V

(
V − (1−R)(R+ β)(β + λI)

2
)
=
βR(1 + β)(β +R)

2V
.

Therefore,

1

αU
CEU0− = ψ′

U,0µX − 1

2
ψ′
U,0P

−1
X ψU,0 +

d

2
log

(
1 +

R(1 + β)λ2I(1−R)

β(λUR+ β + λI)2

)
+
βR(1 + β)(β +R)

2V

∥∥∥P−1/2
X (ψU,0 − Π̂)

∥∥∥2 ,
which in view of (89) gives the result for U .

□

Lastly, we consider when insider internalizes price impact.

Proposition D.5.

1

αI
CEI0−,ι = ψ′

I,0µX − 1

2
ψ′
I,0P

−1
X ψI,0 +

d

2
log

(
1 +

(1−R)(β + ŷ2R)

βR(1 + 2ŷ)

)
+

1

2

β((ŷ + 1)2 + β)2

(ŷ + 1)4 (βR(1 + 2ŷ) + (1−R) (β + ŷ2R))

∥∥∥P−1/2
X (ψI,0 − ψU,0)

∥∥∥2
and

1

αU
CEU0−,ι = ψ′

U,0µX − 1

2
ψ′
U,0P

−1
X ψU,0 + log

(
1 +

λ2I(1−R)(β + (1 + ŷ)2)

λ2UβR(1 + 2ŷ)2

)
+

1

2

βλ2I(β + (1 + ŷ)2)(β +R(1 + ŷ)2)

(ŷ + 1)4(λ2UβR(1 + 2ŷ)2 + λ2I(1−R)(β + (1 + ŷ)2))

∥∥∥∥P−1/2
X (ψI,0 − ψU,0)

∥∥∥∥2.
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Proof of Proposition D.5. We start with the insider. From Lemma D.2 and (87) the interim cer-
tainty equivalent becomes

1

αI
CEI0,ι(G,ZN ) = ψ′

I,0µX + ŷ

√
R(1−R)

β
ψ′
I,0P

−1/2
X

(
EN −

√
β

R(1−R)

β + (ŷ + 1)2

λU ŷ(ŷ + 1)2
P

−1/2
X Π̂

−

√
β

R(1−R)

β

(ŷ + 1)2
P

−1/2
X ψI,0

)
+

(1−R)ŷ2

β(1 + ŷ)

∥∥∥∥EN −
√
β

R

1

ŷ
EG

−

√
β

R(1−R)

β + (ŷ + 1)2

λU ŷ(1 + ŷ)2
P

−1/2
X Π̂−

√
β

R(1−R)

β +R(ŷ + 1)2

(1 + ŷ)2
P

−1/2
X ψI,0

∥∥∥∥2.
We now use Lemma D.3, but unlike in Proposition D.4, we set EA = EN and EB = EG. This gives

C1 = ψ′
I,0µX ; C2 = 0; C3 =

(1−R)ŷ2

β(1 + 2ŷ)
; C4 =

√
β

R

1

ŷ
,

V1 =

√
R(1−R)

β
ŷP

−1/2
X ψI,0, ; V2 =

√
β

R(1−R)

(
β + (ŷ + 1)2

λU ŷ(1 + ŷ)2
P

−1/2
X Π̂ +

β

(1 + ŷ)2
P

−1/2
X ψI,0

)
,

V3 = −

√
β

R(1−R)

(
β + (ŷ + 1)2

λU ŷ(1 + ŷ)2
P

−1/2
X Π̂ +

β +R(1 + ŷ)2

(1 + ŷ)2
P

−1/2
X ψI,0

)
.

As C2 = 0 there are a number of cancellations and hence

γUCE
I
0−,ι = C1 − V ′

1V2 +
d

2
log
(
1 + C3 + C3C

2
4

)
+

1

2

C3

1 + C3 + C3C2
4

∥V1 − V3∥2 −
1

2
∥V1∥2.

As in the price taking case, the remainder of the proof simplifies the expression for the certainty
equivalent. We already know C1. Next

V ′
1V2 =

β + (1 + ŷ)2

λU (1 + ŷ)2
ψ′
I,0P

−1
X Π̂ +

βŷ

(1 + ŷ)2
ψ′
I,0P

−1
X ψI,0.

Continuing

1 + C3 + C3C
2
4 = 1 +

(1−R)(β +Rŷ2)

βR(1 + 2ŷ)
=

V

βR(1 + 2ŷ)
,

where

V := βR(1 + 2ŷ) + (1−R)(β +Rŷ2).

Next,

∥V1∥2 =
R(1−R)ŷ2

β
ψ′
I,0P

−1
X ψI,0,

C3

1 + C3 + C3C2
4

∥V1 − V3∥2 =
ŷ2

β(1 + ŷ)4V

∥∥∥∥ (β2 +R(1 + ŷ)2(β + (1−R)ŷ)
)
P

−1/2
X ψI,0

+
β(β + (1 + ŷ)2)

λU ŷ
P

−1/2
X Π̂

∥∥∥∥2.
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At this point, we may conclude

1

αI
CEI0−,ι = ψ′

I,0µX − 1

2
ψ′
I,0P

−1
X ψI,0 + log

(
1 +

(1−R)(β +Rŷ2)

βR(1 + 2ŷ)

)
−
(
β + (1 + ŷ)2

λU (1 + ŷ)2
ψ′
I,0P

−1
X Π̂ +

βŷ

(1 + ŷ)2
ψ′
I,0P

−1
X ψI,0

)
− 1

2

R(1−R)ŷ2

β
ψ′
I,0P

−1
X ψI,0

+
ŷ2

2β(1 + ŷ)4V

∥∥∥∥ (β2 +R(1 + ŷ)2(β + (1−R)ŷ)
)
P

−1/2
X ψI,0

+
β(β + (1 + ŷ)2)

λU ŷ
P

−1/2
X Π̂

∥∥∥∥2 + 1

2
ψ′
I,0P

−1
X ψI,0.

The Π̂′P−1
X Π̂ terms are

1

2

β(β + (1 + ŷ)2)2

λ2UV(1 + ŷ)4
.

The ψ′
I,0P

−1
X Π̂ terms are

− β + (1 + ŷ)2

λU (1 + ŷ)2
+
ŷ(β + (1 + ŷ)2)

(
β2 +R(1 + ŷ)2(β + ŷ(1−R))

)
λU (1 + ŷ)4V

,

=
β + (1 + ŷ)2

λU (1 + ŷ)4V

(
−V(1 + ŷ)2 + β2ŷ +Rŷ(1 + ŷ)2(β + ŷ(1−R))

)
.

The terms within the parentheses on the right evaluate to

β2ŷ − β(1 +Rŷ)(1 + ŷ)2 = − β

λU
(β + (1 + ŷ)2),

where the equality follows from (69) and λU + λI = 1. Therefore, the ψ′
I,0P

−1
X Π̂ terms are

−β(β + (1 + ŷ)2)2

λ2UV(1 + ŷ)4
.

Lastly, the ψ′
I,0P

−1
X ψI,0 terms not on the first line are

1

2
− βŷ

(1 + ŷ)2
− R(1−R)ŷ2

2β
+
ŷ2
(
β2 +R(1 + ŷ)2(β + ŷ(1−R))

)2
2βV(1 + ŷ)4

,

=
1

2
− ŷ(2β2 +R(1−R)ŷ(1 + ŷ)2)

2β(1 + ŷ)2
+
ŷ2
(
β2 +R(1 + ŷ)2(β + ŷ(1−R))

)2
2βV(1 + ŷ)4

.

We create the common denominator 2βV(1 + ŷ)4. The numerator is

(1 + ŷ)2V
(
β(ŷ + 1)2 − ŷ

(
2β2 + ŷR(1−R)(ŷ + 1)2

))
+ ŷ2

(
β2 +R(ŷ + 1)2(β + ŷ(1−R))

)2
.

Let us group by powers of (ŷ + 1). The fourth order terms are

ŷ2R2(β + ŷ(1−R))2 +V(β − ŷ2R(1−R))

= ŷ2R2(β + ŷ(1−R))2 +
(
β + 2βRŷ + (1−R)Rŷ2

)
(β − ŷ2R(1−R))

= β2 (1 +Rŷ)2 .

The second order terms are

− 2β2ŷV + 2β2Rŷ2(β + ŷ(1−R)) = −2β3ŷ(1 +Rŷ).
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The 0th order term is β4ŷ2. The numerator is thus

β2
(
(1 + ŷ)2(1 +Rŷ)− βŷ

)2
=
β2(β + (1 + ŷ)2)2

λ2U
,

where the equality follows from (69). Therefore, the ψ′
I,0P

−1
X ψI,0 terms not on the first line are

β(β + (1 + ŷ)2

2λ2U (1 + ŷ)4V
.

The result follows for the insider I in view of (89). We next consider U . From Lemma D.2 and
(87) the interim certainty equivalent becomes

1

αU
CEU0,ι = ψ′

U,0µX +

√
(1−R)(β +R(1 + ŷ)2)

β

ŷ

1 + 2ŷ
ψ′
U,0P

−1/2
X

(
EHι

+

√
β

(1−R)(β +R(1 + ŷ)2)

λI(β + (1 + ŷ)2)

λU (1 + ŷ)2
P

−1/2
X ψI,0

−

√
β

(1−R)(β +R(1 + ŷ)2)

β + (1 + ŷ)2

λU ŷ(1 + ŷ)
P

−1/2
X Π̂

)
+
λ2I(1−R)(β + (1 + ŷ)2)

2λ2UβR(1 + 2ŷ)2

∥∥∥∥EHι +
√
β(β +R(1 + ŷ)2))

1−R

ŷ

(1 + ŷ)2
P

−1/2
X ψI,0

−
√
β(β +R(1 + ŷ)2))

1−R

1

λI(1 + ŷ)
P

−1/2
X Π̂

∥∥∥∥2.
We now use Lemma D.3 with EA = EHι as well as

C1 = ψ′
U,0µX ; C2 = 0; C3 =

λ2I(1−R)(β + (1 + ŷ)2)

λ2UβR(1 + 2ŷ)2
; C4 = 0,

V1 =

√
(1−R)(β +R(1 + ŷ)2)

β

ŷ

1 + 2ŷ
P

−1/2
X ψU,0,

V2 = −

√
β

(1−R)(β +R(1 + ŷ)2)

(
λI(β + (1 + ŷ)2)

λU (1 + ŷ)2
P

−1/2
X ψI,0 −

β + (1 + ŷ)2

λU ŷ(1 + ŷ)
P

−1/2
X Π̂

)
,

V3 =

√
β(β +R(1 + ŷ)2))

1−R

(
ŷ

(1 + ŷ)2
P

−1/2
X ψI,0 −

1

λI(1 + ŷ)
P

−1/2
X Π̂

)
.

As C2 = C4 = 0 there are a number of cancellations and hence

γUCE
I
0−,ι = C1 − V ′

1V2 +
d

2
log (1 + C3) +

1

2

C3

1 + C3
∥V1 − V3∥2 −

1

2
∥V1∥2.

As with I, the remainder of the proof simplifies the expression for the certainty equivalent. We
already know C1. Next

V ′
1V2 = − λI ŷ(β + (1 + ŷ)2)

λU (1 + 2ŷ)(1 + ŷ)2
ψ′
U,0P

−1
X ψI,0 +

β + (1 + ŷ)2

λU (1 + 2ŷ)(1 + ŷ)
ψ′
U,0P

−1
X Π̂.

Continuing

1 + C3 = 1 +
λ2I(1−R)(β + (1 + ŷ)2)

λ2UβR(1 + 2ŷ)2
=

V

λ2UβR(1 + 2ŷ)2
,

where

(90) V := λ2UβR(1 + 2ŷ)2 + λ2I(1−R)(β + (1 + ŷ)2).
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Next,

∥V1∥2 =
(1−R)ŷ2(β +R(1 + ŷ)2)

β(1 + 2ŷ)2
ψ′
U,0P

−1
X ψU,0,

C3

1 + C3
∥V1 − V3∥2 =

βλ2I(β + (1 + ŷ)2)(β +R(1 + ŷ)2)

V

×
∥∥∥∥P−1/2

X

(
(1−R)ŷ

β(1 + 2ŷ)
ψU,0 −

ŷ

(1 + ŷ)2
ψI,0 +

1

λI(1 + ŷ)
Π̂

)∥∥∥∥2.
At this point, we may conclude

1

αU
CEU0−,ι = ψ′

U,0µX − 1

2
ψ′
U,0P

−1
X ψU,0 + log

(
1 +

λ2I(1−R)(β + (1 + ŷ)2)

λ2UβR(1 + 2ŷ)2

)
+

(
λI ŷ(β + (1 + ŷ)2)

λU (1 + 2ŷ)(1 + ŷ)2
ψ′
U,0P

−1
X ψI,0 −

β + (1 + ŷ)2

λU (1 + 2ŷ)(1 + ŷ)
ψ′
U,0P

−1
X Π̂

)
+

(
1

2
− (1−R)ŷ2(β +R(1 + ŷ)2)

2β(1 + 2ŷ)2

)
ψ′
U,0P

−1
X ψU,0

+
βλ2I(β + (1 + ŷ)2)(β +R(1 + ŷ)2)

2V

×
∥∥∥∥P−1/2

X

(
(1−R)ŷ

β(1 + 2ŷ)
ψU,0 −

ŷ

(1 + ŷ)2
ψI,0 +

1

λI(1 + ŷ)
Π̂

)∥∥∥∥2.
The remainder of the proof shows this value coincides with that in the statement of the Lemma.

Here, unlike with I we cannot leave Π̂ as is until the very end. Instead we substitute in for Π̂ as in
(89). Doing this, and simplifying, we obtain

1

αU
CEU0−,ι = ψ′

U,0µX − 1

2
ψ′
U,0P

−1
X ψU,0 + log

(
1 +

λ2I(1−R)(β + (1 + ŷ)2)

λ2UβR(1 + 2ŷ)2

)
− λI(β + (1 + ŷ)2)

λU (1 + 2ŷ)(1 + ŷ)2
ψ′
U,0P

−1
X ψI,0 −

β + (1 + ŷ)2

(1 + 2ŷ)(1 + ŷ)
ψ′
U,0P

−1
X ψU,0

+

(
1

2
− (1−R)ŷ2(β +R(1 + ŷ)2)

2β(1 + 2ŷ)2

)
ψ′
U,0P

−1
X ψU,0

+
βλ2I(β + (1 + ŷ)2)(β +R(1 + ŷ)2)

2V

×
∥∥∥∥P−1/2

X

((
(1−R)ŷ

β(1 + 2ŷ)
+

λU
λI)(1 + ŷ)

)
ψU,0 +

1

(1 + ŷ)2
ψI,0

)∥∥∥∥2,
The ψ′

I,0P
−1
X ψI,0 terms are

βλ2I(β + (1 + ŷ)2)(β +R(1 + ŷ)2)

2V(1 + ŷ)4
,

which is consistent with that in the statement of the lemma. As for the ψ′
I,0P

−1
X ψU,0 terms, we

claim

− λI(β + (1 + ŷ)2)

λU (1 + 2ŷ)(1 + ŷ)2
+
βλ2I(β + (1 + ŷ)2)(β +R(1 + ŷ)2)

V(1 + ŷ)2

(
(1−R)ŷ

β(1 + 2ŷ)
+

λU
λI(1 + ŷ)

)
= −

βλ2I(β + (1 + ŷ)2)(β +R(1 + ŷ)2)

V(1 + ŷ)4
,

(91)
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which is consistent with the Lemma statement. Indeed, cancelling common terms and re-arranging,
(91) is the same as

1

λU (1 + 2ŷ)
=
βλI(β +R(1 + ŷ)2)

V

(
(1−R)ŷ

β(1 + 2ŷ)
+

λU
λI(1 + ŷ)

+
1

(1 + ŷ)2

)
,

or equivalently

λU (β +R(1 + ŷ)2)

(
λI(1−R)ŷ(1 + ŷ)2 + λUβ(1 + 2ŷ)(1 + ŷ) + βλI(1 + 2ŷ)

)
= (1 + ŷ)2V

= λ2UβR(1 + 2ŷ)2(1 + ŷ)2 + λ2I(1−R)(β + (1 + ŷ)2)(1 + ŷ)2

= λ2UβR(1 + 2ŷ)2(1 + ŷ)2 + λUλI(1−R)(R(1 + ŷ)2ŷ − β(1 + ŷ))(1 + ŷ)2,

where the last equality uses (83). There is an λUλIR(1−R)ŷ(1 + ŷ)4 term common to both sides.
Eliminating this term, the remaining terms each have a β and λU in them, which we can also
eliminate. This leaves

(β +R(1 + ŷ)2)

(
λU (1 + 2ŷ)(1 + ŷ) + λI(1 + 2ŷ)

)
+ λI(1−R)ŷ(1 + ŷ)2

= λUR(1 + 2ŷ)2(1 + ŷ)2 − λI(1−R)(1 + ŷ)3.

Note that (1 + ŷ)3 + ŷ(1 + ŷ)2 = (1 + ŷ)2(1 + 2ŷ). This allows us to eliminate one copy of (1 + 2ŷ)
from both sides, to obtain

(β +R(1 + ŷ)2)

(
λU (1 + ŷ) + λI

)
+ λI(1−R)(1 + ŷ)2

= λUR(1 + 2ŷ)(1 + ŷ)2 = λUR
(
(1 + ŷ)3 + y(1 + ŷ)2

)
There is a common λUR(1 + ŷ)3 term. Eliminating this term gives

λI(β +R(1 + ŷ)2) + λUβ(1 + ŷ) + λI(1−R)(1 + ŷ)2 = λURy(1 + ŷ)2.

The left side above simplifies to

β + λUβŷ + λI(1 + ŷ)2.

Using (83) again, the right side above simplifies to

λI((1 + ŷ)2 + β) + λUβ(1 + ŷ) = β + λUβŷ + λI(1 + ŷ)2,

and hence (91) holds. Lastly, for the ψ′
U,0P

−1
X ψU,0 terms, we claim

1

2
− (1−R)ŷ2(β +R(1 + ŷ)2)

2β(1 + 2ŷ)2
− β + (1 + ŷ)2

(1 + 2ŷ)(1 + ŷ)

+
βλ2I(β + (1 + ŷ)2)(β +R(1 + ŷ)2)

2V

(
(1−R)ŷ

β(1 + 2ŷ)
+

λU
λI(1 + ŷ)

)2

=
βλ2I(β + (1 + ŷ)2)(β +R(1 + ŷ)2)

2V(1 + ŷ)4
,

which if true, would finish the proof. Let us first focus on the terms with (1+2ŷ)2 in the denominator
on the left side. Here, using (90) we find

− (1−R)ŷ2(β +R(1 + ŷ)2)

2β(1 + 2ŷ)2
+
βλ2I(β + (1 + ŷ)2)(β +R(1 + ŷ)2)(1−R)2ŷ2

2Vβ2(1 + 2ŷ)2

= −
λ2UR(1−R)ŷ2(β +R(1 + ŷ)2)

2V
.
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Next, let us focus on the terms with (1 + ŷ)(1 + 2ŷ) in the denominator on the left side.

− β + (1 + ŷ)2

(1 + 2ŷ)(1 + ŷ)
+
λU (1−R)λI ŷ(β + (1 + ŷ)2)(β +R(1 + ŷ)2)

V(1 + 2ŷ)(1 + ŷ)

=
β + (1 + ŷ)2

V(1 + 2ŷ)(1 + ŷ)

(
− λ2UβR(1 + 2ŷ)2 − λ2I(1−R)(β + (1 + ŷ)2)

+ λUλI(1−R)ŷ(β +R(1 + ŷ)2)

)
Using (83) the terms within the parentheses evaluate to

− λ2UβR(1 + 2ŷ)2 − λI(1−R)(λURŷ(1 + ŷ)2 − λUβ(1 + ŷ)) + λUλI(1−R)ŷ(β +R(1 + ŷ)2)

= λUβ(1 + 2ŷ)(λI(1−R)− λUR(1 + 2ŷ)),

so that

− β + (1 + ŷ)2

(1 + 2ŷ)(1 + ŷ)
+
λU (1−R)λI ŷ(β + (1 + ŷ)2)(β +R(1 + ŷ)2)

V(1 + 2ŷ)(1 + ŷ)

=
λUβ(β + (1 + ŷ)2)(λI(1−R)− λUR(1 + 2ŷ))

V(1 + ŷ)

Therefore, we must show

1

2
−
λ2UR(1−R)ŷ2(β +R(1 + ŷ)2)

2V
+
λUβ(β + (1 + ŷ)2)(λI(1−R)− λUR(1 + 2ŷ))

V(1 + ŷ)

+
β(β + (1 + ŷ)2)(β +R(1 + ŷ)2)

2V(1 + ŷ)4
(
λ2U (1 + ŷ)2 − λ2I

)
= 0.

Let us focus on terms containing β(β + (1 + ŷ)2):

β(β + (1 + ŷ)2)

2V(1 + ŷ)4

(
2λU (λI(1−R)− λUR(1 + ŷ)− λURŷ)(1 + ŷ)3

+ (β +R(1 + ŷ)2)(λ2U (1 + ŷ)2 − λ2I)

)
The terms within the parentheses are

2λUλI(1−R)(1 + ŷ)3 − 2λ2UR(1 + ŷ)4 − 2λ2URŷ(1 + ŷ)3 + λ2Uβ(1 + ŷ)2 − βλ2I

+ λ2UR(1 + ŷ)4 − λ2IR(1 + ŷ)2

= −λ2UR(1 + ŷ)4 + 2λUλI(1−R)(1 + ŷ)3 − 2λU (1 + ŷ)(λI(1 + ŷ)2 + λIβ + λUβ(1 + ŷ))

+ λ2Uβ(1 + ŷ)2 − βλ2I + λ2UR(1 + ŷ)4 − λ2IR(1 + ŷ)2

= −λ2UR(1 + ŷ)4 − 2λUλIR(1 + ŷ)3 − (λ2Uβ + λ2IR)(1 + ŷ)2

− 2λUλIβ(1 + ŷ)− βλ2I

= −(β +R(1 + ŷ)2
(
λ2U (1 + ŷ)2 + 2λU (1 + ŷ)λI + λ2I

)
= −(β +R(1 + ŷ)2)(1 + λU ŷ)

2.

Above, the second equality uses (83). Therefore, the terms containing β(β + (1 + ŷ)2) are

−β(β + (1 + ŷ)2)(β +R(1 + ŷ)2)(1 + λU ŷ)
2

2V(1 + ŷ)4
,

and we must show

0 =
1

2
−
λ2UR(1−R)ŷ2(β +R(1 + ŷ)2)

2V
− β(β + (1 + ŷ)2)(β +R(1 + ŷ)2)(1 + λU ŷ)

2

2V(1 + ŷ)4
,
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or that

V = (β +R(1 + ŷ)2)

(
λ2UR(1−R)ŷ2 +

β(β + (1 + ŷ)2)(1 + λU ŷ)
2

(1 + ŷ)4

)
.

To show this, we note that (69) implies

β =
(1 + ŷ)2(λURŷ − λI)

1 + λU ŷ
,

and hence from (90) we see

V = (1 + ŷ)2
(
λ2I(1−R) +

(λURŷ − λI)(λ
2
UR(1 + 2ŷ)2 + λ2I(1−R))

1 + λUy

)
,

and

(β +R(1 + ŷ)2)

(
λ2UR(1−R)ŷ2 +

β(β + (1 + ŷ)2)(1 + λU ŷ)
2

(1 + ŷ)4

)
= (1 + ŷ)2

λURŷ − λI +R(1 + λU ŷ)

1 + λU ŷ

(
λ2UR(1−R)ŷ2 + (λURŷ − λI)

2+

+ (λURŷ − λI)(1 + λU ŷ)

)
.

Thus, we want to show

λ2I(1−R)(1 + λUy) + (λURŷ − λI)(λ
2
UR(1 + 2ŷ)2 + λ2I(1−R))

= (λURŷ − λI +R(1 + λU ŷ))

(
λ2UR(1−R)ŷ2 + (λURŷ − λI)

2+

+ (λURŷ − λI)(1 + λU ŷ)

)
= (2λURŷ +R− λI)

(
2λ2URŷ

2 + (−2λURλI + λUR− λUλI)ŷ + λ2I − λI

)
Here, as we no longer need appeal to (69) or (83) we simply match powers of ŷ on both sides of the
equation. The cubic terms are

4λ3UR
2 vs. 4λ3UR

2 ✓.

The quadratic terms are

4λ3UR
2 − 4λ2UλIR vs. 2λ2UR(R− λI) + 2λUR(−2λURλI) + λUR− λUλI) ✓.

The linear terms are

λUλ
2
I(1−R) + λUR(λ

2
I(1−R) + λ2IR)− 4λIλ

2
UR vs.

2λUR(λ
2
I − λI) + (R− λI)(−2λURλI + λUR− λUλI)

Within this term, the quadratic powers in R are

−λUλ2I + λ3U vs. − 2λUλI + λU ✓.

The linear powers in R are
−4λ2UλI vs. 4λUλ

2
I − 4λUλI ✓.

The constants are
λUλ

2
I vs. λUλ

2
I ✓.

Lastly, terms which do not depend on ŷ are

λ2I(1−R)− λI(λ
2
UR+ λ2I(1−R)) = −λUλIR+ λUλ

2
I vs.

R(λ2I − λI)− λ2I(λI − 1) = −λUλIR+ λUλ
2
I ✓.
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The proof is complete. □

Appendix E. Proofs from Section 3

Proof of Proposition 3.2. Set c = (1− λ)/λ, p = pI and write ŷ(pI) = y(p) so that (18) is

(92) 0 = (1 + y(p))2
(
1− cy(p)

1 + p

)
+ κpc(1 + y(p)) + κp.

Next define the function (c.f. (34))

Q(p, y) =
κp(1 + p) + y2

κ(1 + p)(1 + 2y)

so that

∂pQ(p, y) =
κ(1 + p)2 − y2

κ(1 + p)2(1 + 2y)
; ∂yQ(p, y) =

2(y(1 + y)− κp(1 + p))

κ(1 + p)(1 + 2y)2
.

Additionally, from (92) we deduce

0 =

(
κ+ κc(1 + y(p)) +

cy(p)(1 + y(p))2

(1 + p)2

)
−
(
c(1 + y(p))2

1 + p
+ 2(1 + y(p))

(
cy(p)

1 + p
− 1

)
− κcp

)
∂py(p).

Using (92) one can show the quantity in front of ∂py(p) is strictly positive so that y(p) is increasing
in p and hence

∂py(p) =
κ+ κc(1 + y(p)) + cy(p)(1+y(p))2

(1+p)2

c(1+y(p))2

1+p + 2(1 + y(p))
(
cy(p)
1+p − 1

)
− κcp

.

By the chain rule

(93) ∂pϕι(p) = ∂pQ(p, y(p)) + ∂yQ(p, y(p))∂py(p),

and we wish to show the right side above is positive for all p > 0, c > 0, κ > 0. To do this we will
change perspective. Namely, from (92) we see that y(p) ≥ (1 + p)/c and in fact y(p) = (1 + p)/c
when κ = 0. Thus, let us substitute y(p) = (1 + p)/c+ z(p) so that z(p) solves (uniquely over the
positive reals) the equation

0 = − cz

1 + p

(
1 + z +

1 + p

c

)2

+ κpc

(
1 + z +

1 + p

c

)
+ κp.

Now, fix p > 0, c > 0 and think about z = z(κ). It is straight-forward to show that z is strictly
increasing in κ with extreme values z(0) = 0 and z(∞) = ∞. Therefore, there is no loss in generality
in fixing p > 0, c > 0, z > 0 and setting

κ =
z(1 + p+ c+ cz)2

pc(1 + p)(2 + p+ c+ cz)
.

Plugging in y = (1 + p)/c+ z and κ as above we obtain

∂pQ(p, y(p)) =
zc(1 + p)(1 + p+ c+ cz)2 − p(1 + p+ cz)(2 + p+ c+ cz)

z(1 + p)(2 + 2p+ c+ 2z)(1 + p+ c+ cz)2
,

∂yQ(p, y(p)) =
2pc((1 + p)(1 + p+ c+ cz) + (1 + p+ cz))

z(1 + p+ c+ cz)(2 + 2p+ c+ 2z)2
,

∂py(p) =
(1 + p+ c+ cz)(2 + p+ c+ cz)(zc(1 + p) + p(1 + p+ cz))

pc(1 + p)(cz + (1 + p+ c+ 2cz)(2 + p+ c+ cz))
.
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At this point, if one plugs these values into the right side of (93) and takes a common denominator,
the numerator is a sixth order polynomial in z. Furthermore, one can directly verify (e.g. using
Mathematica) that each of the coefficients in the polynomial is positive for all p > 0, c > 0, giving
the result since z > 0 as well. □

Proof of Proposition 3.5. From (35) we see that CEU0−,ι ≥ CEU0− is equivalent to

f(y) :=
κpI + (1 + ŷ)2

(1 + 2ŷ)2
≥ (1− λ)2(1 + κpI)

(1 + pIλ+ κpI(1 + pI))2
=: ℓ.

The map y → f(y) is strictly decreasing with f(0) = κpI + 1 and f(∞) = 1/4. Furthermore, as ℓ
is evidently decreasing in λ ∈ (0, 1) we know

0 < ℓ <
1 + κpI

(1 + κpI(1 + pI))2
< f(0),

and hence k ≤ 1/4 implies CEU0−,ι ≥ CEU0−. For 1/4 < k, the positive root of κpI + (1 + y)2 =

ℓ(1 + 2y)2 is

y̌ =
1− 2ℓ+

√
(4ℓ− 1)κpI + ℓ

4ℓ− 1
.

As shown in the proof of Proposition 1.5, if we define g(y) by the cubic function in (18), then
g(y) > 0 for 0 < y < ŷ and g(y) < 0 for y > ŷ. Therefore, if g(y̌) < 0 then y̌ > ŷ and

κpI + (1 + ŷ)2

(1 + 2ŷ)2
>
κpI + (1 + y̌)2

(1 + 2y̌)2
= ℓ,

giving the result. It therefore suffices perform the following check

(1) Fix 0 < λ < 1, κ, p > 0 and let ℓ = ℓ(λ, κ, pI) as above.
(2) If ℓ ≤ 1/4 then CEU0−,ι ≥ CEU0−.

(3) If ℓ > 1/4 then set y̌ = y̌(λ, κ, pI) and g = g(y̌) as above. If g(y̌) < 0 then CEU0−,ι ≥ CEU0−.

This check can easily be performed by any software tool and one always obtains that either ℓ ≤ 1/4
or g(y̌) < 0. □

Proof of Proposition 3.6. We prove this result using the general setup in Appendix A. In this
setting, the certainty equivalent absent private information from (33) takes the form

(94) CEinsn := αi

(
Π̂′µX − 1

2
Π̂′P−1

X Π̂

)
, i ∈ {I, U} .

Thus, using (2) and (63) we obtain

lim
αI→0

CEInsn
αI

=
1

αU
Π′µX − 1

2α2
U

Π′P−1
X Π; lim

αI→∞
CEInsn = Π′µX ,

lim
αU→0

CEInsn = Π′µX − 1

2αI
Π′P−1

X Π; lim
αU→∞

αUCE
I
nsn = αIΠ

′µX .

(95)

For the first item, we fix αI and let αU → 0 which corresponds to λ→ 1 with κ, pI fixed. It is easy
to see that

(1− λ)2κpI + (1 + pI)(λ+ κpI)
2

κ(1 + λpI + κpI(1 + pI))2
→ 1

κ(1 + pI)
,

which, in view of (95), gives

lim
αU→0

CEI0− = Π′µX − 1

2αI
Π′P−1

X Π+ αI
d

2
log

(
1 +

1

κ(1 + pI)

)
.
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In particular, the above means that CEI0− remains bounded. As for CEI0−,ι, (18) implies (1−λ)ŷ →
1 + pI . This gives

1 +
κpI(1 + pI) + ŷ2

κ(1 + pI)(1 + 2ŷ)
=

1

1− λ

(
1− λ+×(1− λ)κpI(1 + pI)/ŷ + (1− λ)ŷ

κ(1 + pI) (1/ŷ + 2)

)
≈ 1

2κ(1− λ)
.

Now since 1− λ = αU/(αI + αU ), we get that

lim
αU→0

CEI0−,ι
− log(αU )

= αI
d

2
,

which in particular implies that limαU→0CE
I
0−,ι = ∞. Now keep αI fixed and let αU → ∞. This

corresponds to λ→ 0 with κ, pI fixed. Straight-forward computations show

(1− λ)2κpI + (1 + pI)(λ+ κpI)
2

κ(1 + λpI + κpI(1 + pI))2
→ pI

1 + κpI(1 + pI)
,

which, in view of (95),

lim
αU→∞

CEI0− = αI
d

2
log

(
1 +

pI
1 + κpI(1 + pI)

)
.

As for CEI0−,ι, (18) implies ŷ converges to the unique positive solution of y(1 + y) = κpI(1 + pI),

which is (1/2)(
√

1 + 4κpI(1 + pI)− 1) and enforces (κpI(1 + pI) + y2)/(1 + 2y) = y. Therefore,

κpI(1 + pI) + ŷ2

κ(1 + pI)(1 + 2ŷ)
→
√

1 + 4κpI(1 + pI)− 1

2κ(1 + pI)
,

which gives

lim
αU→∞

CEI0−,ι = αI
d

2
log

(
1 +

√
1 + 4κpI(1 + pI)− 1

2κ(1 + pI)

)
.

Hence,

lim
αU→∞

(
CEI0−,ι − CEI0−

)
=

1

2κ(1 + pI)

(√
1 + 4κpI(1 + pI)− 1− 2κpI(1 + pI)

1 + κpI(1 + pI)

)
,

=:
1

2κ(1 + pI)
× f(κpI(1 + pI)).

It is easy to see f(x) > 0 for all x > 0 and thus the statement follows. This finishes the proof of
item (1).

For the second item, let us fix αU and αI → 0. This corresponds to both λ → 0 and κ → 0.
As such, we again will write κ = α2

IpN and appeal to (18) when analyzing ŷ. For CEI0− one can see

(96)
(1− λ)2κpI + (1 + pI)(λ+ κpI)

2

κ(1 + λpI + κpI(1 + pI))2
→

α2
UpIpN + 1 + pI

α2
UpN

.

On the other hand, (18) implies ŷ/αI → (1 + pI)/αU . Therefore,

κpI(1 + pI) + ŷ2

κ(1 + pI)(1 + 2ŷ)
→

α2
UpIpN + 1 + pI

α2
UpN

.

The above limits give

lim
αI→0

CEI0−
αI

= lim
αI→0

CEI0−,ι
αI

=
1

αU
Π′µX − 1

α2
U

Π′P−1
X Π+

d

2
log

(
1 +

α2
UpIpN + 1 + pI

α2
UpN

)
.

Now, the third order approximation for ŷ around αI = 0 is

ỹ :=
αI
αU

(1 + pI) (1 + αIpIpN (αU − αIpI))
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and calculation shows lim supαI→0 α
−4
I |ŷ − ỹ| <∞. As such, in the limit

lim
αI→0

1

α2
I

(
κpI(1 + pI) + ŷ2

κ(1 + pI)(1 + 2ŷ)
− (1− λ)2κpI + (1 + pI)(λ+ κpI)

2

κ(1 + λpI + κpI(1 + pI))2

)
,

we can substitute ỹ in for ŷ to obtain

(1 + pI)
2
(
1 + pI − α2

UpIpN
)

α4
UpN

.

Using the above, limit (96), and the fact that limx→0 log(1 + C(x)x)/x = C if C(x) → C, we get

lim
αI→0

CEI0−,ι − CEI0−
α3
I

=
d

2

(1 + pI)
2(1 + pI − α2

UpIpN )

α2
U (α

2
UpIpN + 1 + pI)

.

The latter completes the proof of the limiting arguments when αI → 0.
We now send αI → ∞. This causes both λ → 1 and κ → ∞ so we will (c.f. (17)) plug in

κ = α2
IpN . Doing this, one can verify

α2
I ×

(1− λ)2κpI + (1 + pI)(λ+ κpI)
2

κ(1 + λpI + κpI(1 + pI))2
→ 1

pN (1 + pI)
.

Since, αI log(1 + C/α2
I) → 0 as αI → ∞, we get that limαI→∞CEI0− = Π′µX . As for CEI0−,ι,

appealing to (18) we see that, by setting ŷ = αI ẑ, dividing by α2
I and taking the limit that ẑ

converges to a solution of

0 = z2
(
1− αUz

1 + pI

)
+ pIpN (αUz + 1) .

Furthermore, the exact same arguments as in the proof of Proposition 1.5 show there is a unique
positive solution. Given that ŷ/αI → ẑ we find

αI ×
κpI(1 + pI) + ŷ2

κ(1 + pI)(1 + 2ŷ)
→ pIpN (1 + pI) + ẑ2

2pN (1 + pI)ẑ
.

This gives that

lim
αI→∞

CEI0−,ι = Π′µX +
d
(
pIpN (1 + pI) + ẑ2

)
4pN (1 + pI)ẑ

since αI log(1 + C/αI) → C as αI → ∞. The above limits finish the proof of the second item.
Lastly, for item (3), we have from (17) that αU = αI yields λ = 1/2. As such, (35) implies

CEI0−,ι ≥ CEI0− is equivalent to

f(ŷ) :=
κpI(1 + pI) + ŷ2

(1 + 2ŷ)
≥

(1 + pI)
(
κpI + (1 + pI)(1 + 2κpI)

2
)

(2 + pI + 2κpI(1 + pI))2
=: k,

where ŷ solves (18) with λ = 1/2. Note that

ḟ(y) =
2(y(1 + y)− κpI(1 + pI))

(1 + 2y)2
,

so that f is minimized (0,∞) at y0 = (1/2)
(√

1 + 4κpI(1 + pI)− 1
)
, and this value enforces

f(y0) = y0. Therefore, f(ŷ) ≥ f(y0) = y0 and hence if

(97) y0 ≥ k ⇐⇒ 1

2

(√
1 + 4κpI(1 + pI)− 1

)
≥

(1 + pI)
(
κpI + (1 + pI)(1 + 2κpI)

2
)

(2 + pI + 2κpI(1 + pI))2
,

then CEI0−,ι ≥ CEI0−. Otherwise, f(y0) < k is strictly less than the right side above, and denote by
y̌ the unique y > y0 such that f(y̌) = k. As (18) implies

ŷ(1 + ŷ)− κpI(1 + pI) =
(1 + pI)

(
(1 + ŷ)2 + κpI

)
1 + ŷ

> 0,
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ḟ(ŷ) > 0 and hence ŷ > y0. Therefore, CEI0−,ι ≥ CEI0− is equivalent to ŷ ≥ y̌, which as shown in
the proof of Proposition 1.5, is equivalent to g(y̌) ≥ 0 for g defined by the cubic function in (18).
However, it can easily be checked by any software tool that either (97) holds, or g(y̌) ≥ 0. This
gives the result.

□

We finish by stating and proving the version of Proposition 3.7 under the general setup of
Appendix A.

Proposition E.1. Let Assumption A.4 hold. As pI → 0 we obtain the almost sure limits for the
insider

lim
pI→0

1

αI
CEI0(G,ZN ) = ψ′

I,0µX − 1

2
ψ′
I,0P

−1
X ψI,0 +

1

2

∥∥∥∥P−1/2
X

(
λ

αI
ZN + (1− λ)(ψI,0 − ψU,0)

)∥∥∥∥2,
lim
pI→0

1

αI
CEI0,ι(G,ZN ) = ψ′

I,0µX − 1

2
ψ′
I,0P

−1
X ψI,0

+
1

2(1− λ2)

∥∥∥∥P−1/2
X

(
λ

αI
ZN + (1− λ)(ψI,0 − ψU,0)

)∥∥∥∥2.
For the uninformed agent we obtain almost surely

lim
pI→0

1

αU
CEU0 (H) = ψ′

U,0µX − 1

2
ψ′
U,0P

−1
X ψU,0 +

1

2

∥∥∥∥P−1/2
X

(
λ

αI
ZN + λ(ψU,0 − ψI,0)

)∥∥∥∥2,
lim
pI→0

1

αI
CEU0,ι(Hι) = ψ′

U,0µX − 1

2
ψ′
U,0P

−1
X ψU,0

+
1

2(1− λ)2(1 + λ)2

∥∥∥∥P−1/2
X

(
λ

αI
ZN + (1− λ)λ(ψU,0 − ψI,0)

)∥∥∥∥2.
Proof of Proposition E.1. We will start with the price taking case and use the notation from (17).
From Lemma D.1 and using (70) we find

γICE
I
0(G,ZN ) = ψ′

I,0µX +
pI(κpI + λ)

(1 + pI)
(

1−λ
1+pI

+ κpI + λ
)ψ′

I,0P
−1/2
X

(
EX +

1
√
pI

EI +
EN

pIαI
√
pN

− 1 + κpI
pI(κpI + λ)

P
−1/2
X Π̂

)
+

(1− λ)2p2I

2(1 + pI)3
(

1−λ
1+pI

+ κpI + λ
)2∥∥∥∥EX +

1
√
pI

EI

− (1 + pI)(κpI + λ)

(1− λ)pIαI
√
pN

EN +
(1 + κpI)(1 + pI)

(1− λ)pI
P

−1/2
X Π̂

∥∥∥∥2.
It then follows that almost surely

lim
pI→0

γICE
I
0(G,ZN ) = ψ′

I,0µX + ψ′
I,0P

−1/2
X

(
λ

αI
√
pN

EN − P
−1/2
X Π̂

)
+

1

2

∥∥∥∥ λ

αI
√
pN

EN − P
−1/2
X Π̂

∥∥∥∥2.
Substituting back in for ZN in (70), and using (89) gives

ψ′
I,0µX − 1

2
ψ′
I,0P

−1
X ψI,0 + ψ′

I,0P
−1
X

(
λI
αI
ZN − (1− λ)ψU,0 − λψI,0

)
+

1

2

∥∥∥∥P−1/2
X

(
λ

αI
ZN − (1− λ)ψU,0 − λψI,0

)∥∥∥∥2 + 1

2
ψ′
I,0P

−1
X ψI,0,



STRATEGIC INFORMED TRADING AND THE VALUE OF PRIVATE INFORMATION 55

and hence the result. We next consider the price impact case. Here

γICE
I
0,ι(G,ZN ) = ψ′

I,0µX + ψ′
I,0P

−1/2
X

(
ŷ

1 + pI

1

αI
√
pN

EN − (ŷ + 1)2 + κpI
(1− λ)(ŷ + 1)2

P
−1/2
X Π̂

− κpI ŷ

(ŷ + 1)2
P

−1/2
X ψI,0

)
+

1

2(1 + pI)(1 + 2ŷ)

∥∥∥∥pIEX +
√
pIEI −

ŷ

αI
√
pN

EN

+
(1 + pI)((ŷ + 1)2 + κpI)

(1− λ)(ŷ + 1)2
P

−1/2
X Π̂ +

ŷ
(

1
1+pI

(ŷ + 1)2 + κpI

)
(1 + pI)

(ŷ + 1)2
P

−1/2
X ψI,0

∥∥∥∥2.
(18) implies ŷ → λ/(1− λ) as pI → 0. It then follows that almost surely

lim
pI→0

γICE
I
0,ι(G,ZN ) = ψ′

I,0µX + ψ′
I,0P

−1/2
X

(
λ

(1− λ)αI
√
pN

EN − 1

1− λ
P

−1/2
X Π̂

)
+

1

2(1− λ2)

∥∥∥∥ λ

αI
√
pN

EN − P
−1/2
X Π̂− λP

−1/2
X ψI,0

∥∥∥∥2.
Substituting back in ZN and plugging in for Π̂, the right side is

ψ′
I,0µX − 1

2
ψ′
I,0P

−1
X ψI,0 + ψ′

I,0P
−1
X

(
λ

(1− λ)αI
ZN − ψU,0 −

λ

(1− λ)
ψI,0

)
+

1

2(1− λ2)

∥∥∥∥P−1/2
X

(
λ

αI
ZN − (1− λ)ψU,0 − 2λψI,0

)∥∥∥∥2 + 1

2
ψ′
I,0P

−1
X ψI,0.

The result follows by collecting terms. We next turn to U where using (87) we obtain P
1/2
X (H −

µX) = EX + 1/
√
pIEI + 1/(pIαI

√
pN )EN . Therefore, from Lemma D.1

γUCE
U
0 (H) = ψ′

U,0µX +
(κpI + λ)

(1 + pI)
(
(1− λ) 1

1+pI
+ κpI + λ

)ψ′
U,0P

−1/2
X

(
pIEX +

√
pIEI +

1

αI
√
pN

EN

− 1 + κpI
κpI + λ

P
−1/2
X Π̂

)
+

(1 + κpI)λ
2

2(1 + pI)3
(

1
1+pI

+ κpI

)(
1−λ
1+pI

+ κpI + λ
)2∥∥∥∥pIEX +

√
pIEI +

1

αI
√
pN

EN

− 1 + (1 + pI)κpI
λ

P
−1/2
X Π̂

∥∥∥∥2.
This gives the almost sure limit

lim
pI→0

γUCE
U
0 (H) = ψ′

U,0µX + ψ′
U,0P

−1/2
X

(
λ

αI
√
pN

EN − P
−1/2
X Π̂

)
+

1

2

∥∥∥∥ λ

αI
√
pN

EN − P
−1/2
X Π̂

∥∥∥∥2.
Substituting back in ZN and plugging in for Π̂, the right side is

ψ′
U,0µX − 1

2
ψ′
U,0P

−1
X ψU,0 + ψ′

U,0P
−1
X

(
λ

αI
ZN − (1− λ)ψU,0 − λψI,0

)
+

1

2

∥∥∥∥P−1/2
X

(
λ

αI
ZN − (1− λ)ψU,0 − λψI,0

)∥∥∥∥2 + 1

2
ψ′
U,0P

−1
X ψU,0,

from which the result can be deduced. Lastly we consider the price impact case where again using

(87) we obtain P
1/2
X (Hι − µX) = EX + 1/

√
pIEI + (ŷ + 1)/(pIαI

√
pN )EN . Therefore, from Lemma
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D.2

γUCE
U
0,ι(Hι) = ψ′

U,0µX + ψ′
U,0P

−1/2
X

(
ŷ

(1 + pI)(1 + 2ŷ)

(
pIEX +

√
pIEI +

ŷ + 1

αI
√
pN

EN
)

+
ŷλ(κpI + (1 + ŷ)2)

(1− λ)(1 + 2ŷ)(ŷ + 1)2
P

−1/2
X ψI,0 −

κpI + (1 + ŷ)2

(1− λ)(1 + 2ŷ)(1 + ŷ)
P

−1/2
X Π̂

)
+

1

2

λ2(κpI + (1 + ŷ)2)

(1− λ)2(1 + pI)(1 + 2ŷ)2
(
κpI +

1
1+pI

(1 + ŷ)2
)∥∥∥∥pIEX +

√
pIEI +

ŷ + 1

αI
√
pN

EN

+

(
κpI +

1
1+pI

(1 + ŷ)2
)
ŷ(1 + pI)

(1 + ŷ)2
P

−1/2
X ψI,0 −

(
κpI +

1
1+pI

(1 + ŷ)2
)
(1 + pI)

(1 + ŷ)λ
P

−1/2
X Π̂

∥∥∥∥2.
Using ŷ → λ/(1− λ) in the limit, we obtain the almost sure limit

lim
pI→0

γUCE
U
0,ι(Hι) = ψ′

U,0µX +
1

1− λ2
ψ′
U,0P

−1/2
X

(
λ

αI
√
pN

EN + λ2P
−1/2
X ψI,0

− P
−1/2
X Π̂

)
+

1

2(1− λ2)2

∥∥∥∥ λ

αI
√
pN

EN + λ2P
−1/2
X ψI,0 − P

−1/2
X Π̂

∥∥∥∥2.
Substituting back in ZN and plugging in for Π̂, the right side is

ψ′
U,0µX ± 1

2
ψ′
U,0P

−1
X ψU,0 +

1

λU (2− λU )
ψ′
U,0P

−1
X

(
λI
αI
ZN − λUλIψI,0

− λUψU,0

)
+

1

2λ2U (2− λU )2

∥∥∥∥P−1/2
X

(
λI
αI
ZN − λUλIψI,0 − λUψU,0

)∥∥∥∥2,
from which the result follows. □
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