Directed Technical Change and the Energy Transition: The Role of Storage Technology

Maria Alsina-Pujols¹ Isabel Hovdahl²

 1 ETH

 $^2\rm{NHH}$

EEA August, 2024

▶ "Fast and effective renewable energy innovation is critical to meeting climate goals." (WEF, 2023)

▶ "Fast and effective renewable energy innovation is critical to meeting climate goals." (WEF, 2023)

- ▶ "Fast and effective renewable energy innovation is critical to meeting climate goals." (WEF, 2023)
- The challenge of intermittency \rightarrow storage technologies

- \blacktriangleright "Fast and effective renewable energy innovation is critical to meeting climate goals." (WEF, 2023)
- \triangleright The challenge of intermittency \rightarrow storage technologies
- ▶ Storage patenting rise not explained by public support

▶ Study the role of energy storage innovation in decarbonizing energy production

- ▶ Study the role of energy storage innovation in decarbonizing energy production
- ▶ Motivated by the stylized facts...
- ▶ ... we build a growth model with endogenous innovation (Acemoglu et al. 2012), extended with energy storage (as a factor of production and as an innovation sector) and technological spillovers,

- ▶ Study the role of energy storage innovation in decarbonizing energy production
- ▶ Motivated by the stylized facts...
- ▶ ... we build a growth model with endogenous innovation (Acemoglu et al. 2012), extended with energy storage (as a factor of production and as an innovation sector) and technological spillovers,
- ▶ ... calibrate it for the US economy, and use it to:
	- ▶ Evaluate effectiveness of US energy policy (pre- and post- IRA) to achieve
		- ▶ Energy transition and climate goals (COP28)
		- ▶ Explore substitutability between sources of energy

- ▶ Study the role of energy storage innovation in decarbonizing energy production
- ▶ Motivated by the stylized facts...
- ▶ ... we build a growth model with endogenous innovation (Acemoglu et al. 2012), extended with energy storage (as a factor of production and as an innovation sector) and technological spillovers,
- ▶ ... calibrate it for the US economy, and use it to:
	- ▶ Evaluate effectiveness of US energy policy (pre- and post- IRA) to achieve
		- ▶ Energy transition and climate goals (COP28)
		- ▶ Explore substitutability between sources of energy
- \blacktriangleright Main findings
	- ▶ Technological gap between renewables and storage is a relevant driver of private incentives to innovate in energy sectors.
		- ▶ Comparable to the effect of shale gas boom in deterring green innovation
	- ▶ Both pre- and post-IRA policy measures are unable to reach COP28
		- ▶ In the absence of a carbon tax, high efforts in production subsidies would be necessary
	- ▶ Due to low productivity of storage, fossil fuels and renewables are currently complements

[Introduction](#page-1-0)

[Literature](#page-10-0)

[Theoretical framework](#page-11-0)

[Model setup](#page-12-0) [Equilibrium and path dependence](#page-21-0)

[Calibration](#page-27-0)

[Main results](#page-30-0)

[Conclusion](#page-44-0)

Literature

- ▶ Micro-oriented and literature on electricity markets:
	- ▶ Finds only limited importance of battery capacity due to high costs
	- ▶ Ambec and Crampes, 2019; Stöckl and Zerrahn, 2020; Pommeret and Schubert, 2022; Helm and Mire, 2018
- ▶ Endogenous growth literature:
	- ▶ Cost of transition is determined by the substitutability between fossil fuels and renewables
	- ▶ Acemoglu et al. 2012; Fried, 2018; Jo and Miftakhova, 2022; Gentile, 2024
	- ▶ Recent collapse in green innovation caused by fracking boom
	- ▶ Popp et al. 2022; Acemoglu et al. 2023
- ▶ Our approach: Incorporate energy storage in standard models of directed technical change to evaluate and explore energy policy and the collapse in green innovation

Analytic model

- ▶ Endogenous growth model (Acemoglu, 2002) with different sources of energy (Acemoglu et al. 2012)
	- ▶ Endogenous innovation to improve energy sources' technology
- ▶ Extended energy sector:
	- ▶ Storage capacity
	- ▶ Technology spillovers
- \blacktriangleright Extended policy tools:
	- \blacktriangleright Carbon tax
	- ▶ Research subsidies
	- ▶ Energy production subsidies
- ▶ Useful to
	- ▶ Understand the role of storage innovation in the energy transition
	- ▶ Evaluate the effect of climate policies, e.g., IRA
	- ▶ Design policy mixes to reach decarbonization targets

Final good production

- ▶ Discrete time economy
- \blacktriangleright Final good produced using two energy inputs (clean Y_c and dirty Y_d), according to

$$
Y_t = \left(Y_{dt}^{\frac{\epsilon - 1}{\epsilon}} + Y_{ct}^{\frac{\epsilon - 1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon - 1}}.\tag{1}
$$

▶ Perfectly competitive firms (pcf)

$$
\max_{\{Y_{dt}, Y_{ct}\}} P_t Y_t - p_{dt} (1 - z_{dt}) Y_{dt} - p_{ct} (1 - z_{ct}) Y_{ct}, \tag{2}
$$

 \blacktriangleright where z_j represent taxes or subsidies to the use of inputs

Final good production

- ▶ Discrete time economy
- \blacktriangleright Final good produced using two energy inputs (clean Y_c and dirty Y_d), according to

$$
Y_t = \left(Y_{dt}^{\frac{\epsilon - 1}{\epsilon}} + Y_{ct}^{\frac{\epsilon - 1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon - 1}}.\tag{1}
$$

▶ Perfectly competitive firms (pcf)

$$
\max_{\{Y_{dt}, Y_{ct}\}} P_t Y_t - p_{dt} (1 - z_{dt}) Y_{dt} - p_{ct} (1 - z_{ct}) Y_{ct}, \tag{2}
$$

 \blacktriangleright where z_i represent taxes or subsidies to the use of inputs

▶ $Y_c \sim$ composite of renewable Y_r and storage Y_s capacity, produced by pcf

$$
Y_{ct} = \left(\delta Y_{rt}^{\frac{\rho - 1}{\rho}} + (1 - \delta) Y_{st}^{\frac{\rho - 1}{\rho}}\right)^{\frac{\rho}{\rho - 1}}.
$$
 (3)

Final good production

- ▶ Discrete time economy
- \blacktriangleright Final good produced using two energy inputs (clean Y_c and dirty Y_d), according to

$$
Y_t = \left(Y_{dt}^{\frac{\epsilon - 1}{\epsilon}} + Y_{ct}^{\frac{\epsilon - 1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon - 1}}.\tag{1}
$$

▶ Perfectly competitive firms (pcf)

$$
\max_{\{Y_{dt}, Y_{ct}\}} P_t Y_t - p_{dt} (1 - z_{dt}) Y_{dt} - p_{ct} (1 - z_{ct}) Y_{ct}, \tag{2}
$$

 \blacktriangleright where z_i represent taxes or subsidies to the use of inputs

▶ $Y_c \sim$ composite of renewable Y_r and storage Y_s capacity, produced by pcf

$$
Y_{ct} = \left(\delta Y_{rt}^{\frac{\rho-1}{\rho}} + (1-\delta)Y_{st}^{\frac{\rho-1}{\rho}}\right)^{\frac{\rho}{\rho-1}}.
$$
 (3)

Assumption 1

 Y_d and Y_c are substitutes, $\epsilon > 1$, while Y_r and Y_s are complements, $\rho \in (0, 1)$.

Intermediates and machines production

▶ Production of intermediates $j \in \{d, r, s\}$ is given by

$$
Y_{jt} = L_{jt}^{1-\alpha} \int_0^1 A_{ijt}^{1-\alpha} x_{ijt}^{\alpha} di.
$$
 (4)

▶ Produced by pcf, under a fixed supply of workers

$$
L_{dt} + L_{dt} + L_{dt} \le L \equiv 1.
$$

▶ The use of the dirty input releases CO2 emissions and affect temperature

$$
E_t = \xi_t Y_{dt}
$$

Intermediates and machines production

▶ Production of intermediates $j \in \{d, r, s\}$ is given by

$$
Y_{jt} = L_{jt}^{1-\alpha} \int_0^1 A_{ijt}^{1-\alpha} x_{ijt}^{\alpha} di.
$$
 (4)

▶ Produced by pcf, under a fixed supply of workers

$$
L_{dt} + L_{dt} + L_{dt} \le L \equiv 1.
$$

▶ The use of the dirty input releases CO2 emissions and affect temperature

$$
E_t = \xi_t Y_{dt}
$$

 \blacktriangleright Machines: x_{jit}

- \blacktriangleright Unit continuum in each sector j
- \triangleright Cost: ψ units of final good
- ▶ Produced by single monopolist

$$
\max_{\{p_{ijt}, x_{ijt}\}} (p_{ijt} - \psi)x_{ijt}.
$$
\n⁽⁵⁾

$$
p_{ijt}^x = \frac{\psi}{\alpha}.\tag{6}
$$

▶ A fixed mass of scientists that decide on which sector to innovate

$$
s_{rt} + s_{st} + s_{dt} \le 1. \tag{7}
$$

▶ If successful (with prob. $\eta_j s_{jt}^{\sigma}$, congestion), the scientist becomes the monopolist producer of that machine in the next period

$$
A_{jit+1} = (1+\gamma)A_{jit}.\tag{8}
$$

▶ A fixed mass of scientists that decide on which sector to innovate

$$
s_{rt} + s_{st} + s_{dt} \le 1. \tag{7}
$$

▶ If successful (with prob. $\eta_j s_{jt}^{\sigma}$, congestion), the scientist becomes the monopolist producer of that machine in the next period

$$
A_{jit+1} = (1+\gamma)A_{jit}.\tag{8}
$$

\n- Without spillovers:
$$
A_{jt} = (1 + \gamma \eta_j s_{jt}^{\omega}) A_{jt-1}
$$
\n- With spillovers: $A_{jt} = A_{jt-1} \left[1 + \gamma \eta_j s_{jt}^{\omega} \left(\frac{A_{t-1}}{A_{jt-1}} \right)^{\nu} \right]$, where $A_t = \frac{A_{dt} + A_{rt} + A_{st}}{3}$.
\n

▶ A fixed mass of scientists that decide on which sector to innovate

$$
s_{rt} + s_{st} + s_{dt} \le 1. \tag{7}
$$

▶ If successful (with prob. $\eta_j s_{jt}^{\sigma}$, congestion), the scientist becomes the monopolist producer of that machine in the next period

$$
A_{jit+1} = (1+\gamma)A_{jit}.\tag{8}
$$

- ▶ Without spillovers: $A_{jt} = (1 + \gamma \eta_j s_{jt}^{\omega}) A_{jt-1}$
- ► With spillovers: $A_{jt} = A_{jt-1} \left[1 + \gamma \eta_j s_{jt}^{\omega} \left(\frac{A_{t-1}}{A_{jt-1}} \right)^{\nu} \right]$, where $A_t = \frac{A_{dt} + A_{rt} + A_{st}}{3}$.
- ▶ Machines subject to innovations replace the older version. Random assignmanet of property rights for unsuccessful innovations

▶ A fixed mass of scientists that decide on which sector to innovate

$$
s_{rt} + s_{st} + s_{dt} \le 1. \tag{7}
$$

▶ If successful (with prob. $\eta_j s_{jt}^{\sigma}$, congestion), the scientist becomes the monopolist producer of that machine in the next period

$$
A_{jit+1} = (1+\gamma)A_{jit}.\tag{8}
$$

- ▶ Without spillovers: $A_{jt} = (1 + \gamma \eta_j s_{jt}^{\omega}) A_{jt-1}$
- ► With spillovers: $A_{jt} = A_{jt-1} \left[1 + \gamma \eta_j s_{jt}^{\omega} \left(\frac{A_{t-1}}{A_{jt-1}} \right)^{\nu} \right]$, where $A_t = \frac{A_{dt} + A_{rt} + A_{st}}{3}$.
- ▶ Machines subject to innovations replace the older version. Random assignmanet of property rights for unsuccessful innovations

\blacktriangleright Allocation of scientists

 \blacktriangleright In equilibrium, expected profits must equalize

$$
\Pi_{dt} = \Pi_{rt} = \Pi_{st}.
$$
\n(9)

Allocation of scientists I (without spillovers)

 \blacktriangleright Expected profit of research in sector j relative to sector k

$$
\frac{\Pi_{jt}}{\Pi_{kt}} = \frac{1 + q_{jt}}{1 + q_{kt}} \times \frac{\eta_j}{\eta_k} \left(\frac{s_{jt}}{s_{kt}}\right)^{\omega - 1} \underbrace{\left(\frac{p_{jt}}{p_{kt}}\right)^{\frac{1}{1 - \alpha}}}_{\text{Price ef.}} \times \underbrace{\frac{L_{jt}}{L_{kt}}}_{\text{Market size ef.}} \times \underbrace{\frac{A_{jt-1}}{A_{kt-1}}}_{\text{Direct productivity ef.}} \tag{10}
$$

▶ Path dependence (ambiguous):

 \blacktriangleright Price effect (-):

$$
\frac{p_{jt}}{p_{kt}} = \left(\frac{A_{jt}}{A_{kt}}\right)^{-(1-\alpha)}
$$

▶ Market size effects: complements (-) vs substitutes (+)

$$
\frac{L_{rt}}{L_{st}} = \left(\frac{\delta}{1-\delta}\right)^{\rho} \left(\frac{A_{rt}}{A_{st}}\right)^{-\sigma}
$$

$$
\frac{L_{ct}}{L_{dt}} = \left(\frac{A_{dt}}{A_{rt}A_{st}}\right)^{\phi} \left((1-\delta)^{\rho}A_{rt}^{\sigma} + \delta^{\rho}A_{st}^{\sigma}\right)^{\frac{1-\epsilon}{1-\rho}} \left(\frac{1-z_{ct}}{1-z_{dt}}\right)^{-\epsilon}
$$

Allocation of scientists II (without spillovers)

▶ Profitability of renewable research relative to storage research

$$
\frac{\Pi_{rt}}{\Pi_{st}} = \frac{1 + q_{rt}}{1 + q_{st}} \frac{\eta_r}{\eta_s} \left(\frac{s_{rt}}{s_{st}}\right)^{\omega - 1} \left(\frac{\delta}{1 - \delta}\right)^{\rho} \underbrace{\left(\frac{1 + \gamma \eta_r s_{rt}^{\omega}}{1 + \gamma \eta_s s_{st}^{\omega}}\right)^{-(1 + \sigma)} \left(\frac{A_{rt - 1}}{A_{st - 1}}\right)^{-\sigma}}_{\text{Direct path dependency effect }(\cdot)},\tag{11}
$$

 \triangleright where $\sigma \equiv (1 - \alpha)(1 - \rho)$ and q_i is the rate of a proportional profit subsidy financed through a lump-sum tax on the rep. hh.

Allocation of scientists II (without spillovers)

▶ Profitability of renewable research relative to storage research

$$
\frac{\Pi_{rt}}{\Pi_{st}} = \frac{1 + q_{rt}}{1 + q_{st}} \frac{\eta_r}{\eta_s} \left(\frac{s_{rt}}{s_{st}}\right)^{\omega - 1} \left(\frac{\delta}{1 - \delta}\right)^{\rho} \underbrace{\left(\frac{1 + \gamma \eta_r s_{rt}^{\omega}}{1 + \gamma \eta_s s_{st}^{\omega}}\right)^{-(1 + \sigma)} \left(\frac{A_{rt - 1}}{A_{st - 1}}\right)^{-\sigma}}_{\text{Direct path dependency effect }(\cdot)},\tag{11}
$$

 \triangleright where $\sigma \equiv (1 - \alpha)(1 - \rho)$ and q_i is the rate of a proportional profit subsidy financed through a lump-sum tax on the rep. hh.

Lemma 1

Under Assumption [1,](#page-12-1) the evolutions of renewable and storage technologies experience a negative path dependence.

Proof The
$$
\frac{\Pi_{rt}}{\Pi_{st}}
$$
 is decreasing in A_{rt} and increasing in A_{st}

Allocation of scientists III (without spillovers)

 \blacktriangleright Profitability of renewable research relative to dirty research

$$
\frac{\Pi_{rt}}{\Pi_{dt}} = \frac{1 + q_{rt}}{1 + q_{dt}} \frac{\eta_r}{\eta_d} \left(\frac{s_{rt}}{s_{dt}}\right)^{\omega - 1} \left(\frac{1 - z_d}{1 - z_c}\right)^{\epsilon} \underbrace{\left(\frac{1 + \gamma \eta_r s_{rt}^{\omega}}{1 + \gamma \eta_d s_{dt}^{\omega}}\right)^{-1 - \phi}}_{\text{Direct path dependency effect (+)}}\n\times \underbrace{\delta^{\rho} \left[\delta^{\rho} + (1 - \delta)^{\rho} \left(\frac{1 + \gamma \eta_r s_{rt}^{\omega}}{1 + \gamma \eta_s s_{rt}^{\omega}}\right)^{\sigma} \left(\frac{A_{rt-1}}{A_{st-1}}\right)^{\sigma}\right]^{\frac{\rho - \epsilon}{1 - \rho}}}_{\text{Indirect path dependency effect (-)}}.
$$
\n(12)

$$
Indirect\ path\ dependency\ effect(\textrm{-})
$$

$$
\blacktriangleright \text{ where } \phi \equiv (1 - \alpha)(1 - \epsilon)
$$

Allocation of scientists III (without spillovers)

 \blacktriangleright Profitability of renewable research relative to dirty research

$$
\frac{\Pi_{rt}}{\Pi_{dt}} = \frac{1 + q_{rt}}{1 + q_{dt}} \frac{\eta_r}{\eta_d} \left(\frac{s_{rt}}{s_{dt}}\right)^{\omega - 1} \left(\frac{1 - z_d}{1 - z_c}\right)^{\epsilon} \underbrace{\left(\frac{1 + \gamma \eta_r s_{rt}^{\omega}}{1 + \gamma \eta_d s_{dt}^{\omega}}\right)^{-1 - \phi}}_{\text{Direct path dependency effect (+)}}\n\times \underbrace{\delta^{\rho} \left[\delta^{\rho} + (1 - \delta)^{\rho} \left(\frac{1 + \gamma \eta_r s_{rt}^{\omega}}{1 + \gamma \eta_s s_{st}^{\omega}}\right)^{\sigma} \left(\frac{A_{rt-1}}{A_{st-1}}\right)^{\sigma}\right]^{\frac{P - \epsilon}{1 - \rho}}}_{\text{Indirect path dependency effect (-)}}.
$$
\n(12)

$$
\blacktriangleright \text{ where } \phi \equiv (1 - \alpha)(1 - \epsilon)
$$

Lemma 2

Analytically ambiguous effect of an increase in A_{rt} on $\frac{\Pi_{rt}}{\Pi_{dt}}$.

 $\boxed{\text{Proof}}$ $\boxed{\text{Proof}}$ $\boxed{\text{Proof}}$ Direct path dependency effect $(+)$; Indirect path dependency effect (-)

Allocation of scientists IV (without spillovers)

▶ Profitability of renewable research relative to dirty research

$$
\frac{\Pi_{rt}}{\Pi_{dt}} = \frac{1 + q_{rt}}{1 + q_{dt}} \frac{\eta_r}{\eta_d} \left(\frac{s_{rt}}{s_{dt}}\right)^{\omega - 1} \left(\frac{1 - z_d}{1 - z_c}\right)^{\epsilon} \underbrace{\left(\frac{1 + \gamma \eta_r s_{rt}^{\omega}}{1 + \gamma \eta_d s_{dt}^{\omega}}\right)^{-1 - \phi}}_{\text{Direct path dependency effect (+)}}
$$
\n
$$
\times \underbrace{\delta^{\rho} \left[\delta^{\rho} + (1 - \delta)^{\rho} \left(\frac{1 + \gamma \eta_r s_{rt}^{\omega}}{1 + \gamma \eta_s s_{rt}^{\omega}}\right)^{\sigma} \left(\frac{A_{rt-1}}{A_{st-1}}\right)^{\sigma}\right] \frac{\rho - \epsilon}{1 - \rho}}_{\text{Indirect path dependency effect (-)}}
$$
\n(13)

Proposition 1

All else equal and under Assumption [1,](#page-12-1) an increase in the technology ratio between renewables and storage, $\frac{A_{rt-1}}{A_{st-1}}$, or a decrease in the input share of renewables, δ , increase the strength of the indirect path dependency effect.

Proposition 2

All else equal and under Assumption [1,](#page-12-1) higher levels of historical storage technology increase the profitability of renewables relative to dirty research.

[Literature](#page-10-0)

[Model setup](#page-12-0) [Equilibrium and path dependence](#page-21-0)

[Calibration](#page-27-0)

[Main results](#page-30-0)

Calibration: US economy (2015-2090)

Table 1: Parameter values

Numerical illustration of Proposition 1: Effect of a shock to A_{r0} (x2) on the allocation of scientists (no policy)

A shock in A_{r0} : a) increases s_r when $A_{s0} = A_{r0}$; b) decreases s_r when $A_{s0} < A_{r0}$; c) increases s_r when $A_{s0} < A_{r0}$ but δ is high

[Literature](#page-10-0)

[Model setup](#page-12-0) [Equilibrium and path dependence](#page-21-0)

[Main results](#page-30-0)

Main Results

- 1. US energy policy evaluation
- 2. Exploration of the recent collapse in renewable innovation (shale gas boom, storage technology level)
- 3. Estimation of the elasticity of substitution between fossil fuels (Y_d) and renewables (Y_r)

- \blacktriangleright 1. No policy
- ▶ 2. Pre−IRA energy policy

 \blacktriangleright 1. No policy

- ▶ 2. Pre−IRA energy policy
- \triangleright 3. + Electric Vehicle R&D Subsidy (batteries)

- \blacktriangleright 1. No policy
- ▶ 2. Pre−IRA energy policy
- \triangleright 3. + Electric Vehicle R&D Subsidy (batteries)
- \blacktriangleright 4. + IRA clean production subsidies
	- \triangleright 1/3 IRA's costs on production and investment tax credits for clean electricity and storage (Bistline, Mehrotra and Wolfram, 2023)

 \blacktriangleright 1. No policy

- ▶ 2. Pre−IRA energy policy
- \triangleright 3. + Electric Vehicle R&D Subsidy (batteries)
- \blacktriangleright 4. + IRA clean production subsidies
	- \triangleright 1/3 IRA's costs on production and investment tax credits for clean electricity and storage (Bistline, Mehrotra and Wolfram, 2023)

Table 2: Policy rates under each policy scenarios

Pre- vs post-IRA

▶ Current energy policy is not sufficient to decarbonize energy production

Pre- vs post-IRA

▶ Current energy policy is not sufficient to decarbonize energy production

▶ ...and neither is the IRA production subsidy

Decarbonization targets

▶ COP28 Agreement: triple global renewable power capacity by 2030, Y_{r30} (rel. 2022)

Decarbonization targets

▶ COP28 Agreement: triple global renewable power capacity by 2030, Y_{r30} (rel. 2022)

Table 3: Decarbonization targets by 2030

Decarbonization targets

▶ COP28 Agreement: triple global renewable power capacity by 2030, Y_{r30} (rel. 2022)

Table 3: Decarbonization targets by 2030

Decarbonization goal

▶ COP28 goal attainment ensures green path

2. Collapse in renewable innovation

▶ Shale gas boom $(100\% \uparrow A_{d0})$ vs. storage-renewables technological gap

▶ The large technological gap between renewables and storage can have reduced the level of innovation in renewables by a magnitude similar to that of the shale gas boom

3. Variable elasticity of substitution btw renewables and fossil fuels

 \blacktriangleright Elasticity calculation

$$
el_{r,d} \equiv \frac{\Delta \ln \left(\frac{Y_{dt}}{Y_{rt}}\right)}{\Delta \ln (MRTS_{r,d})},\tag{14}
$$

where

$$
MRTS_{r,d} = \frac{\frac{\partial Y_t}{\partial Y_{rt}}}{\frac{\partial Y_t}{\partial Y_{dt}}} = Y_{dt}^{\frac{1}{\epsilon}} \delta Y_{rt}^{-\frac{1}{\rho}} \left(\delta Y_{rt}^{\frac{\rho-1}{\rho}} + (1-\delta) Y_{st}^{\frac{\rho-1}{\rho}} \right)^{\frac{\rho+\epsilon}{\epsilon(\rho-1)}}
$$

.

Conclusion

- ▶ Accounting for the complementarity between renewables and storage results in insightful path dependencies
- ▶ Technological gap between renewables and storage is a relevant driver of private incentives to innovate in energy sectors.
	- ▶ Comparable to the effect of shale gas boom in deterring green innovation
- ▶ IRA falls short in achieving near term climate goals
- ▶ Staying within the IRA framework (production subsidies) would require much higher subsidies...
- ▶ ... even if past policy choices had partially addressed the big gap between renewables and storage technologies
- ▶ Due to low productivity of storage, fossil fuels and renewables are currently complements

Appendix

▶ Similar patterns in renewable innovation across countries

▶ Similar patterns in storage innovation across countries

[Back to Main](#page-3-0)

▶ Solar and wind drive the renewable collapse

▶ Batteries drive the storage rise

[Back to Main](#page-3-0)

- ▶ Sharp increase in electric vehicles patent since mid-2000s (1% in 2010)
- ▶ Rise in storage not driven by advances in electric vehicle technologies

- ▶ Sharp increase in electric vehicles patent since mid-2000s (1% in 2010)
- ▶ Rise in storage not driven by advances in electric vehicle technologies

- ▶ IEA members: Public support for storage cannot explain innovation increase
- \triangleright 2019-2023: Only 2\% energy storage (21\% renewables and 4\% fossil fuels)
- ▶ 2015 US: Relative to the total installed costs of renewables and storage, renewables are subsidized 30 times more than storage

Data sources

▶ Innovation trends are measured by patent applications:

- ▶ Universe of patent applications filed at the European Patent Office (EPO) from PATSTAT
- ▶ Identify patent applications in fossil fuels, renewables and energy storage with new methodology from the IEA (2021)
- ▶ Classification is based on the assigned CPC [codes](#page-54-0) \sim
- \triangleright Innovation policy is measured by public expenditure on energy R&D:
	- ▶ Data on public budgets on research, development and demonstration in energy technologies from the IEA (2023)
	- ▶ Budgets are reported by all IEA member countries
	- ▶ Extract total expenditures on fossil fuels, renewables and energy storage

[Back to Main](#page-2-0)

Cartography of LCE technologies from the IEA

- \blacktriangleright Renewable energy = Low-carbon energy supply (excl. nuclear and combustion)
- \triangleright Energy storage = Batteries + Hydrogen and fuel cells + Other (Y02E) 60/13, Y02E 60/14, Y02E 60/16)

Cartography of LCE technologies from the IEA

 \blacktriangleright Electric vehicles = EV and infrastructure + Fuel cells for road vehicles

Proofs

Proof of Lemma [1:](#page-22-0) Under Assumption [1](#page-12-1) σ is positive, from which follows $\text{that} \,\, \frac{\partial \frac{\Pi_{rt}}{\Pi_{st}}}{\partial A_{rt-1}} < 0 \,\, \text{and} \,\, \frac{\partial \frac{\Pi_{rt}}{\Pi_{st}}}{\partial A_{st-1}} > 0. \,\, \blacksquare$ Eack to Main Proof of Lemma [2:](#page-24-0) Under Assumption [1,](#page-12-1) $\phi < 0$ and $\rho - \epsilon < 0$. \blacksquare [Back to Main](#page-25-0) Proof of Proposition [1:](#page-26-0) Under Assumption [1,](#page-12-1) $\frac{\partial}{\partial \ln \det_{\partial t} \mathcal{A}_{rt-1}} \geq 0$. Furthermore, under lower values of $\partial \frac{A_{rt-1}}{A}$ δ, the negative component of $\frac{\partial$ (Indirect path dependency effect) is larger, making it more plausible to satisfy that $\frac{\partial(\text{Indirect path dependency effect})}{\partial \delta}$ < 0. ■ Proof of Proposition [2:](#page-26-1) Under Assumption [1,](#page-12-1) σ is positive and $\epsilon > \rho$, from which follows that $\frac{\partial \frac{\Pi_{rt}}{\Pi_{dt}}}{\partial A_{st-1}} > 0$.

Calibration ρ

 \blacktriangleright Elasticity of substitution between renewable and storage (ρ)

▶ Two approaches for curve fitting process

▶ Bid information from solar-plus-storage markets in the US $\rho = 0.34$

▶ Aghahosseini et al. (2023)'s forecast on 2050 electricity generation by source (net-zero IEA scenario by 2050)

 \rightharpoonup $\rho = 0.75$

▶ In progress

▶ Method of moments

Calibration z_i 's

 \blacktriangleright Average annual production subsidy $(\%)$, 2010-2016:

- ▶ Clean energy: 15.2%
- ▶ Dirty energy: 0.5%
- \blacktriangleright Estimation
	- ▶ Average annual production subsidy, 2010-2016:
		- ▶ Clean energy: 11,756 million USD
		- ▶ Dirty energy: 1,204 million USD
	- ▶ Average annual LCOE, 2010-2016:
		- ▶ Clean energy: 148.5 USD per MWh
		- ▶ Dirty energy: 90.4 USD per MWh
	- ▶ Average annual generation, 2010-2016:
		- \blacktriangleright Clean energy: 521,375 GWh
		- \blacktriangleright Dirty energy: 2,761,098 GWh

$$
\Rightarrow z_c = \frac{11,756,000,000USD}{521,375,000MWh \times 148.5USD/MWh} = 0.152
$$

$$
\Rightarrow z_d = \frac{1,204,000,000USD}{2,761,098,000MWh \times 90.4USD/MWh} = 0.005
$$

[Back to Main](#page-28-0)

Calibration q_i 's

- \blacktriangleright Average annual share of public expenditures on energy R&D, 2011-2015 (IEA, 2023):
	- ▶ Renewables: 13.5%
	- \blacktriangleright Fossil fuels: 2.4%
	- ▶ Energy storage: 0.4%
	- ▶ EV battery technology: 1.5%

[Back to Main](#page-28-0)