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Abstract
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1 Introduction

Estimating average treatment effects is an important objective of empirical research in many areas of eco-

nomics. Applied researchers usually believe that treatment effects are heterogeneous, which means that they

vary between units with different observable and unobservable characteristics. Yet, many researchers also

favor using well-established estimation methods that were not originally designed with treatment effect het-

erogeneity in mind. These methods may be chosen because of their computational simplicity, comparability

across studies, effectiveness at incorporating high-dimensional covariates, and other reasons. In turn, these

methods often lead to estimands that can be represented as weighted averages of the underlying treatment

effects of interest.

For example, consider a scenario where unconfoundedness holds given covariates X. Let treatment D be

binary, (Y (1), Y (0)) be potential outcomes, and let τ0(X) = E[Y (1) − Y (0) | X] be the conditional average

treatment effect, or CATE, for covariate value X. Following Angrist (1998), if we additionally assume that

E[D | X] is linear in X, the regression of Y on a constant, treatment D, and covariates X yields a coefficient

on D that can be written as

βOLS =
E[var(D | X)τ0(X)]

E[var(D | X)]
,

a weighted average of CATEs with nonnegative weights that integrate to 1.

In this paper we are concerned with a general class of weighted estimands that can be expressed as follows:

µ(a, τ0) ≡ E[a(X)w0(X)τ0(X)]

E[a(X)w0(X)]
=

E[a(X)τ0(X) | W0 = 1]

E[a(X) | W0 = 1]
, (1.1)

where W0 ∈ {0, 1} is an indicator for a subpopulation, τ0(X) = E[Y (1) − Y (0) | W0 = 1, X] are the

CATEs given covariates X in subpopulation W0, w0(X) = P(W0 = 1 | X) is the probability of being in

subpopulation W0 given X, and a(X) is an identified weight function satisfying E[a(X)w0(X)] > 0. The

regression estimand above belongs to this class, which can be seen by letting W0 = 1 with probability 1,

and letting the weight function a(X) be the conditional variance of treatment given covariates. Under some

assumptions, this class also includes the two-stage least squares (2SLS) and two-way fixed effects (TWFE)

estimands in instrumental variables and difference-in-differences settings, as well as many other parameters.

There are two main questions that this paper seeks to answer. The first is whether, and under what

circumstances, the estimand in (1.1) corresponds to an average treatment effect of the form E[Y (1)− Y (0) |
W ∗ = 1], where W ∗ ∈ {0, 1} is an indicator for a (possibly latent) subpopulation of W0. An affirmative

answer to this question would endow a specific weighted estimand with some degree of validity as a causal

parameter, given that it would then measure the average effect of treatment for a subset of all units.

The second and primary aim of this paper is to quantify the degree of validity of µ(a, τ0) as a causal

parameter. To do this, we characterize the size, and the size relative to W0, of subpopulations W ∗ associated

with the estimand in (1.1). More plainly, we ask how large P(W ∗ = 1) and P(W ∗ = 1 | W0 = 1) can be

in the representation µ(a, τ0) = E[Y (1) − Y (0) | W ∗ = 1]. If these probabilities can be large, the estimand

corresponds to the average treatment effect for a (relatively) large subpopulation, and when they are small,

it corresponds to the average effect for a (relatively) small number of units. If E[Y (1) − Y (0) | W0 = 1] is
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the parameter of interest, we interpret a large value of P(W ∗ = 1 | W0 = 1) as evidence of a high degree of

internal validity of µ(a, τ0) with respect to the target. If P(W ∗ = 1), the corresponding marginal probability,

is large, we say that µ(a, τ0) is highly representative of the underlying population.

The answer to our questions about subpopulation existence and size depends on the information we have

about the CATE function, τ0. Specifically, in one case, we may want to know whether µ(a, τ0) can be written

as E[Y (1)−Y (0) | W ∗ = 1] for any choice of τ0, or without any knowledge of this function. If this is the case,

then we know that the interpretation of µ(a, τ0) as a causal parameter is robust to heterogeneous treatment

effects of any form. We can also answer the second question about the maximum values of P(W ∗ = 1) and

P(W ∗ = 1 | W0 = 1) without needing to estimate or know the structure of the CATEs. In a second case, we

may want to know how representative µ(a, τ0) is given knowledge of the CATE function. While the resulting

maximum values of P(W ∗ = 1) and P(W ∗ = 1 | W0 = 1) are less useful as measures of robustness than in the

first case—after all, if the researcher knows or estimates the entire CATE function, they can as well report

any average of τ0(X) that may be of interest—we consider this problem to be of independent theoretical

interest. Additionally, if the researcher estimates and compares the maximum values of P(W ∗ = 1) or

P(W ∗ = 1 | W0 = 1) in both cases, they can evaluate the impact of the nonuniform weights in µ(a, τ0) in a

given application.

In the first case, when the CATE function is unrestricted, we formally show that µ(a, τ0) can be written

as the average treatment effect for a subpopulation of W0 if and only if a(X) ≥ 0 with probability 1 given

W0 = 1. The contrapositive of this statement is that the incidence of “negative weights,” i.e. P(a(X) <

0) > 0, implies that µ(a, τ0) cannot be represented as an average treatment effect for some subpopulation

uniformly in τ0. In a related contribution, Blandhol, Bonney, Mogstad, and Torgovitsky (2022) have shown

that, for estimands that do not depend on potential outcome levels, the lack of negative weights is a sufficient

and necessary condition for the weighted estimand to be “weakly causal,” that is, to guarantee that the sign

of τ0 will be preserved whenever it is uniform across all units. We also provide simple expressions for the

maxima of P(W ∗ = 1) and P(W ∗ = 1 | W0 = 1). We propose an analog estimator for these objects and

briefly discuss associated estimation and inferential issues.

In the second case, when the CATE function is assumed to be known, we show that µ(a, τ0) can be

written as an average treatment effect whenever it lies in the convex hull of CATE values, a weaker criterion

than having nonnegative weights. The maximum values of P(W ∗ = 1) and P(W ∗ = 1 | W0 = 1) now depend

on τ0, and can be obtained via linear programming when X is discrete. We show the solution to this linear

program also admits a closed-form expression even when the support of X includes discrete, continuous, and

mixed components. This expression can be used to derive plug-in estimators.

Literature Review

This paper is related to a large literature studying weighted average representations of common estimands,

including ordinary least squares (OLS), 2SLS, and TWFE in additive linear models. Some of the contri-

butions to this literature include Angrist (1998), Humphreys (2009), Aronow and Samii (2016), Blandhol,

Bonney, Mogstad, and Torgovitsky (2022), S loczyński (2022), and Goldsmith-Pinkham, Hull, and Kolesár

(2024) for OLS; Imbens and Angrist (1994), Angrist and Imbens (1995), Kolesár (2013), S loczyński (2020),

and Blandhol, Bonney, Mogstad, and Torgovitsky (2022) for 2SLS; and de Chaisemartin and D’Haultfœuille
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(2020), Goodman-Bacon (2021), Sun and Abraham (2021), Athey and Imbens (2022), Caetano and Call-

away (2023), Borusyak, Jaravel, and Spiess (2024), and Callaway, Goodman-Bacon, and Sant’Anna (2024)

for TWFE.

A common view in much of this literature, traceable to Imbens and Angrist (1994), is that causal inter-

pretability of weighted estimands requires all weights to be positive. For example, Sun and Abraham (2021)

explicitly associate “reasonable weights” with weights that “sum to one and are non-negative.” Blandhol,

Bonney, Mogstad, and Torgovitsky (2022) show that the lack of negative weights and level dependence is

necessary and sufficient for an estimand to be “weakly causal,” that is, to guarantee sign preservation when

all treatment effects have the same sign. In this paper we focus on the related problem of whether a weighted

estimand can be written as the average treatment effect for some (possibly latent) subpopulation. While

the lack of negative weights is essential in our framework when the CATE function is unrestricted, negative

weights and nonuniform weights play a similar role when the CATE function is assumed to be known, at

least as long as the weighted estimand lies in the convex hull of CATE values. This point is related to

the negative view of both negative and nonuniform weights in Callaway, Goodman-Bacon, and Sant’Anna

(2024).

Some papers focus on weighted averages of heterogeneous treatment effects as legitimate targets in their

own right rather than as probability limits of existing estimators. Hirano, Imbens, and Ridder (2003)

introduce the class of weighted average treatment effects, which are a subclass of the more general class

of estimands in (1.1). Li, Morgan, and Zaslavsky (2018) discuss the connection between weighted average

treatment effects and implicit target subpopulations. However, the internal validity and representativeness

of weighted estimands have received very little attention to date.

One exception is Aronow and Samii (2016), who explicitly acknowledge that the OLS estimand, like the

local average treatment effect of Imbens and Angrist (1994), corresponds to the average effect for a “highly

specific subpopulation” rather than the entire population, and consequently is not necessarily representative

of that population. Then, Aronow and Samii (2016) focus on whether mean covariate values are similar in the

entire sample and in the “effective sample” used by OLS. We focus on the size of the implicit subpopulation,

which is different and complementary.

Another exception is Miller, Shenhav, and Grosz (2023), who focus on (one-way) fixed effects estimands

and argue that it is problematic if “switchers,” that is, fixed-effect groups with nonzero variation in treatment,

are a small subset of the sample. They also recommend that applied researchers report the sample size when

limited to “switcher groups.” In this paper we build a general framework to study the internal validity and

representativeness of weighted estimands, with the fixed effects estimand (equivalent to OLS) as a special

case. We argue, similar to Miller, Shenhav, and Grosz (2023), that if a given weighted estimand corresponds

to the average treatment effect for a small subpopulation, then it may not be an appropriate target parameter,

unless that subpopulation is interesting in its own right.

Plan of the Paper

We organize the paper as follows. In Section 2, we discuss several examples of commonly used estimands

that satisfy the representation in (1.1). In Section 3, we develop our theoretical framework and examine the

conditions under which the estimand in (1.1) has a causal representation as an average treatment effect over
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a population. In Section 4, we establish our main results on the absolute and relative size of subpopulations

associated with the estimand in (1.1), which we propose as measures of representativeness and internal

validity of weighted estimands. We also generalize our results to subpopulations and revisit the examples

from Section 2. In Section 5, we briefly discuss estimation and inference for the proposed measures. In

Section 6, we provide an empirical application to the effects of unilateral divorce laws on female suicide, as

in Stevenson and Wolfers (2006) and Goodman-Bacon (2021). In Section 7, we conclude. Appendix contains

our proofs as well as several additional results and derivations.

2 Applications

Here we consider three identification strategies where commonly used estimands follow the structure of

equation (1.1).

2.1 Unconfoundedness

In this setup, we have a binary treatment D ∈ {0, 1}, potential outcomes (Y (1), Y (0)), covariate vector X,

and realized outcome Y = Y (D). We make the following two assumptions.

Assumption 2.1 (Unconfoundedness). Let

1. Conditional independence: (Y (1), Y (0)) ⊥⊥ D | X;

2. Overlap: p(X) ≡ P(D = 1 | X) ∈ (0, 1) almost surely.

Following Angrist (1998), we can establish that βOLS, the coefficient on D in the linear projection of Y on

(1, D,X), satisfies the representation in (1.1). The following proposition summarizes Angrist’s (1998) result.

Proposition 2.1. Let Assumption 2.1 hold and let p(X) be linear in X. Then

βOLS =
E[p(X)(1 − p(X)) · E[Y (1) − Y (0) | X]]

E[p(X)(1 − p(X))]
.

The linearity assumption can be removed if we instead regress Y on (1, D, h(X)) where h(X) is a vector of

functions of X such that p(X) is in their linear span. The overlap assumption can also be weakened since it

is not required for βOLS to be defined.

Proposition 2.1 implies that we can write βOLS as

βOLS =
E[a(X)τ0(X)]

E[a(X)]
,

where a(X) = p(X)(1 − p(X)) and τ0(X) = E[Y (1) − Y (0) | X]. Here we implicitly set W0 = 1 with

probability 1. Thus, the regression coefficient βOLS is a weighted average of CATEs whose weights are

p(X)(1 − p(X)). Note that βOLS = ATE ≡ E[Y (1) − Y (0)] if and only if a(X) and τ0(X) are uncorrelated,

which is the case when p(X) or τ0(X) is constant.
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An alternative representation of this estimand can be obtained by focusing on the subpopulation of

treated units, D = 1. Let W0 = D, τ0(X) = E[Y (1) − Y (0) | D = 1, X] = E[Y (1) − Y (0) | X], which follows

from conditional independence, and let ã(X) = 1 − p(X). Then, we can write

βOLS =
E[(1 − p(X))w0(X)τ0(X)]

E[(1 − p(X))w0(X)]
=

E[ã(X)w0(X)τ0(X)]

E[ã(X)w0(X)]
,

where w0(X) = P(D = 1 | X) = p(X). Yet another representation can be obtained when focusing on the

subpopulation of untreated units by letting W0 = 1 −D. We omit details for brevity.

2.2 Instrumental Variables

Consider an endogenous binary treatment D ∈ {0, 1} and a binary instrument Z ∈ {0, 1}. Potential treat-

ments, denoted by (D(1), D(0)), are linked to the realized treatment through Z, that is, D = D(Z). Potential

outcomes, Y (d, z) for d, z ∈ {0, 1}, may depend on both D and Z in the absence of an exclusion restriction.

Let Y = Y (D,Z) be the realized outcome. As before, let X denote covariates. We make the following

assumptions.

Assumption 2.2 (Instrument validity). We have

1. Exogeneity: (Y (0, 0), Y (1, 0), Y (0, 1), Y (1, 1), D(1), D(0)) ⊥⊥ Z | X;

2. Exclusion: P(Y (d, 0) = Y (d, 1)) = 1 for d ∈ {0, 1};

3. First stage: e(X) ≡ P(Z = 1 | X) ∈ (0, 1) and P(D(1) = 1 | X) ̸= P(D(0) = 1 | X) almost surely.

We also make one of the following two nested monotonicity assumptions.

Assumption 2.3 (Strong monotonicity). P(D(1) ≥ D(0) | X) = 1 almost surely.

Assumption 2.4 (Weak monotonicity). There exists a subset of the support of X such that P(D(1) ≥
D(0) | X) = 1 on it and P(D(1) ≤ D(0) | X) = 1 on its complement.

The first instrumental variables estimand we consider was originally studied by Angrist and Imbens (1995).

In addition to the assumptions on the instrument, suppose that the model for X is saturated, with K

possible combinations of covariate values, i.e. let supp(X) = {x1, . . . , xK}, where supp(·) is used to denote

the support. Let XS = (1,1(X = x1), . . . ,1(X = xK−1)) and ZS = (Z,Z1(X = x1), . . . , Z1(X = xK−1)) =

ZXS , where ZS is the constructed instrument vector. The estimand in Angrist and Imbens (1995) is the

following 2SLS estimand:

β2SLS ≡
[(

E [W ′
SQS ] (E [Q′

SQS ])
−1 E [Q′

SWS ]
)−1

E [W ′
SQS ] (E [Q′

SQS ])
−1 E [Q′

SY ]

]
1

,

where WS = (D,XS), QS = (ZS , XS), and [·]k denotes the kth element of the corresponding vector. This

estimand has been studied by Angrist and Imbens (1995), Kolesár (2013), S loczyński (2020), and Bland-

hol, Bonney, Mogstad, and Torgovitsky (2022), and the specific representation in Proposition 2.2 follows

S loczyński (2020).
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Proposition 2.2. Let Assumptions 2.2 and 2.4 hold, and let X be discrete with finite support. Then

β2SLS =
E
[
e(X)(1 − e(X)) · P (D(1) ̸= D(0) | X)

2 · E[Y (1) − Y (0) | D(1) ̸= D(0), X]
]

E[e(X)(1 − e(X)) · P(D(1) ̸= D(0) | X)2]
.

This means that we can write β2SLS as

β2SLS =
E[a(X)w0(X)τ0(X)]

E[a(X)w0(X)]
,

where W0 = 1(D(1) ̸= D(0)) is the population of compliers/defiers, w0(X) = P(D(1) ̸= D(0) | X),

τ0(X) = E[Y (1)− Y (0) | D(1) ̸= D(0), X], and a(X) = e(X)(1− e(X)) ·P(D(1) ̸= D(0) | X), a nonnegative

weight function. Note that β2SLS = LATE ≡ E[Y (1)−Y (0) | D(1) ̸= D(0)] if and only if a(X) is uncorrelated

with τ0(X) given D(1) ̸= D(0).

The practical limitation of focusing on β2SLS is that applied researchers rarely create additional instru-

ments by interacting the original instrument with covariates (cf. Blandhol, Bonney, Mogstad, and Torgovit-

sky, 2022), which is how ZS is constructed to obtain β2SLS above. A more practically relevant estimand is

the “just-identified” IV estimand,

βIV ≡
[
(E [Q′W ])

−1 E [Q′Y ]
]
1
,

where Q = (Z,X) and W = (D,X). To introduce one of the representations of βIV below, define

c(X) ≡ sign
(
P [D(1) ≥ D(0) | X] − P [D(1) ≤ D(0) | X]

)
,

where sign(·) is the sign function. We also make the following “rich covariates” assumption on the instrument

propensity score, which is implied by the saturated specification in Proposition 2.2.

Assumption 2.5 (Rich covariates). e(X) is linear in X.

Under the instrument validity assumption, the rich covariates assumption, and either monotonicity assump-

tion, S loczyński (2020) obtains the following representations for the “just-identified” IV estimand.

Proposition 2.3. Let Assumptions 2.2, 2.4, and 2.5 hold. Then

βIV =
E[c(X) · e(X)(1 − e(X)) · P(D(1) ̸= D(0) | X) · E[Y (1) − Y (0) | D(1) ̸= D(0), X]]

E[c(X) · e(X)(1 − e(X)) · P(D(1) ̸= D(0) | X)]
.

If Assumptions 2.2, 2.3, and 2.5 hold instead, then

βIV =
E[e(X)(1 − e(X)) · P(D(1) > D(0) | X) · E[Y (1) − Y (0) | D(1) > D(0), X]]

E[e(X)(1 − e(X)) · P(D(1) > D(0) | X)]
.

It follows that we can write βIV as

βIV =
E[a(X)w0(X)τ0(X)]

E[a(X)w0(X)]

under either monotonicity assumption. Under weak monotonicity, W0 = 1(D(1) ̸= D(0)), w0(X) =
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P(D(1) ̸= D(0) | X), τ0(X) = E[Y (1) − Y (0) | D(1) ̸= D(0), X], and possibly negative weights a(X) =

c(X) · e(X)(1 − e(X)). Under strong monotonicity, W0 = 1(D(1) > D(0)), w0(X) = P(D(1) > D(0) | X),

τ0(X) = E[Y (1) − Y (0) | D(1) > D(0), X], and nonnegative weights a(X) = e(X)(1 − e(X)) ≥ 0.

2.3 Difference-in-Differences

Now suppose units are observed for T periods and, for t ∈ {1, . . . , T}, denote binary treatment Dt ∈ {0, 1},

potential outcomes (Yt(1), Yt(0)), and realized outcome Yt = Yt(Dt). We assume units are untreated prior

to period G ∈ G = {2, 3, . . . , T} ∪ {+∞}, receive the treatment in period G, and remain treated thereafter.

We assume no units are treated in the first time period. This may include a group that remains untreated

throughout, for which G = +∞. Thus, Dt = 1(G ≤ t). The panel is balanced, that is, no group appears or

disappears over time.

The two-way fixed effects estimand is often used in this setting, and consists of regressing the outcome

on the treatment indicator, group indicators, and period indicators. Using partitioned regression results, it

is defined as

βTWFE ≡
1
T

∑T
t=1 E

[
D̈tYt

]
1
T

∑T
t=1 E

[
D̈2

t

] ,

where D̈t = Dt − 1
T

∑T
s=1 Ds − E[Dt] + 1

T

∑T
s=1 E[Ds].

We assume a version of parallel trends most similar to the one in de Chaisemartin and D’Haultfœuille

(2020).

Assumption 2.6 (Difference-in-differences). We have

1. G ≡ supp(G) = {2, 3, . . . , T} ∪ {+∞};

2. For all t ∈ {2, . . . , T} and g, g′ ∈ G, we have that E[Yt(0) − Yt−1(0) | G = g] = E[Yt(0) − Yt−1(0) | G =

g′].

We use a proposition that is essentially a special case of Theorem 1 in de Chaisemartin and D’Haultfœuille

(2020) to obtain a representation of the two-way fixed effects estimand as a weighted average.

Proposition 2.4. Let Assumption 2.6 hold. Then

βTWFE =

1
T

∑T
t=1 E

[(
1 − 1

T

∑T
s=1 E[Ds | G] − E[Dt] + 1

T

∑T
s=1 E[Ds]

)
· P(Dt = 1 | G) · E[Yt(1) − Yt(0) | G,Dt = 1]

]
1
T

∑T
t=1 E

[(
1 − 1

T

∑T
s=1 E[Ds | G] − E[Dt] + 1

T

∑T
s=1 E[Ds]

)
· P(Dt = 1 | G)

] .

We show the above representation satisfies equation (1.1) by introducing an auxiliary variable P that is

uniformly distributed on {1, . . . , T} independently from {(Yt(0), Yt(1), G)}Tt=1. This period variable denotes

the time period and we use it to define (Y (1), Y (0)) ≡ (YP (1), YP (0)), Y = YP , and D = DP , which are

potential outcomes, the realized outcome, and treatment at a random time period, respectively.
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Letting X = (G,P ), this means we can write βTWFE as

βTWFE =
E[a(X)w0(X)τ0(X)]

E[a(X)w0(X)]
,

where W0 = D, w0(X) = P(D = 1 | G,P ) ∈ {0, 1}, τ0(X) = E[Y (1) − Y (0) | D = 1, G, P ], and the weight

function a(X) = 1 − P(D = 1 | G) − P(D = 1 | P ) + P(D = 1) is not generally nonnegative.1 A nonnegative

weight function can be obtained under the assumption that group-level average treatment effects are constant

over time. This property was described in Goodman-Bacon (2021, Section 3.1.1) and a representation of the

two-way fixed effects estimand is given in his equation (16). The following proposition yields a simpler (but

equivalent) expression for the weights in our setting.

Proposition 2.5. Let Assumption 2.6 hold and let E[Yt(1)−Yt(0) | D = 1, G] = E[Ys(1)−Ys(0) | D = 1, G]

for any s, t ∈ {1, . . . , T}. Then

βTWFE =
E[aB(G) · P(D = 1 | G) · E[Y (1) − Y (0) | D = 1, G]]

E[aB(G) · P(D = 1 | G)]
,

where aB(g) = P(D = 0 | G = g) · (P(D = 0 | P ≥ g) + P(D = 1 | P < g)) ≥ 0 for g ∈ {2, . . . , T}.

As is the case of the representation in Proposition 2.4, the two-way fixed effects estimand in Proposition

2.5 satisfies the representation in (1.1), with X = G, W0 = D, w0(X) = P(D = 1 | G), τ0(X) = E[Y (1) −
Y (0) | D = 1, G], and the weight function a(X) = aB(G) ≥ 0. This weight function is derived in the proof

of the proposition, and we show it is equivalent to equation (16) in Goodman-Bacon (2021) in Appendix D.

3 Causal Representation of Weighted Estimands

We now consider a class of weighted estimands that subsumes all our previous examples. In this section,

we show necessary and sufficient conditions for an estimand of this class to have a causal representation as

an average treatment effect over a population. Then, we compute the largest size of a population that is

compatible with the weighted estimand. The size of this population relative to P(W0 = 1) will be a measure

of the internal validity of our estimand relative to the target estimand E[Y (1) − Y (0) | W0 = 1]. The

absolute size of this population will be a measure of the representativeness of the estimand with respect to

the population distribution the data is drawn from.

Recall the earlier setting where we let D ∈ {0, 1} denote a binary treatment variable, and let (Y (1), Y (0))

denote the corresponding potential outcomes under treatment and control, respectively. Let X ∈ supp(X) ⊆
RdX denote a dX -vector of covariates. We suppose that (Y (1), Y (0), D,X) are drawn from a common

population distribution FY (1),Y (0),D,X .

Let W0 ∈ {0, 1} be an indicator variable used to denote a subpopulation {W0 = 1}. Throughout this

paper, we assume that P(W0 = 1) > 0, so that this subpopulation has a positive mass, which avoids technical

issues associated with conditioning on zero-probability events. For example, this subpopulation can be the

entire population by setting W0 = 1 almost surely, the treated units by setting W0 = D, or units complying

with binary instrument Z by setting W0 = 1(D(1) > D(0)). Let τ0(X) = E[Y (1)−Y (0) | W0 = 1, X] denote

1Here, τ0(X) is what Callaway and Sant’Anna (2021) call “the group-time average treatment effect.”
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the conditional average treatment effect given X in subpopulation W0. This is defined for all values of X

such that w0(X) > 0.

Also recall the weighted estimands of equation (1.1):

µ(a, τ0) ≡ E[a(X)w0(X)τ0(X)]

E[a(X)w0(X)]
=

E[a(X)τ0(X) | W0 = 1]

E[a(X) | W0 = 1]
,

where w0(X) = P(W0 = 1 | X).2

The estimands we consider have the above representation and satisfy the following regularity conditions.

Assumption 3.1 (Regularity). Let E[τ0(X)2] < ∞, E[a(X)2] < ∞, and E[a(X) | W0 = 1] > 0.

The first two restrictions are weak regularity assumptions that ensure the finiteness of the numerator of

µ(a, τ0). We rule out E[a(X) | W0 = 1] = 0 since it implies the estimand does not exist. The estimand in

(1.1) is unchanged if the sign of a(X) is reversed, so E[a(X) | W0 = 1] > 0 is a sign normalization.

3.1 Alternative Representations of Weighted Estimands

The weighted estimands of equation (1.1) can also be written as a weighted sum when X is discrete, or an

integral when X is continuous. In the discrete case, let supp(X) = {x1, . . . , xK}, W0 = 1 almost surely, and

let pk ≡ P(X = xk) > 0 for k = 1, . . . ,K. Then,

µ(a, τ0) =

K∑
k=1

ωkτ0(xk) where ωk =
a(xk)pk∑K
l=1 a(xl)pl

, (3.1)

which are weights that sum to one. The representations in (1.1) and (3.1) are equivalent as we can obtain

a(xk) (up to scale) as the ratio ωk/pk, and ωk is defined as a function of (a(·), p·) in equation (3.1) above.

From (3.1), we can see that a(xk) being constant ensures ωk = pk, or that the estimand is the ATE.

Moreover,

a(xk)

a(xk′)
=

ωk

ωk′

/ pk
pk′

,

which is the ratio of the relative weights of covariate cells {X = xk} and {X = xk′} in the estimand (ωk/ωk′)

and in the population (pk/pk′). The inequality a(xk) > a(xk′) indicates that covariate cell {X = xk} is

overweighted relative to {X = xk′}, when compared to their relative weights in the population.

Alternatively, consider the case where X is continuously distributed with density3 fX . Still assuming

W0 = 1 almost surely, we can write

µ(a, τ0) =

∫
supp(X)

ω(x)τ0(x) dx where ω(x) =
a(x)fX(x)∫

supp(X)
a(x)fX(x) dx

(3.2)

is a weight function that integrates to 1. We focus on the representation in equation (1.1) since it seamlessly

accommodates discrete, continuous, and mixed covariates.

2While τ0(X) is only defined for w0(X) > 0, we set τ0(X)w0(X) = 0 when w0(X) = 0.
3With respect to the Lebesgue measure.
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3.2 Regular Subpopulations

The first question we address is whether an estimand defined by (1.1) can be represented as E[Y (1)−Y (0) |
W ∗ = 1], where W ∗ ∈ {0, 1} is binary and {W ∗ = 1} characterizes a subpopulation of {W0 = 1}. Formally,

{W ∗ = 1} forms a subpopulation if {W ∗ = 1} ⊆ {W0 = 1} or, equivalently, if W ∗ ≤ W0 almost surely.

We impose some structure on this problem by restricting how these subpopulations may be formed. We

will consider what we call “regular subpopulations,” which we define here.

Definition 3.1. Let W ∗ ∈ {0, 1} such that P(W ∗ = 1) > 0. Say {W ∗ = 1} is a regular subpopulation of

{W0 = 1} if

1. (Inclusion) P(W ∗ = 1 | W0 = 0) = 0;

2. (Conditional Independence) W ∗ ⊥⊥ (Y (1), Y (0)) | X,W0 = 1.

For convenience, we will abbreviate this as “W ∗ is a regular subpopulation of W0”. We denote the set of

regular subpopulations of W0 as

SP(W0) = {W ∗ ∈ {0, 1} : W ∗ is a regular subpopulation of W0}.

We consider subpopulations with positive masses that are subsets of {W0 = 1}. The second and main

requirement is that regular subpopulations do not depend on potential outcomes when conditioning on X

and the original population W0 = 1. While this may seem restrictive, it allows for rich and natural classes

of subpopulations. For example, consider the unconfoundedness restriction of Section 2.1 and let W0 be

the entire population, i.e. P(W0 = 1) = 1. In this case, regular subpopulations must satisfy W ∗ ⊥⊥
(Y (1), Y (0)) | X, or be unconfounded. Regular subpopulations include the population of all treated (or

untreated) individuals, i.e. W ∗ = D (or W ∗ = 1 − D), and any subpopulation characterized by a subset

of supp(X). More generally, it includes any subpopulation that can be described through a combination

of (D,X,U) where U is independent from (Y (1), Y (0), X). For example, a subpopulation characterized by

“fraction a(x) of units with covariate X = x for all x ∈ supp(X)” can be constructed as W ∗ = 1(U ≤ a(X))

where U ∼ Unif(0, 1) is independent from (Y (1), Y (0), X).

The conditional independence requirement rules out subpopulations that directly depend on the potential

outcomes such as W ∗ = 1(Y (1) ≥ Y (0)), the subpopulation of those who benefit from treatment. Note that

P(W ∗ = 1 | X) = P(Y (1) ≥ Y (0) | X) and P(W ∗ = 1) = P(Y (1) ≥ Y (0)) are not point-identified under

unconfoundedness.

These particular subpopulations enjoy a number of useful properties. Two of them are characterized in

the following proposition.

Proposition 3.1 (Properties of regular subpopulations). Let P(W0 = 1) > 0 and W ∗ ∈ SP(W0).

1. Let P(W ∗ = 1 | W0 = 1, X) > 0. Then,

E[Y (1) − Y (0) | W ∗ = 1, X] = E[Y (1) − Y (0) | W0 = 1, X]. (3.3)
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2. Let E[τ0(X)2] < ∞. Then,

E[Y (1) − Y (0) | W ∗ = 1] =
E[w∗(X)τ0(X) | W0 = 1]

E[w∗(X) | W0 = 1]
= µ(w∗, τ0), (3.4)

where w∗(x) = P(W ∗ = 1 | X = x,W0 = 1).

The first part of this proposition shows that average effects within the original population W0 and regular

subpopulation W ∗ are the same when conditioning on X. For example, this holds under unconfoundedness

for the subpopulation of treated individuals, W ∗ = D. The second property allows us to write the average

effect for W ∗ = 1 using the same functional µ(·, ·) that was used to characterize the class of estimands we

analyze. This property will be used when studying the mapping between weighted estimands and average

effects for regular subpopulations of W0.

We conclude this subsection by showing that regular subpopulations are transitive, or that regular sub-

populations of a regular subpopulation of W0 are also regular subpopulations of W0.

Lemma 3.1 (Transitivity of regular subpopulations). Let W ∗ be a regular subpopulation of W ′ and let W ′

be a regular subpopulation of W0. Then, W ∗ is a regular subpopulation of W0.

3.3 Existence of a Causal Representation for Weighted Estimands

We now consider necessary and sufficient conditions for the weighted estimand µ(a, τ0) to be written as the

average treatment effect within a regular subpopulation of W0. As we will show, these conditions depend on

what is assumed about the function τ0 = E[Y (1) − Y (0) | X = ·,W0 = 1].

For example, if τ0 is constant in X, then any weighted estimand satisfying (1.1) equals E[Y (1) − Y (0) |
W0 = 1], the average treatment effect within population {W0 = 1}. This is the case even when the sign of

weight function a(X) varies with X. However, if τ0 is nonconstant, the existence of causal representations

will depend on the weight function a(X). Among other cases, we will consider the case where no restrictions

are placed on function τ0, and in this case, the existence of a causal representation of µ(a, τ0) will require

the sign of a(X) to be constant.

To formalize this, let T denote a class of functions such that τ0 ∈ T and define

W(a;W0, T ) = {W ∗ ∈ SP(W0) : µ(a, τ0) = E[Y (1) − Y (0) | W ∗ = 1] for all τ0 ∈ T }.

This is the set of regular subpopulations of W0 such that the estimand µ(a, τ0) = E[Y (1) − Y (0) | W ∗ = 1]

for all τ0 functions in the set T . If it is empty, then estimand µ(a, τ0) cannot be written as an average

treatment effect over a regular subpopulation of W0 uniformly in τ0 ∈ T . We use this set to formally define

a notion of uniform causal representation.

Definition 3.2. A weighted estimand µ(a, τ0) has a causal representation uniformly in τ0 ∈ T if

W(a;W0, T ) ̸= ∅.

Recall that E[Y (1) − Y (0) | W ∗ = 1] = µ(w∗, τ0) where w∗(X) = P(W ∗ = 1 | W0 = 1, X), so W ∗ ∈
W(a;W0, T ) if µ(a, τ0) = µ(w∗, τ0) for all τ0 ∈ T . We examine further two main cases for the set T .

12



3.3.1 Existence Uniformly in τ0

We begin by considering the largest class of functions in which τ0 lies: the class of all functions, subject to

the moment condition in Assumption 3.1 that ensures the existence of µ(a, τ0). We denote this class by

Tall ≡ {τ0 : E[τ0(X)2] < ∞}.

In this function class, the existence of a causal representation is equivalent to the weights being nonneg-

ative.

Theorem 3.1. Let Assumption 3.1 hold and let sup(supp(a(X) | W0 = 1)) < ∞. Then, there exists

W ∗ ∈ W(a;W0, Tall) if and only if P(a(X) ≥ 0 | W0 = 1) = 1.

A uniform (in Tall) causal representation exists if and only if a(X) is nonnegative on the support of

X | W0 = 1. To give some intuition on why the sign of a(X) must be nonnegative with probability 1,

partition supp(X | W0 = 1) in X+ ≡ {x ∈ supp(X | W0 = 1) : a(x) ≥ 0} and X− ≡ {x ∈ supp(X | W0 =

1) : a(x) < 0}. If P(a(X) ≥ 0 | W0 = 1) < 1, then P(X ∈ X+ | W0 = 1) > 0 and P(X ∈ X− | W0 = 1) > 0

under Assumption 3.1. Then, setting τ−(X) = 1(X ∈ X−) and τ+(X) = 1(X ∈ X+) yields estimands of

different signs, i.e. µ(a, τ−) < 0 < µ(a, τ+), despite τ− and τ+ being of the same sign. In other words, as

is well known, nonnegative CATEs can be combined into a negative estimand when weights are negative.

Hence, such an estimand is not weakly causal (Blandhol, Bonney, Mogstad, and Torgovitsky, 2022).

Conversely, if a(X) ≥ 0, our proof constructively defines a regular subpopulation W ∗ for which the

average effect is equal to the weighted estimand µ(a, τ0) uniformly in τ0 ∈ Tall. Let

W ∗ = 1

(
U ≤ a(X)

sup(supp(a(X) | W0 = 1))

)
·W0,

where U ∼ Unif(0, 1) ⊥⊥ (Y (1), Y (0), X,W0). This is a regular subpopulation of W0 for which the probability

of inclusion, conditional on X and W0 = 1, is proportional to a(X). The condition sup(supp(a(X) | W0 =

1)) < ∞ restricts our attention to subpopulations with positive mass. From this construction, we can see

that w∗(X) = P(W ∗ = 1 | W0 = 1, X) is proportional to a(X), and therefore E[Y (1) − Y (0) | W ∗ = 1] =

µ(w∗, τ0) = µ(a, τ0) uniformly in τ0.

3.3.2 Existence for a Given τ0

We now provide an existence result that requires the causal representation to exist only for the given τ0,

rather than uniformly for τ0 in the larger set Tall. This result’s assumptions depend on the nature of the

CATE function τ0 in the population, whereas Theorem 3.1’s condition depended only on the weight function

a(X), and the nature of the covariates’ support. Thus, the distribution of the potential outcomes will have

an impact on the existence of a causal representation given τ0. Using the notation from Definition 3.2, a

causal representation exists if and only if W(a;W0, {τ0}) ̸= ∅. The following theorem characterizes this

existence.
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Theorem 3.2. Let Assumption 3.1 hold. Then, there exists W ∗ ∈ W(a;W0, {τ0}) if and only if

µ(a, τ0) ∈ S(τ0;W0) ≡ {t ∈ R : P(τ0(X) ≤ t | W0 = 1) > 0 and P(τ0(X) ≥ t | W0 = 1) > 0}. (3.5)

The existence condition in Theorem 3.2 is weaker than the one in Theorem 3.1 since we no longer require

this representation to be valid for all τ0 ∈ Tall, but rather for just one its element. The necessary and sufficient

condition in this theorem is rather weak, since it only requires that the estimand is in the convex hull of

the support of the CATEs. This means µ(a, τ0) has a causal representation even with negative weights, as

long as there are CATEs smaller and greater than µ(a, τ0). We can see this support condition holds for all

τ0 ∈ Tall if and only if µ(a, τ0) is in the support of τ0(X) for all τ0. This is precisely the case when the weights

a(X) are nonnegative since it guarantees inf(supp(τ0(X) | W0 = 1)) ≤ µ(a, τ0) ≤ sup(supp(τ0(X) | W0 = 1))

for any function τ0.

3.3.3 Intermediate Cases

Analyzing the representativeness of an estimand under no restrictions on τ0 could be viewed as unnecessarily

conservative in some settings. At the other extreme, assuming knowledge of τ0 may be unrealistic, especially

in scenarios where X has many components which makes the estimation of τ0 more challenging. For example,

some shape constraints may be known to hold for τ0. In some economic applications one may posit that τ0

is monotonic or convex in some components of X, or positive/negative over a subset of supp(X | W0 = 1).

In these cases, the existence of a causal representation may occur under weaker conditions than Theorem

3.1, but stronger than Theorem 3.2. In particular, one may be able to relax the requirement that a(X) ≥ 0

without requiring that τ0 be completely known to the researcher. The following proposition shows this is

the case when τ0(X) is assumed to be linear in X.

Proposition 3.2. Let Assumption 3.1 hold and define

Tlin = {τ0(X) = c + d′X : (c, d) ∈ R1+dX}.

Then, there exists W ∗ ∈ W(a;W0, Tlin) if and only if

E[a(X)X | W0 = 1]

E[a(X) | W0 = 1]
∈ conv(supp(X | W0 = 1)),

where conv(·) denotes the convex hull.

The above proposition shows that once the class of CATE functions is restricted, the requirement that

a(X) be nonnegative is no longer needed for the existence of a uniform causal representation for an estimand.

In particular, the requirement here is that E[a(X)X|W0=1]
E[a(X)|W0=1] lies in the convex hull of the support of X given

W0 = 1. When X is scalar, this consists of an interval. This condition does not require a(X) be nonnegative:

for example, if supp(X) = {0, 1, 2}, P(X = x) = 1/3 for x ∈ {0, 1, 2}, and W0 = 1 almost surely, then any

combination of (a(0), a(1), a(2)) values such that a(1)+2a(2)
a(0)+a(1)+a(2) ∈ [0, 2] implies a causal representation. For

example, (a(0), a(1), a(2)) = (1,−1, 1) contains a negative element, and thus P(a(X) ≥ 0) = 2/3 < 1, but
a(1)+2a(2)

a(0)+a(1)+a(2) = 1 ∈ [0, 2], implying that the corresponding weighted estimand has a causal representation.
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We consider another class of CATE functions that restricts their heterogeneity. For K ≥ 0, let

TBV(K) =

{
τ ∈ Tall : sup

x,x′∈supp(X|W0=1)

|τ(x) − τ(x′)| ≤ K

}
.

This function class bounds the variation of the CATE function. When K = 0, the CATE function is constant,

and thus equal to E[Y (1) − Y (0) | W0 = 1]. When K > 0, CATEs may differ in value, but the maximum

discrepancy between two CATEs is bounded above by K. We show that restricting the CATEs to satisfy this

bounded variation assumption does not remove the requirement that a(X) be nonnegative, unless K = 0, in

which case all a functions yield a causal representation uniformly in TBV(0). We formalize this in the next

proposition.

Proposition 3.3. Let Assumption 3.1 hold. If K > 0, there exists W ∗ ∈ W(a;W0, TBV(K)) if and only if

P(a(X) ≥ 0 | W0 = 1) = 1. If K = 0, there exists W ∗ ∈ W(a;W0, TBV(0)) for all a.

The last two propositions show that the impact of restrictions on τ0 on the requirement that a(X)

be nonnegative depends on the nature of these restrictions. Generalizations to additional or empirically

motivated function classes is left for future work.

4 Quantifying the Internal Validity of Weighted Estimands

Many estimands will admit causal representations, but their associated subpopulations {W ∗ = 1} will

generally differ. Also, a weighted estimand may not always correspond to the target estimand a researcher is

interested in, such as E[Y (1)− Y (0) | W0 = 1] if the average effect in {W0 = 1} is the parameter of interest.

However, the set of W ∗ corresponding to a weighted estimand can be used to understand how representative

the weighted estimand is of the target. For example, we may seek estimands for which P(W ∗ = 1 | W0 = 1)

attains values closest to 1, since they have a higher degree of internal validity with respect to the target

E[Y (1) − Y (0) | W0 = 1]. At one extreme, an estimand for which P(W ∗ = 1 | W0 = 1) = 1 is perfectly

representative of E[Y (1) − Y (0) | W0 = 1] and would be deemed to have the highest degree of internal

validity for this target parameter.

Formally, we ask what is the sharp upper bound on P(W ∗ = 1 | W0 = 1) for any regular subpopulation

W ∗ of W0 such that the weighted estimand µ(a, τ0) has a causal representation as the average treatment

effect over subpopulation W ∗. We denote this object using the following notation:

P (a,W0; T ) = sup
W∗∈W(a;W0,T )

P(W ∗ = 1 | W0 = 1). (4.1)

We also set P (a,W0; T ) = 0 when W(a;W0, T ) is empty. This object depends on the chosen function class

T , as did Theorems 3.1 and 3.2 in the previous section. Given the above terminology, we call P (a,W0; T ) a

measure of the internal validity of estimand µ(a, τ0), assuming that E[Y (1) − Y (0) | W0 = 1] is the target.

We can also compute the maximum value of P(W ∗ = 1) across W ∗ ∈ W(a;W0, T ), which equals P(W ∗ =

1) = P(W ∗ = 1 | W0 = 1)·P(W0 = 1) since W ∗ is a subpopulation of W0. This maximum value of P(W ∗ = 1)

gives the internal validity of the weighted estimand with respect to target estimand E[Y (1) − Y (0)], the
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average treatment effect in the population from which the sample is drawn. It can also be understood as a

measure of representativeness of the weighted estimand with respect to that population.

As earlier, we break down our results in two cases, the first being when τ0 is unrestricted.

4.1 Quantifying Internal Validity Uniformly in τ0

Without imposing any restrictions on the CATE function, except for the existence of second moments, the

maximum value that P(W ∗ = 1 | W0 = 1) can achieve is given by the following theorem.

Theorem 4.1. Let Assumption 3.1 hold and let sup(supp(a(X) | W0 = 1)) < ∞. Then

sup
W∗∈W(a;W0,Tall)

P(W ∗ = 1 | W0 = 1) = P (a,W0; Tall) =


E[a(X)|W0=1]

sup(supp(a(X)|W0=1)) if P(a(X) ≥ 0 | W0 = 1) = 1

0 if P(a(X) ≥ 0 | W0 = 1) < 1.

(4.2)

Here we see that the maximum size of a subpopulation characterizing the estimand µ(a, τ0) depends on

a(X) through two terms: the denominator of the estimand, E[a(X) | W0 = 1], and the maximum value of a(x)

over the support of X | W0 = 1. Note that P (a,W0; Tall) is invariant to the scale of a(X), as is the estimand

µ(a, τ0). To understand the supremum’s role in this expression, let w∗(X) = P(W ∗ = 1 | X,W0 = 1) and

note that µ(a, τ0) = E[Y (1) − Y (0) | W ∗ = 1] is equivalent to writing

µ(a, τ0) =
E[a(X)τ0(X) | W0 = 1]

E[a(X) | W0 = 1]
=

E[w∗(X)τ0(X) | W0 = 1]

E[w∗(X) | W0 = 1]
= µ(w∗, τ0) (4.3)

for all τ0. Equation (4.3) holding for all τ0 requires w∗(X) be exactly proportional to a(X). While a(X)’s

range is unconstrained, w∗(X) must lie in [0, 1] to be a valid conditional probability. Since we seek to

maximize P(W ∗ = 1 | W0 = 1) = E[w∗(X) | W0 = 1], we let w∗(X) be the largest multiple of a(X) that lies

in [0, 1] with probability 1, which is defined below:

W ∗ = 1

(
U ≤ a(X)

sup(supp(a(X) | W0 = 1))

)
·W0 and w∗(X) =

a(X)

sup(supp(a(X) | W0 = 1))
.

Here, U ∼ Unif(0, 1) and U ⊥⊥ (Y (1), Y (0), X,W0). This population places relatively more weight on units

with larger values of a(X). Specifically, the population {W ∗ = 1} contains a random subset of {W0 = 1}
where the probability of inclusion is proportional to a(X). Thus, units with larger values of a(X) are more

likely to be included in W ∗. All units in {W0 = 1} with X such that a(X) = sup(supp(a(X) | W0 = 1)) are

included in W ∗, whereas no units where a(X) = 0 are included.

Given a data-generating process, this bound can be computed without any knowledge of the outcome’s

conditional distribution and depends solely on weight function a(·) and the distribution of X | W0 = 1.

Remark 4.1 (Defining the target estimand from the weighted estimand). Suppose we consider E[Y (1) −
Y (0) | W ∗ = 1] to be the target estimand, where W ∗ = 1

(
U ≤ a(X)

sup(supp(a(X)|W0=1))

)
·W0 is the subpopulation

for which µ(a, τ0) = E[Y (1)−Y (0) | W ∗ = 1] uniformly in τ0. For example, under Example 2.1, this consists

of a subpopulation where the probability of inclusion is proportional to var(D | X), the conditional variance

of treatment. If this subpopulation is the target, it would be reasonable to infer that the measure of internal
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validity of the estimand µ(a, τ0) is the maximum value of 1. Indeed, this is the case because the estimand

can be written as

µ(a, τ0) = E[Y (1) − Y (0) | W ∗ = 1]

and {W ∗ = 1} is trivially the largest regular subpopulation of {W ∗ = 1}. This illustrates how the internal

validity of an estimand is entirely dependent on the target estimand. On the other hand, the representa-

tiveness of the weighted estimand, as measured by the largest value of P(W ∗ = 1), is less than one unless

W ∗ = W0 almost surely, or that the weighted estimand actually equals the ATE. Theorem 4.4 below can

also be applied to obtain this intuition.

We now consider a simple example to give further intuition for Theorem 4.1.

4.1.1 Illustrative Example: A Single Binary Covariate

Consider an estimand µ(a, τ0) where W0 = 1 almost surely, a(X) ≥ 0, and where X is binary with support

supp(X) = {0, 1}. Let px = P(X = x) > 0 for x ∈ {0, 1}. As in Section 3.1, the weighted estimand can be

written as a linear combination of the two CATEs:

µ(a, τ0) =
a(0)p0
E[a(X)]

τ0(0) +
a(1)p1
E[a(X)]

τ0(1) ≡ ω0τ0(0) + ω1τ0(1).

Let E[Y (1) − Y (0)] = ATE be the target estimand, which can be written as

ATE = p0τ0(0) + p1τ0(1).

If a(0) = a(1), the relative weights placed on {X = 0} and {X = 1} by the estimand are equal to p0/p1, the

ratio of the weights placed by the ATE. Therefore, the estimand equals the ATE and thus clearly has the

maximum degree of internal validity with respect to the ATE. Applying Theorem 4.1, we can directly see

that

P (a,W0; Tall) =
E[a(X)]

supx∈{0,1} a(x)
=

a(0)p0 + a(1)p1
max{a(0), a(1)}

=
a(1)(p0 + p1)

a(1)
= 1

when a(0) = a(1).

However, when a(0) ̸= a(1), the estimand’s weights differ from (p0, p1), the population weights for the two

covariate cells. For concreteness, let a(1) > a(0). In this case, the estimand overrepresents the population

with X = 1 and underrepresents the population with X = 0, relative to the ATE. The largest subpopulation

{W ∗ = 1} that places weights (a(0), a(1)) can be constructed by combining subsets of the subpopulations

defined by {X = 0} and {X = 1}. Specifically, let

W ∗ = 1(X = 1) + 1

(
U ≤ a(0)

a(1)
, X = 0

)
,

where U ∼ Unif(0, 1) is independent from (Y (1), Y (0), X). This is a subpopulation that contains all units
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with X = 1 and fraction a(0)/a(1) < 1 of units with X = 0, selected uniformly at random. Its size is

P(W ∗ = 1) = P(X = 1) + P
(
U ≤ a(0)

a(1)
, X = 0

)
= p1 +

a(0)

a(1)
p0 < 1,

which is the same as E[a(X)]
supx∈{0,1} a(x) = a(1)p1+a(0)p0

a(1) obtainable from Theorem 4.1. The average treatment

effect in this subpopulation is given by

E[Y (1) − Y (0) | W ∗ = 1] = P(X = 0 | W ∗ = 1)τ0(0) + P(X = 1 | W ∗ = 1)τ0(1)

=

a(0)
a(1)p0

a(0)
a(1)p0 + p1

τ0(0) +
p1

a(0)
a(1)p0 + p1

τ0(1)

=
a(0)p0

a(0)p0 + a(1)p1
τ0(0) +

a(1)p1
a(0)p0 + a(1)p1

τ0(1)

= µ(a, τ0).

The relative weights placed on {X = 0} and {X = 1} in subpopulation {W ∗ = 1} are given by

P(X = 0 | W ∗ = 1)

P(X = 1 | W ∗ = 1)
=

a(0)
a(1)p0

a(0)
a(1)p0 + p1

/
p1

a(0)
a(1)p0 + p1

=
ω0

ω1
,

matching the ratio of the weights on {X = 0} and {X = 1} assigned by the estimand. The subpopulation

{W ∗ = 1} cannot expand while preserving this ratio since it already encompasses all units with X = 1.

Therefore, W ∗ is the largest subpopulation for which µ(a, τ0) = E[Y (1) − Y (0) | W ∗ = 1].

4.1.2 Partial Identification of Average Effects

This subpopulation size can be used to bound target estimand E[Y (1) − Y (0) | W0 = 1] using only the

weighted estimand and bounds on Y . Given knowledge of the weighted estimand µ(a, τ0) and its represen-

tativeness, given by P (a,W0; Tall), we can decompose the target estimand as

E[Y (1) − Y (0) | W0 = 1] = E[Y (1) − Y (0) | W ∗ = 1] · P(W ∗ = 1 | W0 = 1)

+ E[Y (1) − Y (0) | W ∗ = 0,W0 = 1] · (1 − P(W ∗ = 1 | W0 = 1))

= µ(a, τ0) · P (a,W0; Tall) + E[Y (1) − Y (0) | W ∗ = 0,W0 = 1] · (1 − P (a,W0; Tall))

for W ∗ ∈ W(a;W0, Tall). Therefore, E[Y (1) − Y (0) | W0 = 1] is point-identified given knowledge of

(µ(a, τ0), P (a,W0; Tall)) if P (a,W0; Tall) = 1, and partially identified if P (a,W0; Tall) < 1. If we have knowl-

edge of bounds for the treatment effect E[Y (1)−Y (0) | W ∗ = 0,W0 = 1], e.g. from the support of the potential

outcomes, we can obtain bounds on E[Y (1)−Y (0) | W0 = 1]. For example, if supp(Y (1)−Y (0)) = [Bℓ, Bu],

bounds for the target estimand are given by

[
(µ(a, τ0) −Bℓ)P (a,W0; Tall) + Bℓ, (µ(a, τ0) −Bu)P (a,W0; Tall) + Bu

]
.

18



The width of these bounds is (Bu − Bℓ)(1 − P (a,W0; Tall)). Hence for fixed (Bℓ, Bu), this width decreases

linearly with P (a,W0; Tall) and values of P (a,W0; Tall) close to 1, or high degrees of internal validity, lead

to narrow bounds.

4.2 Quantifying Internal Validity Given τ0

As in the previous subsection, we can also ask how internally valid a weighted estimand can be, given

knowledge of the CATE function. In this case, the object of interest is

P (a,W0; {τ0}) = sup
W∗∈W(a;W0,{τ0})

P(W ∗ = 1 | W0 = 1). (4.4)

where τ0 is a given CATE function. Since τ0 is known, the condition W ∗ ∈ W(a;W0, {τ0}) can be written

as

µ(a, τ0) =
E[w∗(X)τ0(X) | W0 = 1]

E[w∗(X) | W0 = 1]

or, equivalently,

E[(τ0(X) − µ(a, τ0))w∗(X) | W0 = 1] = 0, (4.5)

where w∗(X) = P(W ∗ = 1 | W0 = 1, X). Equation (4.5) is a linear constraint on the conditional probability

of being in subpopulation W ∗. Additionally, the objective function P(W ∗ = 1 | W0 = 1) = E[w∗(X) |
W0 = 1] is linear in w∗. Thus, the optimization in (4.4) can be cast as a linear program. To see this,

consider as an example the case where W0 = 1 almost surely and where X is discrete with finite support,

i.e. supp(X) = {x1, . . . , xK}. Let fk = P(W ∗ = 1, X = xk) denote the probability of being in subpopulation

W ∗ and having covariate value xk. Note that fk ∈ [0, pk] where pk ≡ P(X = xk).

We can write the above optimization problem as

max
(f1,...,fK)≥0

K∑
k=1

fk such that fk ≤ pk for k ∈ {1, . . . ,K},

K∑
k=1

(τ0(xk) − µ(a, τ0))fk = 0,

a finite-dimensional linear program. This program has a feasible solution if τ0(xk) − µ(a, τ0) is not strictly

positive or strictly negative for all k, which is precisely stated in the condition for Theorem 3.2. While there

exist many methods for solving linear programs, the value function can be obtained through an algorithm

that is simple to describe analytically.

Let f = (f1, . . . , fK), p = (p1, . . . , pK), and tµ = (τ0(x1) − µ(a, τ0), . . . , τ0(xK) − µ(a, τ0)). Without loss

of generality, assume that τ0(x1) − µ(a, τ0) ≤ τ0(x2) − µ(a, τ0) ≤ · · · ≤ τ0(xK) − µ(a, τ0).

1. Set f = p.

2. If t′µf = 0, end the algorithm and report
∑K

k=1 fk.
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3. If t′µf ̸= 0:

(a) If t′µf > 0, let k∗ = max{k ∈ {1, . . . ,K} : fk = pk} and set fk∗ = max

{
0,

−
∑k∗−1

k=1 (τ0(xk)−µ(a,τ0))pk

τ0(xk∗ )−µ(a,τ0)

}
.

(b) If t′µf < 0, let k∗ = min{k ∈ {1, . . . ,K} : fk = pk} and set fk∗ = max

{
0,

−
∑K

k=k∗+1(τ0(xk)−µ(a,τ0))pk

τ0(xk∗ )−µ(a,τ0)

}
.

4. Go to step 2.

When µ(a, τ0) exceeds E[Y (1) − Y (0) | W0 = 1], this algorithm reduces the weights associated with largest

CATEs until µ(a, τ0) equals E[Y (1) − Y (0) | W ∗ = 1] for some subpopulation. When µ(a, τ0) < E[Y (1) −
Y (0) | W0 = 1], the same procedure is instead applied to the smallest CATEs. The support assumption of

Theorem 3.2 guarantees that this algorithm ends.

When X is not discretely supported, the problem can still be cast as a linear program, but its dimension

may be infinite, which generates difficulties in implementation. However, we show this program has an

analytical solution for the size of the subpopulation of interest, P(W ∗ = 1 | W0 = 1). The following theorem

gives its expression and is valid when vector X has an arbitrary kind of distribution, with continuous,

discrete, and mixed components, as is often the case in empirical applications.

Theorem 4.2. Let Assumption 3.1 hold. Let Tµ = τ0(X) − µ(a, τ0). If µ(a, τ0) ∈ S(τ0;W0),

P (a,W0; {τ0})

=



P(Tµ ≤ α+ | W0 = 1) − E[Tµ1(Tµ≤α+)|W0=1]
α+

where α+ = inf{α ∈ R : E[Tµ1(Tµ ≤ α) | W0 = 1] ≥ 0} if µ(a, τ0) < E[Y (1) − Y (0) | W0 = 1]

P(Tµ ≥ α− | W0 = 1) − E[Tµ1(Tµ≥α−)|W0=1]
α−

where α− = sup{α ∈ R : E[Tµ1(Tµ ≥ α) | W0 = 1] ≤ 0} if µ(a, τ0) > E[Y (1) − Y (0) | W0 = 1]

1 if µ(a, τ0) = E[Y (1) − Y (0) | W0 = 1].

(4.6)

If µ(a, τ0) /∈ S(τ0;W0), then P (a,W0; {τ0}) = 0.

The computation of these bounds can be done using a linear programming algorithm when X is discrete,

or through plug-in estimators of the terms in equation (4.6) regardless of the nature of the support of X.

In this setting, the value P (a,W0; {τ0}) is larger when the truncated subpopulations are smaller. In

particular, this is the case when there are a few units with extreme values of τ0 whose removal has a large

impact on the estimand, but a small impact on the share of the population.

4.2.1 Illustrative Example: A Single Continuous Covariate

To illustrate the previous theorem, let X be a continuously distributed covariate with support [xL, xU ]. Let

W0 = 1 almost surely, and let µ ≡ µ(a, τ0) denote the estimand. Also, for simplicity assume that τ0(x)

is increasing in x and that τ0(xL) < µ < τ0(xU ). Without loss of generality, let E[Y (1) − Y (0)] ≥ µ. If

E[Y (1)−Y (0)] = µ, then the estimand is perfectly representative of the population since it equals the average
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treatment effect over it. Now consider the case where E[Y (1) − Y (0)] > µ. In this case, the estimand is

larger than the ATE so it is not representative of the entire population.

We are seeking the largest subpopulation {W ∗ = 1} such that E[Y (1)−Y (0) | W ∗ = 1] = µ. Equivalently,

we can seek the smallest subpopulation {W− = 1} such that, when it is removed from the original population,

the average treatment effect equals µ. The subpopulation {W− = 1} is related to {W ∗ = 1} via W− +W ∗ =

1. We will search for W− such that E[Y (1) − Y (0) | W− = 0] = µ and P(W− = 1) is minimized.

Since the ATE exceeds µ, we must have that E[τ0(X) | W− = 1] > µ. For a given subpopulation of

size P(W− = 1), removing the subpopulation with the largest values of τ0(x) yields the largest decrease in

E[Y (1) − Y (0) | W− = 0]. Therefore, P (a,W0; {τ0}) is obtained by removing a subpopulation of the kind

W−(δ) = 1(τ0(X) ≥ δ) for a given threshold δ. This subpopulation consists of units whose CATEs exceed

a threshold δ. This threshold is determined by the constraint E[τ0(X) | W−(δ) = 0] = µ, or

E[τ0(X) | τ0(X) ≤ δ] = µ. (4.7)

This constraint states that once {W−(δ) = 1} is removed, the average treatment effect for the remaining

units equals the weighted estimand. Since we assumed τ0 is increasing, W ∗ corresponds to all units with

covariate values below threshold δ = τ−1
0 (δ). Therefore,

W ∗ = 1(X ≤ τ−1
0 (δ)),

where δ is the unique solution to (4.7). How large P(W ∗ = 1) is depends on the size of this fraction of

removed units. A smaller subpopulation needs to be removed when τ0(X) has a long right tail, and a larger

subpopulation needs to be removed when the distribution of τ0(X) in this right tail is shorter.

4.3 Generalizing to Subpopulations

The results from the previous two sections can be generalized to cases where we hold the average effect

for a subset of W0 as the object of interest. Specifically, let W ′ be a regular subpopulation of W0 and

E[Y (1) − Y (0) | W ′ = 1] be the target parameter. In analogy to the previous subsections, we ask (i) when

does there exist a regular subpopulation W ∗ of W ′ such that µ(a, τ0) can be written as a causal estimand

and (ii) how representative of W ′ is this estimand.

For concreteness, in the IV model of Section 2.2, we may be interested in the average treatment effect

for compliers/defiers with covariates in given set X0: E[Y (1) − Y (0) | D(1) > D(0), X ∈ X0]. In this case

W0 = 1(D(1) > D(0)) and W ′ = 1(D(1) > D(0), X ∈ X0), a regular subpopulation of W0.

We first present a result showing conditions for the existence of such population W ∗ in the case where

τ0 is unrestricted, and when τ0 is fixed.

Theorem 4.3. Let Assumption 3.1 hold and let W ′ be a regular subpopulation of W0.

1. (Uniformly in τ0) Let sup(supp(a(X)/w′(X) | W0 = 1)) < ∞.4 Then, there exists W ∗ ∈ W(a;W ′, Tall)
if and only if P(a(X) ≥ 0 | W ′ = 1) = 1.

4We use the conventions 0/0 = 1 and a/0 = ∞ when a > 0.
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2. (Given τ0) There exists W ∗ ∈ W(a;W ′, {τ0}) if and only if µ(a, τ0) ∈ S(τ0;W ′).

Note that letting W ′ = W0 yields Theorems 3.1 and 3.2 as special cases since W0 is a regular subpopu-

lation of W0 by definition.

The condition sup(supp(a(X)/w′(X) | W0 = 1)) < ∞ rules out uniform causal representations if there

are covariate values for which a(x) is strictly positive but are not represented in W ′, i.e., P(W ′ = 1 | X =

x,W0 = 1) = 0 when a(x) > 0. For example, if W ′ is a subpopulation of W0 defined by a subset of covariate

values such that W ′ = 1(X ∈ X0) ·W0, then W ′ is a regular subpopulation but will fail the above inequality

if a(X) > 0 for X ∈ supp(X | W0 = 1) \ X0. In the case where τ0 is known, the existence of a causal

subpopulation of W ′ is equivalent to the estimand being in the convex hull of supp(τ0(X) | W ′ = 1).

Regarding the representativeness of a weighted estimand, we generalize Theorems 4.1 and 4.2 and ask

how large P(W ∗ = 1 | W ′ = 1) can be given that W ∗ is a regular subpopulation of W ′, which is itself a

regular subpopulation of W0. In what follows, we let w′(X) = P(W ′ = 1 | X,W0 = 1).

Theorem 4.4. Let Assumption 3.1 hold and let W ′ be a regular subpopulation of W0.

1. (Uniformly in τ0) Let sup (supp (a(X)/w′(X) | W0 = 1)) < ∞. If P(a(X) ≥ 0 | W ′ = 1) = 1, then

P (a,W ′; Tall) = E[a(X) | W0 = 1] · P(W0 = 1)

P(W ′ = 1)
· inf

(
supp

(
w′(X)

a(X)
| W ′ = 1

))
. (4.8)

If P(a(X) ≥ 0 | W ′ = 1) < 1, P (a,W ′; Tall) = 0.

2. (Given τ0) If µ(a, τ0) ∈ S(τ0;W ′), then

P (a,W ′; {τ0})

=



P(Tµ ≤ α+ | W ′ = 1) − E[Tµ1(Tµ≤α+)|W ′=1]
α+

where α+ = inf{α ∈ R : E[Tµ1(Tµ ≤ α) | W ′ = 1] ≥ 0} if µ(a, τ0) < E[Y (1) − Y (0) | W ′ = 1]

P(Tµ ≥ α− | W ′ = 1) − E[Tµ1(Tµ≥α−)|W ′=1]
α−

where α− = sup{α ∈ R : E[Tµ1(Tµ ≥ α) | W ′ = 1] ≤ 0} if µ(a, τ0) > E[Y (1) − Y (0) | W ′ = 1]

1 if µ(a, τ0) = E[Y (1) − Y (0) | W ′ = 1].

(4.9)

If µ(a, τ0) /∈ S(τ0;W ′), then P (a,W ′; {τ0}) = 0.

We can also use this result to obtain bounds on P(W ∗ = 1), or P(W ∗ = 1 | W0 = 1). This can be done

by noting that W ∗ is a subpopulation of both W ′ and W0, so

P(W ∗ = 1) = P(W ∗ = 1 | W ′ = 1) · P(W ′ = 1) and P(W ∗ = 1 | W0 = 1) =
P(W ∗ = 1 | W ′ = 1) · P(W ′ = 1)

P(W0 = 1)
.

Thus bounds on these probabilities are trivially obtained from the bound on P(W ∗ = 1 | W ′ = 1) from

Theorem 4.4 and knowledge of (P(W ′ = 1),P(W0 = 1)).
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4.4 Examples Revisited

For simplicity, we assume that sup(supp(a(X) | W0 = 1)) = supx∈supp(X|W0=1) a(x) for the remainder of the

paper. This condition is satisfied for example when a(·) is continuous.

4.4.1 Unconfoundedness

Recall the expression for the coefficient on D in a population regression of Y on (1, D,X):

βOLS =
E[p(X)(1 − p(X))τ0(X)]

E[p(X)(1 − p(X))]
.

Suppose the target estimand is the average treatment effect, i.e. W0 = 1 almost surely.

By Theorem 3.1, there exists a regular subpopulation W ∗ such that βOLS equals the average treatment

effect over W ∗ since the weight function a(X) ≡ p(X)(1−p(X)) is non-negative. By Theorem 4.1, the upper

bound on the size of subpopulation W ∗ is given by

P (a,W0; Tall) =
E[p(X)(1 − p(X))]

supx∈supp(X) p(x)(1 − p(x))
.

The corresponding subpopulation W ∗ satisfies

P(W ∗ = 1 | X) =
p(X)(1 − p(X))

supx∈supp(X) p(x)(1 − p(x))
.

This is a subpopulation that places greater weights on units which have a larger variation in treatment

given their covariate values. The size of this subpopulation is largest when var(D | X) = p(X)(1 − p(X))

is constant, in which case P(W ∗ = 1 | X) = 1. This is the case if and only if p(X) has support equal to

{b, 1 − b} for some b ∈ [0, 1]. This is implied by D ⊥⊥ X, or random assignment. It can also be achieved if

there exists a partition of supp(X) where P(D = 1 | X) = b on one element and P(D = 1 | X) = 1− b on its

complement. Whenever var(p(X)(1 − p(X))) > 0, {W ∗ = 1} will be a strict subpopulation.

The size of this subpopulation is the expectation of var(D | X) divided by its maximum value. There

are a few ways this expression can be further simplified or bounded. Its numerator is bounded above by

var(D) = P(D = 1) · P(D = 0), which is particularly simple to estimate. As for the denominator, it is

a non-smooth functional of p(·) which will lead to nonstandard inference. However, if X is continuously

distributed, it may be likely that p(X) is continuously distributed as well. In this case, it is likely that

1/2 ∈ supp(p(X)). If this is the case, supx∈supp(X) p(x)(1 − p(x)) = 1/4. Combining these approximations

yields that

P (a,W0; Tall) ≤ 4 · P(D = 1) · P(D = 0),

when the support of p(X) includes 1/2. This bound is trivial when P(D = 1) = 1/2, but is informative

when the treatment probability is close to 0 or 1. For example, if P(D = 1) = 0.1, the OLS estimand cannot

causally represent more than 36% of the population.

When 1/2 ∈ supp(p(X)), we can also compute bounds on the ATE derived from the OLS estimand,
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bounds on the support of (Y (1), Y (0)), and our measure of representativeness P (a,W0; Tall). Following

Remark 4.1.2, bounds on the ATE are given by

[(βOLS −Bℓ)4E[var(D | X)] + Bℓ, (βOLS −Bu)4E[var(D | X)] + Bu] .

Estimating these bounds requires the estimation of one additional quantity beyond the OLS estimator, which

is the expectation of var(D | X). Of course, these bounds’ width depends crucially on Bu−Bℓ, or the width

of the support for unit-level treatment effects.

Alternatively, we can assess the representativeness of βOLS with respect to an alternative estimand such

as E[Y (1) − Y (0) | D = 1], the average treatment effect on the treated. In this case, we can write

βOLS =
E[(1 − p(X))w0(X)τ0(X)]

E[(1 − p(X))w0(X)]
,

where w0(X) = P(D = 1 | X) = p(X), the propensity score, and a(X) = P(D = 0 | X) = 1 − p(X).

Applying Theorem 4.1 (or 4.4) yields that

P (a,D; Tall) =
E[1 − p(X) | D = 1]

supx∈supp(X|D=1)(1 − p(x))
=

E[p(X)(1 − p(X))]

P(D = 1) · supx∈supp(X|D=1)(1 − p(x))

is the largest value that P(W ∗ = 1 | D = 1) can take. Once again, this bound depends only on the

propensity score and the distribution of X. The same bound is obtained by using Theorem 4.4 instead and

setting W0 = 1 and W ′ = D. This subpopulation satisfies

P(W ∗ = 1 | X,D = 1) =
1 − p(X)

1 − infx∈supp(X|D=1) p(X)

so units with smaller propensity scores are more likely to be included in W ∗, given that they are treated.

This probability is maximized at 1 when p(X) is constant, or if D ⊥⊥ X. In this case, P(W ∗ = 1 | D = 1) = 1

and P(W ∗ = 1) = P(D = 1).

If p(X) takes values close to 0, this bound equals

P (a,D; Tall) =
E[p(X)(1 − p(X))]

P(D = 1)
≤ P(D = 1) · P(D = 0)

P(D = 1)
= P(D = 0).

This suggests that the OLS estimand is more representative of the ATT when the fraction of untreated units

is larger.

We can also assess the representativeness of βOLS given τ0(X) = E[Y (1) − Y (0) | X]. For simplicity,

assume that X has a continuous distribution and, without loss of generality, assume that βOLS > ATE.

Then, using Theorem 4.2, we obtain

P (a,W0; {τ0}) = P(τ0(X) ≤ b∗),

where b∗ satisfies E[τ0(X) | τ0(X) ≤ b∗] = βOLS. The quantity P (a,W0; {τ0}) is largest when the least

amount of trimming needs to be applied. This is the case when the trimmed values are largest, or when

E[τ0(X) | τ0(X) ≥ b] is large when b is near the maximum of supp(τ0(X)). More concretely, if some covariate
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values in supp(X) have large CATEs, then considering a subpopulation that removes only a small subset of

supp(X) — those corresponding to large CATE values — can allow E[τ0(X) | τ0(X) ≤ b∗] and βOLS to be

equal.

4.4.2 Instrumental Variables

Consider again the setting of Section 2.2. The estimand β2SLS can be characterized as µ(a2SLS, τ0) for

a2SLS(X) = var(Z | X) · P(D(1) ̸= D(0) | X), W0 = 1(D(1) ̸= D(0)), w0(X) = P(D(1) ̸= D(0) | X), and

τ0(X) = E[Y (1) − Y (0) | W0 = 1, X].

Since a2SLS(X) ≥ 0, there exists a subpopulation of {W0 = 1} such that β2SLS is an average treatment

effect over that subpopulation. The maximum size of that subpopulation is given by

P (a2SLS,W0; Tall) =
E[a2SLS(X)w0(X)]

E[w0(X)] · supx∈supp(X|W0=1) a(x)

=
E[var(Z | X) · P(D(1) ̸= D(0) | X)2]

P(D(1) ̸= D(0)) · supx∈supp(X|W0=1) var(Z | X = x) · P(D(1) ̸= D(0) | X = x)
.

Under Assumptions 2.2 and 2.4, P(D(1) ̸= D(0) | X) is identified from the distribution of (D,X,Z) as

w0(X) ≡ |P(D = 1 | X,Z = 1)−P(D = 1 | X,Z = 0)|, which is the fraction of compliers or defiers, i.e. units

for which D(1) ̸= D(0), among those with covariates X.

The maximum value of P(W ∗ = 1 | W0 = 1) is obtained when var(Z | X) · |P(D = 1 | X,Z =

1) − P(D = 1 | X,Z = 0)| = | cov(Z,D | X)| does not depend on X. This occurs, for example, when the

instrument and the fraction of units for which D(1) ̸= D(0) are independent of X. In this case, we have

that β2SLS = E[Y (1)− Y (0) | W0 = 1], the average effect of treatment in the complier/defier subpopulation.

The IV estimand has the same W0, w0(X), but has aIV(X) = sign(P(D(1) ≥ D(0) | X) − P(D(1) ≤
D(0) | X)) · var(Z | X) ≡ c(X) var(Z | X) instead.

First, we notice that if P(c(X) = −1) > 0, then weights are negative with positive probability and there

does not exist a causal representation for the estimand βIV that is uniform in τ0 ∈ Tall. However, there will

exist a causal representation given τ0 if the support condition of Theorem 3.2 holds, in that βIV lies in the

support of τ0(X).

If we assume strong monotonicity (Assumption 2.3), then aIV(X) = var(Z | X) ≥ 0 and

P (aIV,W0; Tall) =
E[aIV(X)w0(X)]

E[w0(X)] · supx∈supp(X|W0=1) a(x)

=
E[var(Z | X) · P(D(1) > D(0) | X)]

P(D(1) > D(0)) · supx∈supp(X|W0=1) var(Z | X = x)
.

Here the representativeness of the IV estimand is maximized when var(Z | X) is constant, which occurs when

Z is independent of X. In this case, βIV equals LATE. The quantities P (aIV,W0; Tall) and P (a2SLS,W0; Tall)
are not ranked uniformly in the distributions of (D(1), D(0), X, Z) as there are data-generating processes

that make each of these two quantities larger than the other. For example, if var(Z | X) is constant but

P(D(1) ̸= D(0) | X) is not, then P (a2SLS,W0; Tall) < P (aIV,W0; Tall). This scenario is plausible if Z

is randomly assigned and X is a vector of pre-assignment characteristics. This inequality is reversed if
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a2SLS(X) = | cov(Z,D | X)| is constant but P(D(1) ̸= D(0) | X) is not. They are equally representative

when P(D(1) ̸= D(0) | X) is constant. In this case, the estimands are equal, so this is not unexpected.

4.4.3 Differences-in-Differences

We now consider the weights obtained in Proposition 2.5 under its assumptions. These weights are nonneg-

ative and therefore Theorem 3.1 guarantees the existence of a causal representation for βTWFE uniformly in

τ0 ∈ Tall. Using Theorem 4.1, the level of internal validity of βTWFE relative to E[Y (1) − Y (0) | D = 1] is

given by

P (aB , D; Tall) =
E[aB(G)w0(G)]

E[w0(G)] · supg∈supp(G|D=1) aB(g)

=

∑T
g=2 var(D | G = g) · (P(D = 0 | P ≥ g) + P(D = 1 | P < g)) · P(G = g)

P(D = 1) · supg∈{2,...,T} P(D = 0 | G = g) · (P(D = 0 | P ≥ g) + P(D = 1 | P < g))
.

Due to the absorbing nature of treatment in our setting, all expressions involving the distribution of

D given P or G can be derived as a function of the marginal distribution of G. Therefore, P (aB , D; Tall)
depends only on {P(G = g)}g∈{2,...,T}.

To give some intuition, consider the case where T = 3 and therefore G ∈ {2, 3,+∞}. In this case,

P (aB , D; Tall) will simply be a function of (P(G = 2),P(G = 3)).

Calculations yield that

P (aB , D; Tall) =


2P(G=2)+ωP(G=3)
2P(G=2)+P(G=3) if ω < 1

ω−12P(G=2)+P(G=3)
2P(G=2)+P(G=3) if ω > 1

1 if ω = 1,

where

ω =
4 − 2P(G = 2) − 4P(G = 3)

2 − 2P(G = 2) − P(G = 3)
=

aB(2)

aB(3)
.

Therefore, the TWFE estimand is perfectly representative of the ATT if and only if ω = 1.

With some algebra, we can see that ω < 1 if and only if P(G = 3) > 2/3, while ω > 1 if and only if

P(G = 3) < 2/3. We can also see that P (aB , D; Tall) is equal to 1 when P(G = 3) = 2/3, and that the

representativeness of the TWFE estimand declines as |P(G = 3) − 2/3| increases. This is due to weight

function aB(g) being constant in g if and only if P(G = 3) equals 2/3. Whenever the weight function is

constant, we have that µ(a, τ0) = E[a(X)τ0(X) | W0 = 1]/E[a(X) | W0 = 1] = E[τ0(X) | W0 = 1] =

E[Y (1) − Y (0) | W0 = 1], and therefore the weighted estimand equals the average effect over population

{W0 = 1}.
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5 Discussion of Estimation and Inference

We now briefly discuss procedures to estimate P (a,W0; T ).

First consider the case when T = Tall. Then, we seek to estimate

P (a,W0; Tall) =
E[a(X) | W0 = 1]

supx∈supp(X|W0=1) a(x)
=

E[a(X)w0(X)]

E[w0(X)] · supx∈supp(X|W0=1) a(x)
. (5.1)

Suppose we observe a random sample of size n, {(Wi, Xi)}ni=1, where Wi are a set of variables that allow the

estimation of a(·) and w0(·). For example, under unconfoundedness we can let Wi = (Yi, Di) or Wi = Di

since only the distribution of (D,X) is needed to identify a(·). In our instrumental variables examples, one

can let Wi = (Zi, Di).

Assuming the existence of estimators for a(·) and w0(·), we can propose the following analog estimator:

P̂ (a,W0; Tall) =
1
n

∑n
i=1 â(Xi)ŵ0(Xi)

1
n

∑n
i=1 ŵ0(Xi) · supx∈supp(X|W0=1) â(x)

.

This estimator requires knowledge of the support of X given W0 = 1, but can be implemented by taking the

maximum over the empirical distribution of X | W0 = 1. Consistency of P̂ (a,W0; Tall) for P (a,W0; Tall) is

achieved when

1
n

∑n
i=1 â(Xi)ŵ0(Xi)

1
n

∑n
i=1 ŵ0(Xi)

p−→ E[a(X)w0(X)]

E[w0(X)]
= E[a(X) | W0 = 1]

and â(x) is uniformly consistent for a(x) over x ∈ supp(X | W0 = 1). These conditions can be achieved

under many standard estimators of a(·) and w0(·). For example, when a(X) and w0(X) consist of continuous

functions of conditional means, as is the case when a(X) = var(D | X) or, for the IV estimator, aIV(X) =

var(Z | X) and w0(X) = |P(D = 1 | X,Z = 1) − P(D = 1 | X,Z = 0)|, consistent estimators of these

conditional means will result in the consistency of P̂ (a,W0; Tall). Cell-by-cell estimators can be used when

Xi is discrete, or many nonparametric estimators when Xi contains continuous components. See Hansen

(2022) for a recent textbook treatment of such methods.

Inference will generally be nonstandard. This is because the asymptotic behavior of the denominator

will usually be non-Gaussian due to the lack of Hadamard differentiability of the supremum operator. This

lack of differentiability will invalidate standard bootstrap inference: see Fang and Santos (2019). However,

the supremum is a Hadamard directionally differentiable functional and nonstandard bootstrap approaches,

such as those proposed in Hong and Li (2018) and Fang and Santos (2019), can be used.

We can also view these inferential problems through the lens of intersection or union bounds. For example,

we can write

P (a,W0; Tall) = inf
x∈supp(X|W0=1)

E[a(X)w0(X)]

E[w0(X)] · a(x)
≡ inf

x∈supp(X|W0=1)
P (x).

Computing a one-sided confidence interval for P (a,W0; Tall) of the kind [0, P̂
+

] can be cast as doing inference

on intersection bounds. Chernozhukov, Lee, and Rosen (2013) offer methods for such problems. Equivalently,
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the computation of a one-sided confidence interval [P̂
−
, 1] is related to inferential questions in union bounds:

see Bei (2024). We leave all details for future work.

Estimation and inference of P (a,W0; {τ0}) is related to the question of estimation and inference in linear

programs with estimated constraints. See Fang, Santos, Shaikh, and Torgovitsky (2023) and Cho and Russell

(2024) for recent advances on this topic.

6 Empirical Application

In this section, we implement the proposed tools in an application to the effects of unilateral divorce laws in

the U.S. on female suicide, as in Stevenson and Wolfers (2006). Between 1969 and 1985, 37 states (including

the District of Columbia) reformed their law by enabling each spouse to seek divorce without the other

spouse’s consent. Stevenson and Wolfers (2006) argue that these “unilateral” or “no-fault” divorce laws

reduced female suicide, domestic violence, and spousal homicide. The results on female suicide are also

replicated by Goodman-Bacon (2021), whose analysis we follow here.

Our sample consists of 41 states observed over the 1964–1996 period. The outcome of interest is the

state- and year-specific female suicide rate (per million women), as computed by the National Center for

Health Statistics (NCHS). The treatment is whether the state allowed unilateral divorce in a given year.

Following Goodman-Bacon (2021), our sample omits Alaska and Hawaii. Additionally, we omit Louisiana,

Maryland, North Carolina, Oklahoma, Utah, Vermont, Virginia, and West Virginia. These eight states (and

Alaska) had unilateral divorce laws preceding 1964 and are therefore always treated within our timeframe.

Panel A of Table 1 reports our baseline estimates of the average effects of unilateral divorce laws on

female suicide. After we drop the eight always-treated states, the TWFE estimate, –0.604, becomes much

smaller in absolute value than the corresponding estimate in Goodman-Bacon (2021), –3.080. Unlike that

Table 1: Representativeness of the TWFE estimand of the effects of unilateral divorce laws

A. Estimates of the effects of unilateral divorce laws

TWFE
ATT

Callaway and Sant’Anna Wooldridge
–0.604 –10.220 –5.530
(2.622) (3.086) (3.650)

B. Representativeness of the TWFE estimand based on Proposition 2.4
uniformly in τ0 given τ0

P̂(W ∗ = 1) 0 0.3873

P̂(W ∗ = 1 | D = 1) 0 0.6216

C. Representativeness of the TWFE estimand based on Proposition 2.5
uniformly in τ0 given τ0

P̂(W ∗ = 1) 0.1400 0.4802

P̂(W ∗ = 1 | D = 1) 0.2246 0.7707
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estimate, ours is also statistically insignificant, with p-value = 0.819.

The conclusion changes, however, when we explicitly target the average treatment effect on the treated

(ATT), that is, the average effect for the largest subpopulation for which such an effect is identified. Using

the approach of Wooldridge (2021), we obtain an estimate of –5.530 with a p-value of 0.138. The approach

of Callaway and Sant’Anna (2021) produces an estimate of –10.220 and a p-value of 0.001. As is clear, the

choice of an estimation approach has fundamental implications for our conclusions in this study.

While the TWFE estimate and both estimates of the ATT are clearly different, this paper focuses on

another implication of the nonuniformity of the TWFE weight function. We ask: How representative of

the underlying population is the TWFE estimand? What is the internal validity of this estimand if we

are interested in the treated subpopulation? Panel B of Table 1 reports our estimates of P(W ∗ = 1) and

P(W ∗ = 1 | D = 1) = P(W ∗ = 1 | W0 = 1), based on the representation of the TWFE estimand in

de Chaisemartin and D’Haultfœuille (2020), restated in our Proposition 2.4. First, because the weights on

some of the group-time average treatment effects are negative, the TWFE estimand does not have a causal

interpretation uniformly in τ0, P̂(W ∗ = 1) = P̂(W ∗ = 1 | D = 1) = 0. Second, when we estimate the

CATE function and use these estimates in constructing the bounds, we conclude that the TWFE estimand

corresponds to the average treatment effect for at most 62.16% of the treated units or 38.73% of the entire

population.

Panel C of Table 1 revisits these questions on the basis of the representation of the TWFE estimand

in Proposition 2.5, based on Goodman-Bacon (2021). Here, we assume that group-level average treatment

effects are constant over time, which eliminates the problem of negative weights. Indeed, we now conclude

that the TWFE estimand has a causal interpretation uniformly in τ0, even if it is still not particularly

representative of the underlying population or the treated subpopulation. Our estimates of P(W ∗ = 1) and

P(W ∗ = 1 | D = 1) are equal to 14.00% and 22.46%, respectively. When we use the estimated CATE function

in constructing the bounds, these estimates increase to 48.02% and 77.07%. This is obviously much more

than our initial estimate of 0, but still substantially less than 1, guaranteed in the case of P(W ∗ = 1 | D = 1)

when using the estimation approaches in Callaway and Sant’Anna (2021), Wooldridge (2021), and other

recent papers.

7 Conclusion

In this paper, we studied the representativeness and internal validity of a class of weighted estimands, which

includes the popular OLS, 2SLS, and TWFE estimands in additive linear models. We examined the condi-

tions under which such estimands can be written as the average treatment effect for some (possibly latent)

subpopulation. In our main result, we derived the sharp upper bound on the size of that subpopulation.

We consider this bound to be a valuable diagnostic for empirical research. When a given estimand can

be shown to correspond to the average treatment effect for a large subset of the population of interest, we

say its internal validity is high. In an application to the effects of unilateral divorce laws in the U.S. on

female suicide, as in Stevenson and Wolfers (2006) and Goodman-Bacon (2021), we showed that the TWFE

estimand has a low degree of internal validity (assuming that the treated subpopulation is of interest), even

when we assume away the existence of negative weights. Because this result is then necessarily driven by

the nonuniformity of the TWFE weight function, it corroborates the negative view of both negative and
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nonuniform weights in Callaway, Goodman-Bacon, and Sant’Anna (2024).
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Appendix

This appendix is organized as follows: Appendix A contains proofs for Section 2, Appendix B contains proofs
for Section 3, Appendix C contains proofs for Section 4, and Appendix D contains additional results and
derivations regarding difference-in-differences and associated weighted estimands.

A Proofs for Section 2

Proof of Proposition 2.4. We begin by noting that

βTWFE =
1
T

∑T
t=1 E[D̈tYt]

1
T

∑T
t=1 E[D̈2

t ]

=

∑T
t=1 E[D̈tYt | P = t]P(P = t)∑T
t=1 E[D̈2

t | P = t]P(P = t)

=
E[D̈Y ]

E[D̈2]
,

where the second equality follows from the uniform distribution of P which is independent from (D̈t, Yt) for
all t ∈ {1, . . . , T}. The third equality follows from defining D̈ ≡ D̈P . We also note that

D̈P = DP − 1

T

T∑
s=1

Ds −
T∑

t=1

E[Dt]1(P = t) +

T∑
s=1

E[Ds]E[1(P = s)]

= D − 1

T

T∑
s=1

1(G ≤ s) − E[D | P ] + E[D]

= D − E[D | G] − E[D | P ] + E[D].

The third equality follows from E[D | G] = E[1(G ≤ P ) | G] = 1
T

∑T
s=1 1(G ≤ s) = 1

T

∑T
s=1 Ds.

We break down the rest of this proof into four steps.

Step 1: Splitting the Numerator in Two

We have that

E[D̈Y ] = E[D̈(Y (0) + D(Y (1) − Y (0)))] = E[D̈E[Y (0) | G,P ]] + E[D̈DE[Y (1) − Y (0) | P,G]]

The first equality follows from Y = Y (0) + D(Y (1) − Y (0)) and the second from iterated expectations and
E[D | G,P ] = D.

Step 2: First Numerator Term

We have that

E[D̈E[Y (0) | G,P ]] = E[D̈θ(G,P )] = E[D̈θ̈(G,P )]

where θ(G,P ) = E[Y (0) | G,P ]. The second equality follows by properties of projections and from defining
θ̈(G,P ) as follows:

θ̈(G,P ) ≡ θ(G,P ) − E[θ(G,P ) | G] − E[θ(G,P ) | P ] + E[θ(G,P )]

= E[Y (0) | G,P ] − E[Y (0) | G] − E[Y (0) | P ] + E[Y (0)].
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Then, we note that

θ(g′, t′) = E[Y (0) | G = g′, P = t′] − E[Y (0) | G = g′] − E[Y (0) | P = t′] + E[Y (0)]

= E[Yt′(0) | G = g′] − 1

T

T∑
t=1

E[Yt(0) | G = g′] −
∑
g∈G

(
E[Yt′(0) | G = g] − 1

T

T∑
t=1

E[Yt(0) | G = g]

)
P(G = g)

=
1

T

T∑
t=1

E[Yt′(0) − Yt(0) | G = g′] −
∑
g∈G

(
1

T

T∑
t=1

E[Yt′(0) − Yt(0) | G = g]

)
P(G = g).

Assumption 2.6.2 implies that for any pair t, t′ ∈ {1, . . . , T} and any g′ ∈ G

E[Yt′(0) − Yt(0) | G = g′] = E[Yt′(0) − Yt(0)].

This can be shown for t′ > t by writing E[Yt′(0) − Yt(0) | G = g′] =
∑t′

s=t+1 E[Ys(0) − Ys−1(0) | G = g′] =∑t′

s=t+1 E[Ys(0)−Ys−1(0)] = E[Yt′(0)−Yt(0)]. Similar derivations show this holds for t′ < t. The case where
t′ = t is trivial. Therefore,

θ(g′, t′) =
1

T

T∑
t=1

E[Yt′(0) − Yt(0) | G = g′] −
∑
g∈G

(
1

T

T∑
t=1

E[Yt′(0) − Yt(0) | G = g]

)
P(G = g)

=
1

T

T∑
t=1

E[Yt′(0) − Yt(0)] −
∑
g∈G

(
1

T

T∑
t=1

E[Yt′(0) − Yt(0)]

)
P(G = g)

= 0

for all (g′, t′) ∈ G × {1, . . . , T}, which implies E[D̈E[Y (0) | G,P ]] = 0.

Step 3: Second Numerator Term

We can write

E[D̈DE[Y (1) − Y (0) | G,P ]] = E[(D − E[D | G] − E[D | P ] + E[D])DE[Y (1) − Y (0) | G,P ]]

= E[(1 − E[D | G] − E[D | P ] + E[D])DE[Y (1) − Y (0) | G,P ]]

= E[(1 − E[D | G] − E[D | P ] + E[D])E[D(Y (1) − Y (0)) | G,P ]]

= E[(1 − E[D | G] − E[D | P ] + E[D])E[Y (1) − Y (0) | G,P,D = 1]P(D = 1 | G,P )].

The first equality is by definition, the second by D2 = D, the third by E[D | G,P ] = D, and the fourth by
law of total probability.

Step 4: Denominator

In this step, we show that

E[D̈2] = E[(D − E[D | G] − E[D | P ] + E[D])D]

= E[(1 − E[D | G] − E[D | P ] + E[D])D]

= E[(1 − E[D | G] − E[D | P ] + E[D])P(D = 1 | G,P )].

The first line is obtained from properties of linear projections, the second from D2 = D, and the third from
D = P(D = 1 | G,P ).

We conclude the proof by noting the equivalence of integrating over the distribution of P and averages
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over time periods, which shows the equivalence between

βTWFE =
E[(1 − E[D | G] − E[D | P ] + E[D])E[Y (1) − Y (0) | G,P,D = 1]P(D = 1 | G,P )]

E[(1 − E[D | G] − E[D | P ] + E[D])P(D = 1 | G,P )]

and the expression in Proposition 2.4.

Proof of Proposition 2.5. Proposition 2.4 and P(D = 1 | G,P ) = D yielded

βTWFE =
E[(1 − E[D | G] − E[D | P ] + E[D])DE[Y (1) − Y (0) | G,P,D = 1]]

E[(1 − E[D | G] − E[D | P ] + E[D])D]
.

Since E[Y (1) − Y (0) | G,P,D = 1] = E[Y (1) − Y (0) | G,D = 1] by assumption, we can use the law of
iterated expectations to obtain

βTWFE =
E[E[(1 − E[D | G] − E[D | P ] + E[D])D | G]E[Y (1) − Y (0) | G,D = 1]]

E[E[(1 − E[D | G] − E[D | P ] + E[D])D | G]]
.

We now calculate the conditional expectation E[(1−E[D | G]−E[D | P ] +E[D])D | G = g] for g ∈ G. If
g = +∞, then this conditional expectation is 0 by construction, so we let g ∈ {2, . . . , T} in what follows:

E[(1 − E[D | G] − E[D | P ] + E[D])D | G = g]

= E[D | G = g]

(
1 − E[D | G = g] − E[E[D | P ]D | G = g]

E[D | G = g]
+ E[D]

)
= E[D | G = g]

(
1 − E[1(G ≤ P ) | G = g] − E[FG(P )1(G ≤ P ) | G = g]

E[1(G ≤ P ) | G = g]
+ E[E[1(G ≤ P ) | P ]]

)
= E[D | G = g]

(
1 − E[1(g ≤ P )] − E[FG(P )1(g ≤ P )]

E[1(g ≤ P )]
+ E[FG(P )]

)
= E[D | G = g] (1 − E[1(g ≤ P )] − E[FG(P ) | g ≤ P ]

+ E[FG(P ) | g ≤ P ]E[1(g ≤ P )] + E[FG(P ) | g > P ]E[1(g > P )])

= E[D | G = g]E[1(g > P )](1 + E[FG(P ) | g > P ] − E[FG(P ) | g ≤ P ])

= E[D | G = g](1 − E[D | G = g])(1 + E[D | g > P ] − E[D | g ≤ P ])

= P(D = 1 | G = g)P(D = 0 | G = g)(P(D = 1 | P < g) + P(D = 0 | P ≥ g)).

The first equality follows from E[D | G = g] > 0 for g ∈ {2, . . . , T}. The second follows from D = 1(G ≤ P )
and the law of iterated expectations, the third from G ⊥⊥ P , the fourth from definitions of conditional
expectations and the law of iterated expectations, the fifth from combining terms, the seventh from the law
of iterated expectations again, and the last line is obtained by the fact that D ∈ {0, 1}. The representation
in Proposition 2.5 follows.

B Proofs for Section 3

Proof of Proposition 3.1. We begin by showing the first claim of the proposition. The equation

E[(Y (1) − Y (0))W ∗ | W0 = 1, X] = E[Y (1) − Y (0) | W0 = 1, X]P(W ∗ = 1 | W0 = 1, X) (B.1)

holds since W ∗ ⊥⊥ (Y (1), Y (0)) | X,W0 = 1, which holds by Definition 3.1. Since P(W ∗ = 1 | W0 = 1, X) is
assumed positive, we can divide both sides of equation (B.1) by it and obtain

E[Y (1) − Y (0) | W0 = 1, X] =
E[(Y (1) − Y (0))W ∗ | W0 = 1, X]

P(W ∗ = 1 | W0 = 1, X)
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= E[Y (1) − Y (0) | W ∗ = 1,W0 = 1, X]

= E[Y (1) − Y (0) | W ∗ = 1, X],

where the second equality holds by definition, and the third holds from W ∗ being a subpopulation of W0.

We now show the second claim of the proposition. Equation (3.4) can be obtained as follows:

E[Y (1) − Y (0) | W ∗ = 1] = E[Y (1) − Y (0) | W ∗ = 1,W0 = 1]

=
E[W ∗(Y (1) − Y (0)) | W0 = 1]

E[W ∗ | W0 = 1]

=
E[E[W ∗(Y (1) − Y (0)) | X,W0 = 1] | W0 = 1]

E[P(W ∗ = 1 | X,W0 = 1) | W0 = 1]

=
E[P(W ∗ = 1 | W0 = 1, X)E[Y (1) − Y (0) | W0 = 1, X] | W0 = 1]

E[P(W ∗ = 1 | W0 = 1, X) | W0 = 1]

=
E[w∗(X)τ0(X) | W0 = 1]

E[w∗(X) | W0 = 1]

= µ(w∗, τ0).

The first equality follows from W ∗ being a subpopulation of W0, the second from the definition of conditional
expectation and P(W ∗ = 1) > 0, the third from the law of iterated expectations and W ∗ = 1 implying
W0 = 1, the fourth from W ∗ ⊥⊥ (Y (1), Y (0)) | X,W0 = 1, and the fifth and sixth follow immediately.

Proof of Lemma 3.1. We verify that W ∗ satisfies the two conditions in Definition 3.1. Condition 1 holds
since P(W ∗ = 1 | W0 = 0) = P(W ∗ = 1,W ′ = 1 | W0 = 1) ≤ P(W ′ = 1 | W0 = 1) = 0, The first equality
follows from W ∗ ≤ W ′ almost surely, and the last one from W ′ ∈ SP(W0).

To verify condition 2, note that

P(W ∗ = 1 | Y (1), Y (0), X,W0 = 1) = P(W ∗ = 1,W ′ = 1 | Y (1), Y (0), X,W0 = 1)

= P(W ∗ = 1 | Y (1), Y (0), X,W ′ = 1,W0 = 1)P(W ′ = 1 | Y (1), Y (0), X,W0 = 1)

= P(W ∗ = 1 | Y (1), Y (0), X,W ′ = 1)P(W ′ = 1 | Y (1), Y (0), X,W0 = 1)

= P(W ∗ = 1 | X,W ′ = 1)P(W ′ = 1 | X,W0 = 1)

= P(W ∗ = 1 | X,W ′ = 1,W0 = 1)P(W ′ = 1 | X,W0 = 1)

= P(W ∗ = 1,W ′ = 1 | X,W0 = 1)

= P(W ∗ = 1 | X,W0 = 1).

The first and seventh line follow from W ∗ ≤ W ′ almost surely. The second and sixth line follow from
factoring conditional probabilities. The third and fifth line follow from W ′ ≤ W0 almost surely. The fourth
line follows from W ′ ⊥⊥ (Y (1), Y (0)) | X,W0 = 1 and W ∗ ⊥⊥ (Y (1), Y (0)) | X,W ′ = 1.

Proof of Theorem 3.1. This theorem follows as a special case of the first part of Theorem 4.3 when W ′ = W0.
This is because W0 trivially regular subpopulation of W0, and because the condition

sup(supp(a(X)/w′(X) | W0 = 1)) < ∞

is equivalent to sup(supp(a(X) | W0 = 1)) < ∞. They are equivalent since w′(X) = P(W0 = 1 | X,W0 =
1) = 1 almost surely.

Proof of Theorem 3.2. This is a special case of the second part of Theorem 4.3 where we set W ′ = W0.

Proof of Proposition 3.2. First, we suppose there exists W ∗ ∈ W(a;W0, Tlin). Therefore, by Proposition 3.1,

36



we have that µ(a, τ0) − µ(w∗, τ0) = 0 for all τ0 ∈ Tlin where w∗(X) = P(W ∗ = 1 | X,W0 = 1). Therefore,

0 = µ(a, τ0) − µ(w∗, τ0)

=
E[a(X)τ0(X) | W0 = 1]

E[a(X) | W0 = 1]
− E[w∗(X)τ0(X) | W0 = 1]

E[w∗(X) | W0 = 1]

=
E[a(X)(c + d′X) | W0 = 1]

E[a(X) | W0 = 1]
− E[w∗(X)(c + d′X) | W0 = 1]

E[w∗(X) | W0 = 1]

= d′
(
E[a(X)X | W0 = 1]

E[a(X) | W0 = 1]
− E[w∗(X)X | W0 = 1]

E[w∗(X) | W0 = 1]

)
for all d ∈ RdX , which implies that E[a(X)X|W0=1]

E[a(X)|W0=1] = E[w∗(X)X|W0=1]
E[w∗(X)|W0=1] . Letting u(x) = w∗(x)/E[w∗(X) | W0 =

1], we have that

E[w∗(X)X | W0 = 1]

E[w∗(X) | W0 = 1]
=

∫
supp(X|W0=1)

xu(x) dFX|W0=1(x),

a convex combination of x values in supp(X | W0 = 1) because
∫
supp(X|W0=1)

u(x) dFX|W0=1(x) = 1. There-

fore, E[a(X)X|W0=1]
E[a(X)|W0=1] ∈ conv(supp(X | W0 = 1)).

Now suppose that E[a(X)X|W0=1]
E[a(X)|W0=1] ∈ conv(supp(X | W0 = 1)). Then, we can write E[a(X)X|W0=1]

E[a(X)|W0=1] as∫
supp(X|W0=1)

xu(x) dFX|W0=1(x) for some function u(x) ≥ 0 satisfying
∫
supp(X|W0=1)

u(x) dFX|W0=1(x) = 1.

Let

W ∗ = 1

(
U ≤ u(X)

sup(supp(u(X) | W0 = 1))

)
·W0

where U ⊥⊥ (X,Y (1), Y (0),W0). Then W ∗ is a regular subpopulation of W0 and w∗(X) = P(W ∗ = 1 |
X,W0 = 1) = u(X)

sup(supp(u(X)|W0=1)) since u(X)
sup(supp(u(X)|W0=1)) ∈ [0, 1] with probability 1 given W0 = 1.

Therefore, for all τ0(x) = c + d′x ∈ Tlin we have that

µ(w∗, τ0) =
E[w∗(X)τ0(X) | W0 = 1]

E[w∗(X) | W0 = 1]

=
E
[

u(X)
sup(supp(u(X)|W0=1))τ0(X) | W0 = 1

]
E
[

u(X)
sup(supp(u(X)|W0=1)) | W0 = 1

]
=

E [u(X)τ0(X) | W0 = 1]

E [u(X) | W0 = 1]

=
E [u(X)(c + d′X) | W0 = 1]

E [u(X) | W0 = 1]

= c + d′
E [u(X)X | W0 = 1]

E [u(X) | W0 = 1]

= c + d′
E [a(X)X | W0 = 1]

E [a(X) | W0 = 1]

=
E [a(X)(c + d′X) | W0 = 1]

E [a(X) | W0 = 1]

= µ(a, τ0).

Therefore, by Proposition 3.1 we have that W ∗ ∈ W(a;W0, Tlin).

Proof of Proposition 3.3. We consider the K > 0 case first and the K = 0 case second.
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Case 1: K > 0.

First, let P(a(X) ≥ 0 | W0 = 1) < 1. We will show that W(a;W0, TBV(K)) = ∅ by way of contradiction.

Suppose there is a W ∗ ∈ W(a;W0, TBV(K)) and let w∗(X) = P(W ∗ = 1 | X,W0 = 1) ∈ [0, 1]. Let
τ∗(x) = K ·1(a(x) < 0). This definition implies τ∗ ∈ TBV(K). Since W ∗ ∈ W(a;W0, TBV(K)) we must have
that µ(a, τ0) = µ(w∗, τ0) for all τ0 ∈ TBV(K). Since τ∗ ∈ TBV(K),

0 = µ(a, τ∗) − µ(w∗, τ∗)

= E
[(

a(X)

E[a(X) | W0 = 1]
− w∗(X)

E[w∗(X)]

)
τ∗(X) | W0 = 1

]
= K · E

[(
a(X)

E[a(X) | W0 = 1]
− w∗(X)

E[w∗(X)]

)
1(a(X) < 0) | W0 = 1

]
. (B.2)

The right-hand side of (B.2) is K times the expectation of a nonpositive function. This follows from
a(X)1(a(X) < 0) ≤ 0, w∗(X)1(a(X) < 0) ≥ 0 by w∗(X) = P(W ∗ = 1 | X,W0 = 1) ≥ 0, E[a(X) | W0 =
1] > 0 by Assumption 3.1, and E[w∗(X) | W0 = 1] = P(W ∗ = 1 | W0 = 1) > 0 by W ∗ ∈ SP(W0). Since
K > 0, equation (B.2) implies the nonpositive function must equal 0 with probability 1 given W0 = 1:

1 = P
((

a(X)

E[a(X) | W0 = 1]
− w∗(X)

E[w∗(X)]

)
1(a(X) < 0) = 0 | W0 = 1

)
= P

(
a(X) =

E[a(X) | W0 = 1]

E[w∗(X)]
· w∗(X) = 0 | a(X) < 0,W0 = 1

)
,

where the second equality follows from P(a(X) < 0 | W0 = 1) > 0. This implies a(X) equals a posi-
tive multiple of w∗(X), a nonnegative quantity, with probability 1 given {a(X) < 0,W0 = 1}, an event
with positive probability that implies a(X) is strictly negative. This is a contradiction and therefore
W(a;W0, TBV(K)) = ∅.

Second, suppose P(a(X) ≥ 0 | W0 = 1) = 1. By Theorem 3.1, W(a;W0, Tall) ̸= ∅. Since TBV(K) ⊆ Tall,
we have that W(a;W0, Tall) ⊆ W(a;W0, TBV(K)). Therefore, W(a;W0, TBV(K)) ̸= ∅ thus µ(a, τ0) has a
causal representation uniformly in τ0 ∈ TBV(K).

Case 2: K = 0.

When K = 0, the function class TBV(K) is the set of all constant functions. In this case, τ0(X) = t0,
where t0 ∈ R denotes a constant. Thus W(a;W0, TBV(0)) ̸= ∅ for all weight functions a(·) since W0 ∈ SP(W0)
and because µ(a, τ0) = E[a(X)t0 | W0 = 1]/E[a(X) | W0 = 1] = t0 = E[Y (1)−Y (0) | W0 = 1] for all a(·).

C Proofs for Section 4

Proof of Theorem 4.1. This is a special case of the first part of Theorem 4.4 where we set W ′ = W0.

We begin with a technical lemma that we use to prove the subsequent theorems.

Lemma C.1. Let Assumption 3.1 hold. Let Tµ = τ0(X) − µ. Then, for any W ′ ∈ SP(W0), we have that

1. The functions α 7→ E[Tµ1(Tµ < α) | W ′ = 1] and α 7→ E[Tµ1(Tµ ≥ α) | W ′ = 1] are left-continuous.

2. The functions α 7→ E[Tµ1(Tµ > α) | W ′ = 1] and α 7→ E[Tµ1(Tµ ≤ α) | W ′ = 1] are right-continuous.

Proof of Lemma C.1. The function E[Tµ1(Tµ < α) | W ′ = 1] is left-continuous if for any strictly increasing
sequence αn ↑ α we have that E[Tµ1(Tµ < αn) | W ′ = 1] → E[Tµ1(Tµ < α) | W ′ = 1]. To see this
holds, note that fn(t) ≡ t1(t < αn) → t1(t < α) since t1(t < αn) = 0 for all t ≥ α, and t1(t < αn) = t
whenever t < α for sufficiently large n. The random variable |Tµ1(Tµ < αn)| is dominated by |Tµ| and
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E[|Tµ| | W ′ = 1] < ∞ by Assumption 3.1 and by P(W ′ = 1) > 0. Therefore, by dominated convergence,
E[Tµ1(Tµ < αn) | W ′ = 1] → E[Tµ1(Tµ < α) | W ′ = 1] hence E[Tµ1(Tµ < α) | W ′ = 1] is left-continuous.
The function E[Tµ1(Tµ ≥ α) | W ′ = 1] is also left-continuous because E[Tµ1(Tµ ≥ α) | W ′ = 1] = E[Tµ |
W ′ = 1] − E[Tµ1(Tµ < α) | W ′ = 1].

The lemma’s second claim can be similarly shown by considering a sequence αn ↓ α.

Proof of Theorem 4.2. To simplify the notation in the proof, let µ ≡ µ(a, τ0). We break down this proof into
four cases.

Case 1: µ ∈ S(τ0;W0) and µ < E[Y (1) − Y (0) | W0 = 1]

We want to maximize P(W ∗ = 1 | W0 = 1) over the subpopulations W ∗ in W(a;W0, {τ0}). Recall

that W ∗ ∈ W(a;W0, {τ0}) if µ = E[w∗(X)τ0(X)|W0=1]
E[w∗(X)|W0=1] and W ∗ ∈ SP(W0) hold, where w∗(X) = P(W ∗ = 1 |

X,W0 = 1).

Therefore,

P (a,W0; {τ0}) = max
W∗∈W(a;W0,{τ0})

P(W ∗ = 1 | W0 = 1)

= max
W∗∈{0,1}:µ=E[w∗(X)τ0(X)|W0=1]/E[w∗(X)|W0=1],W∗∈SP(W0)

P(W ∗ = 1 | W0 = 1)

≤ max
W∗∈{0,1}:µ=E[w∗(X)τ0(X)|W0=1]/E[w∗(X)|W0=1]

E[P(W ∗ = 1 | X,W0 = 1) | W0 = 1]

= max
w∗:µ=E[w∗(X)τ0(X)|W0=1]/E[w∗(X)|W0=1],w∗(X)∈[0,1]

E[w∗(X) | W0 = 1].

We will first show a closed-form expression for an upper bound for P (a,W0; {τ0}). Then, we will show
that this upper bound can be attained by a corresponding W+ ∈ W(a;W0, {τ0}), and therefore it equals
P (a,W0; {τ0}).

Before proceeding, let α+ = inf{α ∈ R : R(α) ≥ 0} where R(α) = E[Tµ1(Tµ ≤ α) | W0 = 1]. By
construction, α+ ≥ 0. By µ < E[Y (1) − Y (0) | W0 = 1] we also have that α+ < +∞. By Lemma C.1, R
is a right-continuous function, and therefore R(α+) = limα↓α+ R(α) ≥ 0. We now claim that α+ > 0. To
show this claim, assume α+ = 0. Then, 0 ≤ R(α+) = R(0) = E[Tµ1(Tµ ≤ 0) | W0 = 1] ≤ 0, which implies
P(τ0(X) = µ | W0 = 1) = 1. This is ruled out by the assumption that µ > E[Y (1) − Y (0) | W0 = 1] =
E[τ0(X) | W0 = 1]. Therefore, α+ > 0.

We now show an upper bound for P (a,W0; {τ0}). For all w∗ such that µ = E[w∗(X)τ0(X) | W0 =
1]/E[w∗(X) | W0 = 1] and w∗(X) ∈ [0, 1], we have that

E[w∗(X) | W0 = 1] =
E[w∗(X)α+ | W0 = 1]

α+

=
E[w∗(X)(α+ − Tµ) | W0 = 1]

α+
+

E[w∗(X)Tµ | W0 = 1]

α+

=
E[w∗(X)(α+ − Tµ) | W0 = 1]

α+

=
E[w∗(X)(α+ − Tµ)1(Tµ ≤ α+) | W0 = 1]

α+
+

E[w∗(X)(α+ − Tµ)1(Tµ > α+) | W0 = 1]

α+

≤ E[1 · (α+ − Tµ)1(Tµ ≤ α+) | W0 = 1]

α+
+

E[0 · (α+ − Tµ)1(Tµ > α+) | W0 = 1]

α+

= E[1(Tµ ≤ α+) | W0 = 1] − E[Tµ1(Tµ ≤ α+) | W0 = 1]

α+

≡ P+.

The third equality follows from µ = E[w∗(X)τ0(X) | W0 = 1]/E[w∗(X) | W0 = 1]. The inequality follows
from {0, 1} being lower/upper bounds for w∗(X).

39



Therefore, P (a,W0; {τ0}) ≤ P+. We now show that this inequality is binding by finding W+ ∈
W(a;W0, {τ0}) such that P(W+ = 1 | W0 = 1) = P+.

Let

w+(X) =


1 if Tµ < α+

1 − R(α+)1(P(Tµ=α+|W0=1) ̸=0)
α+P(Tµ=α+|W0=1) if Tµ = α+

0 if Tµ > α+.

This function is bounded above by 1 because R(α+) ≥ 0 and α+ > 0. To show it is bounded below by 0,
consider cases where P(Tµ = α+ | W0 = 1) or R(α+) equal and differ from 0. If P(Tµ = α+ | W0 = 1) = 0 or
R(α+) = 0, then w+(X) ∈ {0, 1} ⊆ [0, 1] and it is therefore bounded below by 0. If P(Tµ = α+ | W0 = 1) > 0
and R(α+) > 0, then

1 − R(α+)

α+P(Tµ = α+ | W0 = 1)
=

α+P(Tµ = α+ | W0 = 1) − E[Tµ1(Tµ ≤ α+) | W0 = 1]

α+P(Tµ = α+ | W0 = 1)

=
E[Tµ1(Tµ = α+) | W0 = 1] − E[Tµ1(Tµ ≤ α+) | W0 = 1]

α+P(Tµ = α+ | W0 = 1)

=
−E[Tµ1(Tµ < α+) | W0 = 1]

α+P(Tµ = α+ | W0 = 1)
.

By the definition of α+ as an infimum, we must have that R(α+− ε) < 0 for all ε > 0, implying that R(α) is
discontinuous at α+. By Lemma C.1, E[Tµ1(Tµ < α)] is left-continuous and satisfies E[Tµ1(Tµ < α)] ≤ R(α).
Therefore, since R(α+ − ε) < 0 for all ε > 0, we must have that E[Tµ1(Tµ < α+ − ε)] < 0 for all ε > 0.
Letting ε ↓ 0 yields that E[Tµ1(Tµ < α+)] ≤ 0. Therefore −E[Tµ1(Tµ < α+) | W0 = 1]/(α+P(Tµ = α+ |
W0 = 1)) ≥ 0 and w∗(X) ≥ 0 in that case as well.

Next, we compute

E[w+(X) | W0 = 1] = E[1(Tµ < α+) | W0 = 1]

+

(
1 − R(α+)1(P(Tµ = α+ | W0 = 1) ̸= 0)

α+P(Tµ = α+ | W0 = 1)

)
E[1(Tµ = α+) | W0 = 1]

= E[1(Tµ < α+) | W0 = 1] + P(Tµ = α+ | W0 = 1) − E[Tµ1(Tµ ≤ α+) | W0 = 1]

α+

= P(Tµ ≤ α+ | W0 = 1) − E[Tµ1(Tµ ≤ α+) | W0 = 1]

α+

= P+.

Finally we verify that E[w+(X)τ0(X)|W0=1]
E[w+(X)|W0=1] = µ. This condition is equivalent to E[w+(X)Tµ | W0 = 1] = 0,

which we verify here:

E[w+(X)Tµ | W0 = 1] = E[Tµ1(Tµ < α+) | W0 = 1]

+

(
1 − R(α+)1(P(Tµ = α+ | W0 = 1) ̸= 0)

α+P(Tµ = α+ | W0 = 1)

)
E[Tµ1(Tµ = α+) | W0 = 1]

= E[Tµ1(Tµ ≤ α+) | W0 = 1] − R(α+)1(P(Tµ = α+ | W0 = 1) ̸= 0)

α+P(Tµ = α+ | W0 = 1)
α+P(Tµ = α+ | W0 = 1)

= R(α+) −R(α+)1(P(Tµ = α+ | W0 = 1) ̸= 0)

= R(α+)1(P(Tµ = α+ | W0 = 1) = 0).

Therefore, E[w+(X)Tµ | W0 = 1] equals 0 when R(α+) = 0. When R(α+) > 0, we have that P(Tµ = α+ |
W0 = 1) > 0 as shown earlier. So E[w+(X)Tµ | W0 = 1] is also equal to 0 in this case.
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We conclude the proof by showing that w+(X) corresponds to P(W+ = 1 | X,W0 = 1) for some
W+ ∈ SP(W0). Let U ∼ Unif(0, 1) satisfy U ⊥⊥ (Y (1), Y (0), X,W0) and define

W+ =

(
1(Tµ < α+) + 1

(
Tµ = α+, U ≤ 1 − R(α+)1(P(Tµ = α+ | W0 = 1) ̸= 0)

α+P(Tµ = α+ | W0 = 1)

))
·W0.

By construction, W+ ∈ {0, 1}, P(W+ = 1 | X,W0 = 1) = w+(X), P(W+ = 1 | W0 = 0) = 0, and
W+ ⊥⊥ (Y (1), Y (0)) | X,W0 = 1. Also, since µ ∈ S(τ0;W0), P(Tµ ≤ 0 | W0 = 1) = P(τ0(X) ≤ µ | W0 =
1) > 0. Since α+ > 0 we have that P(W+ = 1 | W0 = 1) ≥ P(Tµ < α+ | W0 = 1) ≥ P(Tµ ≤ 0 | W0 = 1) > 0.
Therefore W+ is a regular subpopulation of W+ for which P(W ∗ = 1 | W0 = 1) = P+, hence P+ is the
maximum.

Case 2: µ ∈ S(τ0;W0) and µ > E[Y (1) − Y (0) | W0 = 1]

As in case 1,

P (a,W0; {τ0}) ≤ max
w∗:µ=E[w∗(X)τ0(X)|W0=1]/E[w∗(X)|W0=1],w∗(X)∈[0,1]

E[w∗(X) | W0 = 1].

Before proceeding, let α− = sup{α ∈ R : L(α) ≤ 0} where L(α) = E[Tµ1(Tµ ≥ α) | W0 = 1]. By
construction, α− ≤ 0 and by µ > E[Y (1) − Y (0) | W0 = 1] we have that α− > −∞. By Lemma C.1, L is
a left-continuous function, and therefore L(α−) = limα↑α− L(α) ≤ 0. Similarly to case 1, we can show that
α− < 0.

We now show an upper bound for P (a,W0; {τ0}). For all w∗ such that µ = E[w∗(X)τ0(X) | W0 =
1]/E[w∗(X) | W0 = 1] and w∗(X) ∈ [0, 1], we have that

E[w∗(X) | W0 = 1] =
E[w∗(X)α− | W0 = 1]

α−

=
E[w∗(X)(α− − Tµ) | W0 = 1]

α− +
E[w∗(X)Tµ | W0 = 1]

α−

=
E[w∗(X)(α− − Tµ) | W0 = 1]

α−

=
E[w∗(X)(α− − Tµ)1(Tµ ≥ α−) | W0 = 1]

α− +
E[w∗(X)(α− − Tµ)1(Tµ < α−) | W0 = 1]

α+

≤ E[1 · (α− − Tµ)1(Tµ ≥ α+) | W0 = 1]

α− +
E[0 · (α− − Tµ)1(Tµ < α−) | W0 = 1]

α−

= E[1(Tµ ≥ α−) | W0 = 1] − E[Tµ1(Tµ ≥ α−) | W0 = 1]

α−

≡ P−,

which follows a similar argument as above. This implies P (a,W0; {τ0}) ≤ P−. We now show that this
inequality is an equality by finding W− ∈ W(a;W0, {τ0}) such that P(W− = 1 | W0 = 1) = P−.

Let

w−(X) =


1 if Tµ > α+

1 − L(α−)1(P(Tµ=α−|W0=1) ̸=0)
α−P(Tµ=α−|W0=1) if Tµ = α−

0 if Tµ < α+.

The rest of the proof symmetrically follows the one for the previous case.

Case 3: µ ∈ S(τ0;W0) and µ = E[Y (1) − Y (0) | W0 = 1]

Note that W ∗ = W0 is the largest regular subpopulation of W0. Since E[Y (1) − Y (0) | W ∗ = 1] =
E[Y (1) − Y (0) | W0 = 1], we have that P(W ∗ = 1 | W0 = 1) is trivially maximized at 1.
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Case 4: µ /∈ S(τ0;W0)

By Theorem 3.2, there does not exist a regular subpopulation W ∗ satisfying µ = E[Y (1)−Y (0) | W ∗ = 1]
and therefore the supremum equals 0 by its definition.

Proof of Theorem 4.3.

Part 1: T = Tall
(=⇒) First, suppose there exists W ∗ ∈ W(a;W ′, Tall). Using the law of iterated expectations and letting

w′(X) = P(W ′ = 1 | W0 = 1, X), we can write

µ(a, τ0) =
E[a(X)τ0(X) | W0 = 1]

E[a(X) | W0 = 1]

=
E
[

a(X)
w′(X)τ0(X)w′(X) | W0 = 1

]
E
[

a(X)
w′(X)w

′(X) | W0 = 1
]

=
E
[

a(X)
w′(X)τ0(X)W ′ | W0 = 1

]
E
[

a(X)
w′(X)W

′ | W0 = 1
]

=
E
[

a(X)
w′(X)τ0(X) | W ′ = 1,W0 = 1

]
P(W ′ = 1 | W0 = 1)

E
[

a(X)
w′(X) | W ′ = 1,W0 = 1

]
P(W ′ = 1 | W0 = 1)

=
E
[

a(X)
w′(X)E[Y (1) − Y (0) | W0 = 1, X] | W ′ = 1

]
E
[

a(X)
w′(X) | W ′ = 1

]
=

E
[

a(X)
w′(X)E[Y (1) − Y (0) | W ′ = 1, X] | W ′ = 1

]
E
[

a(X)
w′(X) | W ′ = 1

]
≡ µ′

(
a

w′ , τ0

)
.

The second equality is valid due to sup(supp(a(X)/w′(X) | W0 = 1)) < ∞. The third and fourth follow
from the law of iterated expectations, and the fifth from W ′ being a subpopulation of W0. The second to
last line follows from Proposition 3.1 and from sup(supp(a(X)/w′(X) | W0 = 1)) < ∞ implying P(w′(X) >
0 | W0 = 1) > 0.

Similarly, we can write E[Y (1) − Y (0) | W ∗ = 1] = µ′(w∗, τ0) where w∗(X) = P(W ∗ = 1 | W ′ = 1, X).

Therefore, by Proposition 3.1, we have that µ′
(

a
w′ , τ0

)
− µ′(w∗, τ0) = 0 for all τ0 ∈ Tall.

Let τ∗(X) = a(X)/w′(X)
E[a(X)/w′(X)|W ′=1] −

w∗(X)
P(W∗=1|W ′=1) . We have sup(supp(a(X)/w′(X) | W0 = 1)) < ∞ and

E[w∗(X)2] ≤ 1 by construction. Hence, E[τ∗(X)2] < ∞ and thus τ∗ ∈ Tall.

Thus, we must have µ′
(

a
w′ , τ

∗
)
− µ′(w∗, τ∗) = 0. Expanding this equality yields

0 = µ′
(

a

w′ , τ
∗
)
− µ′(w∗, τ∗)

= E
[
τ∗(X)

(
a(X)/w′(X)

E[a(X)/w′(X) | W ′ = 1]
− w∗(X)

P(W ∗ = 1 | W ′ = 1)

)
| W ′ = 1

]
= E[τ∗(X)2 | W ′ = 1].
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This implies that P(τ∗(X) = 0 | W ′ = 1) = 1. In turn, this implies that

P
(
a(X) =

w′(X)w∗(X)E[a(X)/w′(X) | W ′ = 1]

P(W ∗ = 1 | W ′ = 1)
| W ′ = 1

)
= 1.

We have that w∗(X) ≥ 0 and w′(X) ≥ 0 almost surely, and P(W ∗ = 1 | W ′ = 1) > 0 by the assumption that
W ∗ ∈ W(a;W ′, Tall). Also, E[a(X)/w′(X) | W ′ = 1] = E[a(X) | W0 = 1] > 0 by Assumption 3.1. Therefore,
P(a(X) ≥ 0 | W ′ = 1) = 1.

(⇐=) Second, suppose that P(a(X) ≥ 0 | W ′ = 1) = 1 and fix τ0 ∈ Tall. Let w′(X) = P(W ′ = 1 |
X,W0 = 1). As in the first part of the proof, recall that

µ(a, τ0) =
E
[

a(X)
w′(X)E[Y (1) − Y (0) | W ′ = 1, X] | W ′ = 1

]
E
[

a(X)
w′(X) | W ′ = 1

]
≡ µ′

(
a

w′ , τ0

)
.

Let U ∼ Unif(0, 1) where U ⊥⊥ (Y (1), Y (0), X,W0,W
′), and define

W ∗ = 1

(
U ≤ a(X)/w′(X)

sup(supp(a(X)/w′(X) | W ′ = 1))

)
·W ′.

We verify that W ∗ is a regular subpopulation of W ′. First, we see that P(W ∗ = 1) > 0 because

P(W ∗ = 1) = P(W ∗ = 1 | W ′ = 1)P(W ′ = 1) + P(W ∗ = 1 | W ′ = 0)P(W ′ = 0)

= P
(
1

(
U ≤ a(X)/w′(X)

sup(supp(a(X)/w′(X) | W ′ = 1))

)
·W ′ = 1 | W ′ = 1

)
P(W ′ = 1)

= E
[
P
(
U ≤ a(X)/w′(X)

sup(supp(a(X)/w′(X) | W ′ = 1))
| X,W ′ = 1

)
| W ′ = 1

]
P(W ′ = 1)

= E
[

a(X)/w′(X)

sup(supp(a(X)/w′(X) | W ′ = 1))
| W ′ = 1

]
P(W ′ = 1)

=
E[a(X)/w′(X) | W ′ = 1]P(W ′ = 1)

sup(supp(a(X)/w′(X) | W ′ = 1))

=
E[a(X) | W0 = 1]P(W ′ = 1)

sup(supp(a(X)/w′(X) | W ′ = 1))

> 0.

The second equality follows from P(W ∗ = 1 | W ′ = 0) = 0, which holds by the construction of W ∗. The

fourth equality holds from U ⊥⊥ (X,W ′) and from a(X)/w′(X)
sup(supp(a(X)/w′(X)|W ′=1)) ∈ [0, 1] almost surely given

W ′ = 1. To establish the final inequality, recall that P(W ′ = 1) and E[a(X) | W0 = 1] are positive
by assumption. Also sup(supp(a(X)/w′(X) | W ′ = 1)) ≤ sup(supp(a(X)/w′(X) | W0 = 1)) < ∞ since
supp(a(X)/w′(X) | W ′ = 1) is a subset of supp(a(X)/w′(X) | W0 = 1). That W ∗ satisfies the two
properties of Definition 3.1 holds immediately. Therefore, W ∗ is a regular subpopulation of W ′.

Finally, let

w∗(X) = P(W ∗ = 1 | X,W ′ = 1)

= P
(
U ≤ a(X)/w′(X)

sup(supp(a(X)/w′(X) | W ′ = 1))
| X,W ′ = 1

)
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=
a(X)/w′(X)

sup(supp(a(X)/w′(X) | W ′ = 1))
.

Letting E[Y (1) − Y (0) | X,W ′ = 1] = τ0(X) ∈ Tall and using Proposition 3.1, we can see that

E[Y (1) − Y (0) | W ∗ = 1] =
E[w∗(X)τ0(X) | W ′ = 1]

E[w′(X) | W ′ = 1]

=

E
[

a(X)

w′(X)

sup(supp(a(X)/w′(X)|W ′=1))τ0(X) | W ′ = 1

]
E
[

a(X)

w′(X)

sup(supp(a(X)/w′(X)|W ′=1)) | W ′ = 1

]

=
E
[

a(X)
w′(X)τ0(X) | W ′ = 1

]
E
[

a(X)
w′(X) | W ′ = 1

]
=

E[a(X)τ0(X) | W0 = 1]

E[a(X) | W0 = 1]

= µ(a, τ0).

Since τ0 ∈ Tall was arbitrary, we have that W ∗ ∈ W(a;W ′, Tall) which concludes the proof.

Part 2: T = {τ0}
To simplify the notation in the proof, we let µ ≡ µ(a, τ0).

(=⇒) First, let µ /∈ S(τ0;W ′) and suppose there exists W ∗ ∈ W(a;W ′, {τ0}). Since µ /∈ S(τ0;W ′), we
can without loss of generality suppose that P(τ0(X) ≤ µ | W ′ = 1) = 0, which implies P(τ0(X) > µ | W ′ =
1) = 1. Since W ∗ ∈ W(a;W ′, {τ0}), we can write by Proposition 3.1

µ = E[Y (1) − Y (0) | W ∗ = 1]

=
E[P(W ∗ = 1 | X,W ′ = 1)E[Y (1) − Y (0) | X,W ′ = 1] | W ′ = 1]

E[P(W ∗ = 1 | X,W ′ = 1) | W ′ = 1]

=
E[P(W ∗ = 1 | X,W ′ = 1)τ0(X) | W ′ = 1]

E[P(W ∗ = 1 | X,W ′ = 1) | W ′ = 1]

≥ E[P(W ∗ = 1 | X,W ′ = 1)µ | W ′ = 1]

E[P(W ∗ = 1 | X,W ′ = 1) | W ′ = 1]
= µ. (C.1)

The inequality is strict unless E[(τ0(X) − µ︸ ︷︷ ︸
>0 w.p.1

)P(W ∗ = 1 | X,W ′ = 1)︸ ︷︷ ︸
∈[0,1]

| W ′ = 1] = 0 holds. This holds if

P((τ0(X) − µ)P(W ∗ = 1 | X,W ′ = 1) = 0 | W ′ = 1) = 1, which in turns occurs if and only if P(P(W ∗ = 1 |
X,W ′ = 1) = 0 | W ′ = 1) = 1. This implies P(W ∗ = 1 | W ′ = 1) = 0 and P(W ∗ = 1) = P(W ∗ = 1 | W ′ =
1)P(W ′ = 1) = 0, a contradiction of W ∗ ∈ W(a,W ′, {τ0}). Therefore, the inequality in (C.1) is strict and
yields µ > µ, a contradiction. Therefore, W(a;W ′, {τ0}) = ∅ when µ /∈ S(τ0;W ′).

(⇐=) Second, let µ ∈ S(τ0;W ′). Let

X− = {x ∈ supp(X) : τ0(x) ≤ µ} and X+ = {x ∈ supp(X) : τ0(x) ≥ µ}.

By µ ∈ S(τ0;W ′), P(X ∈ X− | W ′ = 1) = P(τ0(X) ≤ µ | W ′ = 1) > 0. Similarly, P(X ∈ X+ | W ′ = 1) > 0.

Let U ∼ Unif(0, 1) where U ⊥⊥ (Y (1), Y (0), X,W ′,W0). For u ∈ [0, 1] let

W ∗(u) = (1(U > u,X ∈ X−) + 1(U ≤ u,X ∈ X+)) ·W ′.

We can see that W ∗(u) ∈ {0, 1}, that W ∗(u) ⊥⊥ (Y (1), Y (0)) | X,W ′ = 1, and that P(W ∗(u) = 1 | W ′ =
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0) = 0. To show that W ∗(u) characterizes a regular subpopulation of W ′, we also show that it is nonzero
with positive probability:

P(W ∗(u) = 1 | W ′ = 1) = P(1(U > u,X ∈ X−) + 1(U ≤ u,X ∈ X+) = 1 | W ′ = 1)

= P(U > u,X ∈ X− | W ′ = 1) + P(U ≤ u,X ∈ X− | W ′ = 1)

= (1 − u)P(X ∈ X− | W ′ = 1) + uP(X ∈ X+ | W ′ = 1)

> 0

for all u ∈ [0, 1]. Therefore, P(W ∗(u) = 1) = P(W ∗(u) = 1 | W ′ = 1)P(W ′ = 1) > 0 by P(W ′ = 1) > 0.
Hence, W ∗(u) ∈ SP(W ′) for all u ∈ [0, 1].

For a given u, we have that w∗(X;u) ≡ P(W ∗(u) = 1 | X,W ′ = 1) = (1 − u)1(X ∈ X−) + u1(X ∈ X+).
Therefore, using Proposition 3.1,

E[Y (1) − Y (0) | W ∗(u) = 1] =
E[w∗(X;u)E[Y (1) − Y (0) | X,W ′ = 1] | W ′ = 1]

E[w∗(X;u) | W ′ = 1]

=
E[((1 − u)1(X ∈ X−) + u1(X ∈ X+))τ0(X) | W ′ = 1]

E[((1 − u)1(X ∈ X−) + u1(X ∈ X+)) | W ′ = 1]

=
(1 − u)E[1(X ∈ X−)τ0(X) | W ′ = 1] + uE[1(X ∈ X+)τ0(X) | W ′ = 1]

(1 − u)P(X ∈ X− | W ′ = 1) + uP(X ∈ X+ | W ′ = 1)
.

By construction, τ0(X)1(X ∈ X−) ≤ µ1(X ∈ X−) and τ0(X)1(X ∈ X+) ≥ µ1(X ∈ X+) almost surely.
Therefore,

E[Y (1) − Y (0) | W ∗(0) = 1] =
E[1(X ∈ X−)τ0(X) | W ′ = 1]

P(X ∈ X− | W ′ = 1)
≤ E[1(X ∈ X−)µ | W ′ = 1]

P(X ∈ X− | W ′ = 1)
= µ

and

E[Y (1) − Y (0) | W ∗(1) = 1] =
E[1(X ∈ X+)τ0(X) | W ′ = 1]

P(X ∈ X+ | W ′ = 1)
≥ E[1(X ∈ X+)µ | W ′ = 1]

P(X ∈ X+ | W ′ = 1)
= µ.

By the continuity of E[Y (1) − Y (0) | W ∗(u) = 1] in u and the intermediate value theorem, there exists
u∗ ∈ [0, 1] such that µ = E[Y (1) − Y (0) | W ∗(u∗) = 1] and W ∗(u∗) ∈ W(a;W ′, {τ0}).

Proof of Theorem 4.4. Part 1: T = Tall
First suppose P(a(X) ≥ 0 | W ′ = 1) = 1. From Theorem 4.3, there exists W ∗ ∈ W(a;W ′, Tall). Written

differently, we have that

E
[

a(X)
w′(X)τ0(X) | W ′ = 1

]
E
[

a(X)
w′(X) | W ′ = 1

] = µ(a, τ0) = E[Y (1) − Y (0) | W ∗ = 1] =
E [P(W ∗ = 1 | X,W ′ = 1)τ0(X) | W ′ = 1]

E [P(W ∗ = 1 | X,W ′ = 1) | W ′ = 1]

for all τ0 ∈ Tall. From derivations in the proof of Theorem 4.3, we have that P(C · a(X)
w′(X) = P(W ∗ = 1 |

X,W ′ = 1) | W ′ = 1) = 1 for some positive constant C > 0.

Since P(W ∗ = 1 | X,W ′ = 1) ≤ 1 almost surely given W ′ = 1, we must have C · a(X)/w′(X) ≤ 1 almost
surely given W ′ = 1. This means C is bounded above by inf(supp(w′(X)/a(X) | W ′ = 1)), which is strictly
positive by assumption. Therefore,

P(W ∗ = 1 | W ′ = 1) = E[P(W ∗ = 1 | X,W ′ = 1) | W ′ = 1]

≤ inf

(
supp

(
w′(X)

a(X)
| W ′ = 1

))
E
[
a(X)

w′(X)
| W ′ = 1

]
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= inf

(
supp

(
w′(X)

a(X)
| W ′ = 1

)) E
[

a(X)
w′(X)W

′
]

P(W ′ = 1)

= inf

(
supp

(
w′(X)

a(X)
| W ′ = 1

))
· E
[
E
[
a(X)

w′(X)
W ′ | X,W0 = 1

]
| W0 = 1

]
P(W0 = 1)

P(W ′ = 1)

= inf

(
supp

(
w′(X)

a(X)
| W ′ = 1

))
· E[a(X) | W0 = 1]

P(W0 = 1)

P(W ′ = 1)
.

The fifth line follows from W ′ being a subpopulation of W0, and the last line follows from the law of iterated
expectations.

This upper bound is sharp because it is attained by setting

W ∗ = 1

(
U ≤ a(X)/w′(X)

sup(supp(a(X)/w′(X) | W ′ = 1))

)
·W ′

and noting that W ∗ ∈ W(a;W ′, Tall) from Theorem 4.3.

Now suppose P(a(X) ≥ 0 | W ′ = 1) < 1. By Theorem 4.3, W(a;W ′, T ) = ∅ and therefore P (a,W ′; Tall)
is zero.

Part 2: T = {τ0}
In this case, we seek to maximize P(W ∗ = 1 | W ′ = 1) subject to W ∗ ∈ W(a;W ′, {τ0}). Using Proposition

3.1, we can write E[Y (1) − Y (0) | W ∗ = 1] as E[τ0(X)P(W ∗ = 1 | X,W ′ = 1) | W ′ = 1]/E[P(W ∗ = 1 |
X,W ′ = 1) | W ′ = 1]. The result then follows from a direct application of Theorem 4.2 that replaces W0 by
W ′ in its statement and P(W ∗ = 1 | X,W0 = 1) by P(W ∗ = 1 | X,W ′ = 1) in the proofs.

D Difference-in-Differences

Goodman-Bacon (2021) provides the following representation of the two-way fixed effects estimand under
the assumption that group-level average treatment effects are constant over time:

βTWFE =
∑

k: var(D|G=k)>0

[
k−1∑
j=1

σk
jk +

K∑
j=k+1

σk
kj

]
· E[Y (1) − Y (0) | G = k,D = 1],

where

σk
jk =

P(G = j) · P(G = k) · P(D = 1 | G = k) ·
[
P(D = 1 | G = j) − P(D = 1 | G = k)

]
var(D⊥(Gt1

,...,GtK−1
,P1,...,PT ))

and

σk
kj =

P(G = j) · P(G = k) ·
[
1 − P(D = 1 | G = k)

][
P(D = 1 | G = k) − P(D = 1 | G = j)

]
var(D⊥(Gt1 ,...,GtK−1

,P1,...,PT ))
.

It is also the case that
∑

k: var(D|G=k)>0

∑
l>k

(
σk
kl + σl

kl

)
= 1.5 When we compare this representation with

5The result in Goodman-Bacon (2021) technically also includes a weight σkU attached to the contrast between group k
and the never-treated group. We subsume this weight under σk

kj , and likewise subsume the weight on the contrast with the

always-treated group under σk
jk.
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Proposition 2.5, that is,

βTWFE =
E[aB(G) · P(D = 1 | G) · E[Y (1) − Y (0) | G,D = 1]]

E[aB(G) · P(D = 1 | G)]

=

∑
k: var(D|G=k)>0 P(G = k) · aB(k) · P(D = 1 | G = k) · E[Y (1) − Y (0) | G = k,D = 1]∑

k: var(D|G=k)>0 P(G = k) · aB(k) · P(D = 1 | G = k)
,

it becomes clear that, for each group k other than the always treated and the never treated,

aB(k) · P(D = 1 | G = k) =

k−1∑
j=1

P(G = j) · P(D = 1 | G = k) ·
[
P(D = 1 | G = j) − P(D = 1 | G = k)

]
+

K∑
j=k+1

P(G = j) ·
[
1 − P(D = 1 | G = k)

][
P(D = 1 | G = k) − P(D = 1 | G = j)

]
,

and this, in turn, implies that

aB(k) =

k−1∑
j=1

P(G = j) ·
[
P(D = 1 | G = j) − P(D = 1 | G = k)

]
+

K∑
j=k+1

P(G = j) ·
[
P(D = 1 | G = k) − P(D = 1 | G = j)

]
· 1 − P(D = 1 | G = k)

P(D = 1 | G = k)
. (D.1)

D.1 Equivalence of Weight Functions

We now show that the weights obtained in equation (D.1) are equivalent to those in Proposition 2.5. First,
we rewrite the weights in (D.1) as follows:

aB(k) =

k−1∑
j=1

P(G = j) ·
[
P(D = 1 | G = j) − P(D = 1 | G = k)

]
+

K∑
j=k+1

P(G = j) ·
[
P(D = 1 | G = k) − P(D = 1 | G = j)

]
· 1 − P(D = 1 | G = k)

P(D = 1 | G = k)

= P(D = 1, G < k) − P(G < k)E[D | G = k] + (1 − E[D | G = k])P(G > k)

− 1 − E[D | G = k]

E[D | G = k]
P(D = 1, G > k)

= P(D = 1, G < k) − P(G < k)E[D | G = k] + P(G > k) − E[D | G = k]P(G > k)

− 1

E[D | G = k]
P(D = 1, G > k) + P(D = 1, G > k)

= P(D = 1, G ̸= k) − E[D | G = k]P(G ̸= k) + P(G > k)

(
1 − E[D | G > k]

E[D | G = k]

)
= (E[D] − E[D | G = k]P(G = k)) − E[D | G = k]P(G ̸= k) + P(G > k)

(
1 − E[D | G > k]

E[D | G = k]

)
= E[D] − E[D | G = k] + P(G > k)

(
1 − E[D | G > k]

E[D | G = k]

)
.
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For k ∈ {2, . . . , T}, the weights in Proposition 2.5 are equal to

E[1 − E[D | G] − E[D | P ] + E[D] | G = k] = 1 − E[D | G = k] − E[D | P ≥ k] + E[D]. (D.2)

because they are the average of the weights in Proposition 2.4 conditional on G = k. The proof of Proposition
2.5 explicitly shows that

E[1 − E[D | G] − E[D | P ] + E[D] | G = k] = P(D = 0 | G = k) · (P(D = 0 | P ≥ k) + P(D = 1 | P < g)).

Let us look at the difference between the weights in (D.1) and (D.2). Fix k ∈ {2, . . . , T} and write

(1 − E[D | G = k] − E[D | P ≥ k] + E[D]) −
(
E[D] − E[D | G = k] + P(G > k)

(
1 − E[D | G > k]

E[D | G = k]

))
= 1 − E[D | P ≥ k] − P(G > k) +

E[D1(G > k)]

E[D | G = k]

= E[1(G ≤ k)] − E[D1(P ≥ k)]

E[1(P ≥ k)]
+

E[D1(G > k)]

E[1(k ≤ P )]

=
1

E[1(k ≤ P )]
(FG(k)E[1(k ≤ P )] + E[D1(G > k)] − E[D1(P ≥ k)])

=
1

E[1(k ≤ P )]
(FG(k)E[1(k ≤ P )] + E[1(k < G ≤ P )] − E[E[D | P ]1(P ≥ k)])

=
1

E[1(k ≤ P )]
(FG(k)E[1(k ≤ P )] + E[E[1(k < G ≤ P ) | P ]] − E[FG(P )1(P ≥ k)])

=
1

E[1(k ≤ P )]
(FG(k)E[1(k ≤ P )] + E[(FG(P ) − FG(k))1(P ≥ k)] − E[FG(P )1(P ≥ k)])

=
1

E[1(k ≤ P )]
(FG(k)E[1(k ≤ P )] + E[FG(P )1(P ≥ k)] − FG(k)E[1(P ≥ k)] − E[FG(P )1(P ≥ k)])

= 0.

Therefore, the weights in Proposition (2.5), (D.1), and (D.2) are all equal to one another.
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