
Reputation and Data-Protection Incentives

Manos Perdikakis,
University of Oxford

EEA Conference, 2024

August 28th, 2024



Introduction

▶ Data breaches and cyber attacks are commonplace: (e.g. LastPass,
Twitter, Facebook, Snapchat etc..)

▶ Consumers harmed by loss of personal information.
▶ Difficult to ex ante identify cyber-secure firms.
▶ but also tough for regulators to ex post verify how diligent a firm was.

Thus, reputation for respecting users’ privacy becomes important.

▶ e.g. Facebook’s “Privacy is Personal” campaign was about restoring
trust after Cambridge Analytica.

▶ Consumers do observe whether data breaches occur: Their
frequency affects firms’ reputations.

This paper: develop a model of reputational concerns and evaluate
GDPR-style policies around cyber security and data collection.
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Motivation: impact of breaches on reputation

Question: Do firms that suffer cyber attacks suffer reputational damage?

Kamiya et al. 2021, JFinEcon: when a successful cyber attack involves
loss of personal financial information, total shareholder loss is much
larger than out-of-pocket costs.

▶ For 75 first-time attacks, total shareholder loss is $104 billion.

▶ Direct out-of-pocket costs (investigation and remediation, penalties,
etc.) is only $1.2 billion.

▶ Would suggest that breaches are informative, either about the
underlying cyber-risk or the firm’s capacity to provide cyber security.
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Baseline Model



Model: Timing, t = 1

1. Nature draws private type of firm {C ,N}, with prior p(C ) = µ1.

2. Consumers choose whether to be active and level of data to share
with the firm in t = 1.
▶ Active users choose data d1 to maximize exp. utility u(d1, p1).

▶ No access fee charged.

3. t = 1: Normal-type chooses unobserved e1 ∈ [0, 1], at cost C (e).

▶ type C is non-strategic : eC = 1 in both periods.

4. End of t = 1: a data breach may occur.

▶ P(b|e1) = ζ + (1− ζ)(1− e1), where ζ > 0.

▶ Integrate over types to get p1 = p(µ1, e1)

5. All consumers observe whether a breach occurs or not.
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Model: Timing, t = 2

1. Beliefs are updated to p2 ∈ {pn, pb} using Bayes’ rule.

2. t = 2: Consumers choose participation and data sharing again.

▶ Based their posterior belief about prob. of breach in t = 2.

3. End of t = 2: data-breach occurs or not, and the game ends.
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Posterior beliefs
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Figure 1: Posteriors µn (decreasing) and µb (increasing) as functions of
first-period investment. As e1 → 1, outcomes become uninformative and they
converge to the prior.

▶ Bayes’ rule implies µn decreases in e1 and µb increases.

▶ If ζ = 0, perfect bad news: µb = 0.
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Model: Demand and revenue

Assumption 1: u(d , p) quasi-concave in d , with up ≤ 0 and ud,p ≤ 0.

▶ In each period, active consumers choose:

d∗(p) = argmax
d

u(d , p) (1)

▶ Assn 1 implies decreasing d∗(p).

Assumption 2: Consumers have heterog. outside options, θ ∼ F [0, 1].

▶ Mass of active users decreases in p.

Assumption 3: Π(p) := r(d∗) · F (u(d∗, p)), with r ′(d) > 0.

▶ Revenue per consumer increases in d .

▶ Π′(p) < 0.
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Model: Investment decision in t = 1

Taking consumers’ investment beliefs, ẽ1 as given, the Normal type
chooses e1 to maximize:

TΠ = Π(p1)− C (e1) + P(b|e1)Π(pn) + (1− e1)Π(pb)

▶ Investment is purely retention driven: e2 = 0 in any subgame of
period 2.

▶ The firm’s best-response to consumer beliefs ẽ1 is found by the foc:

(1− ζ)
(
Π(pn)− Π(pb)

)
= C ′(eBR1 )

▶ At equilibrium, beliefs must be correct, eBR1 (ẽ1) = ẽ1 = e∗1 .

Proposition 1
There exists a unique Perfect Bayesian Eqm, (e∗1 ,p

∗,d∗), of this game. It
is separating, i.e. e∗1 < 1.
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Welfare analysis of data-sharing



Welfare analysis of data-collection

In this section:

▶ A CS-maximizing planner can ex-ante mandate specific levels of d2.

▶ Can condition d2 on first-period outcomes, i.e. d2 ∈ {dn, db}.

Starting from the unique “regulation-free equilibrium” (e∗,p∗,d∗):

dCS

d(db)
=

[∂CS1
∂e1

+
∂CS2
∂e1

] ∂e1
∂db

+
∂CS2
∂db︸ ︷︷ ︸
=0

(2)

Changes in either dn or db affect CS via:

1. Direct effect on utility (not first-order)

2. Indirect effect on CS1 via eqm security.

3. Indirect effect on CS2 via distribution of posterior beliefs.
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Will examine each term of the total derivative in sequence.



Effect on investment

Reminder: db = data to be shared in t=2 following a breach in t=1.

Lemma 1
At the unique equilibrium, a marginal increase in db decreases
investment, ∂e1/∂db < 0.

1. db affects marginal profit of e1 only via its impact on t = 2 profit
following a breach.

2. When higher db increases profit following a breach, security
incentives decrease.

3. At d∗
b , that profit is always increasing in db: Consumer-optimal

sharing is below the ex post profit-maximizing value.
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Welfare analysis: Signal jamming

What is the effect of e1 on CS2?

1. Changes frequency of breaches conditional on Normal type.

2. Changes posterior beliefs, and thus optimal consumer choices → not
first-order.

Lemma 2
The marginal impact of investment on CS2, ∂CS2/∂e1, is negative and
increasing. If ζ > 0, as e → 1, it converges to zero.

Signal-Jamming Intuition: When facing a Normal firm, higher e1
simply reduces the probability that consumers become aware, thus they
choose sub-optimally high participation/data sharing in t=2.

Higher e1 impedes learning about the firm’s type.
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Illustrating the Lemma

0.2 0.4 0.6 0.8 1.0
e1

-0.15

-0.10

-0.05

∂CS2/∂e1

Figure 2: Illustration of Lemma 2: Greater investment impedes learning and
decreases CS2, but does so at a decreasing magnitude. In the Figure, as e
varies, consumers adjust their beliefs and optimal decisions.

Red curve = high ζ; intuitively, lower impact of signal jamming when
firm type is less informative.
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Welfare analysis of data-collection
Putting everything together: Impact on CS2 around regulation-free
equilibrium:

dCS2
d(db)

=
∂CS2
∂e1︸ ︷︷ ︸
(−)

∂e1
∂db︸︷︷︸
(−)

+
∂CS2
∂db︸ ︷︷ ︸
=0

> 0 (3)

Lemma 3
Starting at the initial equilibrium (e∗1 ,p

∗,d∗), the planner can increase
CS2 by ex-ante imposing small caps on data-sharing for high-reputation
firms, but not for low-reputation ones.

From a CS2 perspective, consumers share too little data with
low-reputation firms, but give out too much data to high-reputation
firms.

▶ By imposing (ex-ante) data caps on data-sharing with
high-reputation firms, the planner can achieve lower eqm e1 and
thus more learning.

▶ Will come at a cost of more frequent first-period breaches.
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Welfare analysis of data-collection

Lemma 4
First period consumer surplus is a convex function of investment e1.
Total consumer surplus is also convex.

▶ High e∗1 : Higher participation and d∗
1 → greater harm if a breach

does occur.

▶ High e∗1 : Lower magnitude of negative signal jamming effect.

As a result, it is more likely that starting from equilibria with low e1,
increases in e1 can potentially decrease total consumer surplus.

Fact: Across all (e, dn, db) combinations, total CS is maximized when
e = 1 and data-sharing is given by the ex-post optimal choices of
consumers.
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Total consumer surplus
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Figure 3: Total consumer surplus is a convex a function of e1. Green curve
corresponds to lowest value of ζ.
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Literature review

▶ Economics of privacy surveys: Acquisti et al (2016), Goldfarb and
Tucker (2023)

▶ Strategic attackers: De Corniere and Taylor (2022), Anhert et al
(2023, also has moral hazard component), Fainmesser et al (2023)

▶ Data storage and security choices: Fainmesser et al (2023),
Scheifert and Lam (2023)

▶ Consumer learning: Julien et al (2020), Toh (2018)

▶ Impact of cyber-attacks on firms (empirical): Kamiya et al 2021,
Jamilov et al 2021, and many more.

▶ Other relevant theory work: De Corniere and Taylor (2021), Lefouili
et al (2023), Markovich and Yehezkel (2023).

▶ Impact of GDPR on firm performance and outcomes (empirical):
Aridor et al 2022, Johnson et al 2022.
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Conclusion

Model:

▶ Reputation concerns incentivize firms to invest in cyber security.

▶ More data sharing raises revenue-per-consumer but also makes
breaches more harmful.

Investment affects security, as well as learning.

▶ When consumers control ex-post data sharing, total CS might
increase following changes that induce lower investment.

▶ When firms control ex-post data sharing, consumers benefit from
imposing caps for both high and low reputation firms (didn’t show
today).
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Thank you!



Additional Slides



Does this insight extend to T = ∞?

Take an example model with T = ∞:

▶ Firm lives forever, has private knowledge of its time-invariant type.

▶ Consumers have memories of 1 period. Once they become alive in
period t, they immediately learn the security-outcome of period
t − 1.

▶ Thus, when making their participation + data choices, their beliefs
are either µn or µb.

▶ The firm chooses e in every period, and it is clear that there is an
equilibrium in which it chooses the same e in each period.

▶ A fine that changes equilibrium e will affect both beliefs and security
outcomes of each generation of consumers.

1. All previous results apply in this setting too! (equilibrium uniqueness
requires suff. convex cost, even for ζ > 0.)

2. Are there regions in which steady-state CS is decreasing in e?

▶ Yes, if loss from reduced learning dominates security gains at e = 0.
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