Jean-Guillaume Sahuc1*,* ² Frank Smets3*,* ⁴ Gauthier Vermandel5*,* ⁶*,* ¹

Banque de France Université Paris-Nanterre European Central Bank Ghent University CMAP, Ecole polytechnique, Institut Polytechnique de Paris. LEDa, Paris-Dauphine and PSL Universities.

– EEA, August 2024 –

INTRODUCTION

- ▶ Climate change will change the macroeconomic landscape in the next decades and the central bank will have to face 2 phenomena [\[Schnabel 2022\]](#page-37-0):
	- ▶ On the one hand, a warming planet causes damages that will make resources scarcer $\&$ prices higher \rightarrow **climateflation**.
	- \triangleright On the other hand, the fight against climate change (through increasing carbon taxes) will make fossil fuels & raw materials more expensive \rightarrow **greenflation**.
- ▶ How should the central bank conduct monetary policy in this new landscape?
- Answering this question requires to understand the effects of climate change on the economy.

THIS PAPER

- ▶ The canonical New Keynesian model is silent on climate developments.
- This paper develops The New Keynesian Climate (NKC) model by:
	- ▶ extending the canonical model with a carbon accumulation constraint and a mitigation policy from the Integrated Assessment Model (IAM) literature;
	- ▶ estimating this model for the world economy with techniques that take into account nonlinearities resulting from climate change;
	- ▶ providing projections up to horizon 2100 under mitigation versus *laissez-faire* policy by changing an exogenous carbon tax rate.
- ▶ This allows us to analyze the impact of climate change on inflation and monetary policy.

Methodological breakthrough

- Standard view: stable propagation mechanism with fluctuations naturally decaying over time back to a steady state.
- Climate problem: the way carbon emissions cumulate over time permanently changes the propagation patterns \rightarrow no steady state.
- ▶ We solve our nonlinear model taking into account both long and short term effects using the [Fair and Taylor \(1983\)](#page-37-1)'s extended path solution method.
- ▶ We estimate the model using Bayesian nonlinear techniques based on the inversion filter from [Fair and Taylor \(1983\)](#page-37-1).

OUTLINE

[Introduction](#page-1-0)

[The NKC model](#page-5-0)

[Estimation](#page-16-0)

[The Anatomy of Green/Climateflation](#page-21-0)

[Conclusion](#page-34-0)

[Introduction](#page-1-0)

[The NKC model](#page-5-0)

[Estimation](#page-16-0)

[The Anatomy of Green/Climateflation](#page-21-0)

[Conclusion](#page-34-0)

Carbon accumulation and its damages:

IS:
$$
\left(\frac{\tilde{y}_t x_t - \omega d}{1 - \omega}\right)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} \left((1 - \omega) \left(\frac{x_{t+1} \tilde{y}_{t+1} - \omega d}{1 - \omega} \right)^{-\sigma_c} + \omega d^{-\sigma_c} \right)
$$

 $x_t = 1 - 0.5 \kappa (\pi_t - \pi_t^*)^2 (1 - \vartheta) - \vartheta (1 - \varepsilon_{p,t} m c_t)$

$$
\begin{array}{rcl}\n\mathbf{PC:} & \left(\pi_t - \pi_t^*\right)\pi_t & = & \left(1 - \vartheta\right)\beta \mathbb{E}_t \ g_{z,t}\tilde{y}_{t+1}/\tilde{y}_t \left(\pi_{t+1} - \pi_{t+1}^*\right)\pi_{t+1} + \zeta \kappa^{-1}\varepsilon_{p,t}mc_t + \kappa^{-1}\left(1 - \zeta\right) \\
& mc_t & = & \psi \left(x_t\tilde{y}_t - \omega d\right)^{\sigma_c} \tilde{y}_t^{\sigma_n} \ \Phi\left(\tilde{m}_t\right)^{-(1+\sigma_n)}\n\end{array}
$$

MP: $r_t = r_{t-1}^{\rho} \left[r_r \left(\pi_t^* / \pi \right) \left(\pi_t / \pi_t^* \right)^{\phi_{\pi}} \left(\tilde{y}_t / \tilde{y}_t^n \right)^{\phi_y} \right]^{1-\rho} \varepsilon_{r,t}$

CC: $\tilde{m}_t = (1 - \delta_m) \tilde{m}_{t-1} + \xi_m \sigma_t z_t l_t \tilde{y}_t \varepsilon_{e,t}$

Carbon accumulation and its damages:

IS:
$$
\left(\frac{\tilde{y}_t x_t - \omega d}{1 - \omega}\right)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} \left((1 - \omega) \left(\frac{x_{t+1} \tilde{y}_{t+1} - \omega d}{1 - \omega} \right)^{-\sigma_c} + \omega d^{-\sigma_c} \right)
$$

 $x_t = 1 - 0.5 \kappa (\pi_t - \pi_t^*)^2 (1 - \vartheta) - \vartheta (1 - \varepsilon_{p,t} m c_t)$

$$
\begin{array}{rcl}\n\mathbf{PC:} & \left(\pi_t - \pi_t^*\right)\pi_t & = & \left(1 - \vartheta\right)\beta \mathbb{E}_t \ g_{z,t}\tilde{y}_{t+1}/\tilde{y}_t \left(\pi_{t+1} - \pi_{t+1}^*\right)\pi_{t+1} + \zeta \kappa^{-1}\varepsilon_{p,t}mc_t + \kappa^{-1}\left(1 - \zeta\right) \\
& mc_t & = & \psi \left(x_t\tilde{y}_t - \omega d\right)^{\sigma_c} \tilde{y}_t^{\sigma_n} \ \Phi\left(\tilde{m}_t\right)^{-(1+\sigma_n)}\n\end{array}
$$

$$
\mathbf{MP:} \qquad \qquad r_t \quad = \quad r_{t-1}^{\rho} \left[r_r \left(\pi_t^* / \pi \right) \left(\pi_t / \pi_t^* \right)^{\phi_{\pi}} \left(\tilde{y}_t / \tilde{y}_t^n \right)^{\phi_y} \right]^{1-\rho} \varepsilon_{r,t}
$$

CC: $\tilde{m}_t = (1 - \delta_m) \tilde{m}_{t-1} + \xi_m \sigma_t z_t \, l_t \, \tilde{y}_t \, \varepsilon_{e,t}$ **Anthropogenic carbon stock**

Carbon accumulation and its damages:

IS:
$$
\left(\frac{\tilde{y}_t x_t - \omega d}{1 - \omega}\right)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} \left((1 - \omega) \left(\frac{x_{t+1} \tilde{y}_{t+1} - \omega d}{1 - \omega} \right)^{-\sigma_c} + \omega d^{-\sigma_c} \right)
$$

 $x_t = 1 - 0.5 \kappa (\pi_t - \pi_t^*)^2 (1 - \vartheta) - \vartheta (1 - \varepsilon_{p,t} mc_t)$

PC:
$$
(\pi_t - \pi_t^*) \pi_t = (1 - \vartheta) \beta \mathbb{E}_t g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t (\pi_{t+1} - \pi_{t+1}^*) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} mc_t + \kappa^{-1} (1 - \zeta)
$$

\n $mc_t = \psi (x_t \tilde{y}_t - \omega d)^{\sigma_c} \tilde{y}_t^{\sigma_n} \Phi (\tilde{m}_t)^{-(1 + \sigma_n)}$
\n**ME:**
\n $r_t = r_{t-1}^{\rho} \underbrace{\text{Decoupling trend}}_{\omega_t / \tilde{y}_t} \tilde{y}_t / \tilde{y}_t^{n})^{\phi_y}]^{1-\rho} \varepsilon_{r,t}$
\nCC: $\tilde{m}_t = (1 - \delta_m) \tilde{m}_{t-1} + \xi_m \sigma_t z_t l_t \tilde{y}_t \varepsilon_{e,t}$
\n**Anthropogenic carbon stock**

The New Keynesian Climate Model

Carbon accumulation and its damages:

IS:
$$
\left(\frac{\tilde{y}_t x_t - \omega d}{1 - \omega}\right)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} \left((1 - \omega) \left(\frac{x_{t+1} \tilde{y}_{t+1} - \omega d}{1 - \omega} \right)^{-\sigma_c} + \omega d^{-\sigma_c} \right)
$$

 $x_t = 1 - 0.5 \kappa (\pi_t - \pi_t^*)^2 (1 - \vartheta) - \vartheta (1 - \varepsilon_{p,t} mc_t)$

[The New Keynesian Climate model](#page-0-0) 7 / 23

The New Keynesian Climate Model

Carbon accumulation and its damages:

IS:
$$
\left(\frac{\tilde{y}_t x_t - \omega d}{1 - \omega}\right)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} \left((1 - \omega) \left(\frac{x_{t+1} \tilde{y}_{t+1} - \omega d}{1 - \omega} \right)^{-\sigma_c} + \omega d^{-\sigma_c} \right)
$$

 $x_t = 1 - 0.5 \kappa (\pi_t - \pi_t^*)^2 (1 - \vartheta) - \vartheta (1 - \varepsilon_{p,t} mc_t)$

[The New Keynesian Climate model](#page-0-0) 7 / 23

The New Keynesian Climate Model

Carbon accumulation and its damages:

IS:
$$
\left(\frac{\tilde{y}_t x_t - \omega d}{1 - \omega}\right)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} \left((1 - \omega) \left(\frac{x_{t+1} \tilde{y}_{t+1} - \omega d}{1 - \omega} \right)^{-\sigma_c} + \omega d^{-\sigma_c} \right)
$$

 $x_t = 1 - 0.5\kappa (\pi_t - \pi_t^*)^2 (1 - \vartheta) - \vartheta (1 - \varepsilon_{p,t} mc_t)$

[The New Keynesian Climate model](#page-0-0) 7 / 23

Carbon accumulation and its damages:

IS:
$$
\left(\frac{\tilde{y}_t x_t - \omega d}{1 - \omega}\right)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} \left((1 - \omega) \left(\frac{x_{t+1} \tilde{y}_{t+1} - \omega d}{1 - \omega} \right)^{-\sigma_c} + \omega d^{-\sigma_c} \right)
$$

 $x_t = 1 - (1 - \vartheta) 0.5 \kappa (\pi_t - \pi_t^*)^2 - \vartheta (1 - \varepsilon_{p,t} mc_t)$

PC:
$$
(\pi_t - \pi_t^*) \pi_t = (1 - \vartheta) \beta \mathbb{E}_t g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t (\pi_{t+1} - \pi_{t+1}^*) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} mc_t + \kappa^{-1} (1 - \zeta)
$$

\n
$$
mc_t = \psi (x_t \tilde{y}_t - \omega d)^{\sigma_c} \tilde{y}_t^{\sigma_n} \Phi (\tilde{m}_t)^{-(1 + \sigma_n)} \leftarrow \text{Climate damages}
$$

$$
\mathbf{MP:} \qquad \qquad r_t = r_{t-1}^{\rho} \left[r_r \left(\pi_t^* / \pi \right) \left(\pi_t / \pi_t^* \right)^{\phi_{\pi}} \left(\tilde{y}_t / \tilde{y}_t^n \right)^{\phi_y} \right]^{1-\rho} \varepsilon_{r,t}
$$

CC:
$$
\tilde{m}_t = (1 - \delta_m)\tilde{m}_{t-1} + \xi_m \sigma_t z_t l_t \tilde{y}_t \varepsilon_{e,t}
$$

Mitigation policies as function of exogenous carbon tax $\tilde{\tau}_t$:

IS:
$$
\left(\frac{\tilde{y}_t x_t - \omega d}{1 - \omega}\right)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} \left((1 - \omega) \left(\frac{x_{t+1} \tilde{y}_{t+1} - \omega d}{1 - \omega} \right)^{-\sigma_c} + \omega d^{-\sigma_c} \right)
$$
 expenditures
 $x_t = 1 - (1 - \vartheta) 0.5 \kappa (\pi_t - \pi_t^*)^2 - \vartheta (1 - \varepsilon_{p,t} mc_t) - \theta_{1,t} \tilde{r}_t^{\theta_2/(\theta_2 - 1)}$

PC:
$$
(\pi_t - \pi_t^*) \pi_t = (1 - \vartheta) \beta \mathbb{E}_t g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t (\pi_{t+1} - \pi_{t+1}^*) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} mc_t + \kappa^{-1} (1 - \zeta)
$$

\n
$$
mc_t = \psi (x_t \tilde{y}_t - \omega d)^{\sigma_c} \tilde{y}_t^{\sigma_n} \Phi (\tilde{m}_t)^{-(1 + \sigma_n)} + \theta_{1,t} \tilde{\tau}_t (\theta_2 + (1 - \theta_2) \tilde{\tau}_t^{1/(\theta_2 - 1)})
$$

$$
\mathbf{MP:} \qquad \qquad r_t = r_{t-1}^{\rho} \left[r_r \left(\pi_t^* / \pi \right) \left(\pi_t / \pi_t^* \right)^{\phi_{\pi}} \left(\tilde{y}_t / \tilde{y}_t^n \right)^{\phi_y} \right]^{1-\rho} \varepsilon_{r,t}
$$

CC: $\tilde{m}_t = (1 - \delta_m) \tilde{m}_{t-1} + \xi_m \sigma_t z_t l_t \tilde{y}_t \varepsilon_{e,t} (1 - \tilde{\tau}_t^{1/(\theta_2 - 1)})$

Mitigation

Mitigation policies as function of exogenous carbon tax $\tilde{\tau}_t$:

1S:
$$
\left(\frac{\tilde{y}_{t}x_{t}-\omega d}{1-\omega}\right)^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} \left((1-\omega) \left(\frac{x_{t+1}\tilde{y}_{t+1}-\omega d}{1-\omega} \right)^{-\sigma_{c}} + \omega d^{-\sigma_{c}} \right)
$$

\n*ext* = 1 – (1 – ϑ)0.5 κ ($\pi_{t} - \pi_{t}^{*}$)² – ϑ (1 – $\varepsilon_{p,t}mc_{t}$) – $\theta_{1,t}\tilde{\tau}_{t}^{\theta_{2}/(\theta_{2}-1)}$
\n**Carbon tax costs**
\n**PC:** $(\pi_{t} - \pi_{t}^{*}) \pi_{t} = (1-\vartheta)\beta \mathbb{E}_{t} g_{z,t}\tilde{y}_{t+1}/\tilde{y}_{t} (\pi_{t+1} - \pi_{t+1}^{*}) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t}mc_{t} + \kappa^{-1}(1-\zeta)$
\n*mc* = ψ ($x_{t}\tilde{y}_{t} - \omega d$) ^{σ_{c}} $\tilde{y}_{t}^{\sigma_{n}}$ Φ (\tilde{m}_{t})<sup>-(1+ σ_{n}) + $\theta_{1,t}\tilde{\tau}_{t}$ ($\theta_{2} + (1-\theta_{2})\tilde{\tau}_{t}^{1/(\theta_{2}-1)}$)
\n**MP:** $r_{t} = r_{t-1}^{\rho} \left[r_{r} (\pi_{t}^{*}/\pi) (\pi_{t}/\pi_{t}^{*})^{\phi_{\pi}} (\tilde{y}_{t}/\tilde{y}_{t}^{\eta})^{\phi_{y}} \right]^{1-\rho} \varepsilon_{r,t}$</sup>

CC: $\tilde{m}_t = (1 - \delta_m) \tilde{m}_{t-1} + \xi_m \sigma_t z_t l_t \tilde{y}_t \varepsilon_{e,t} (1 - \tilde{\tau}_t^{1/(\theta_2 - 1)})$

Mitigation policies as function of exogenous carbon tax $\tilde{\tau}_t$:

1S:
$$
\left(\frac{\tilde{y}_{t}x_{t}-\omega d}{1-\omega}\right)^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} \left((1-\omega) \left(\frac{x_{t+1}\tilde{y}_{t+1}-\omega d}{1-\omega} \right)^{-\sigma_{c}} + \omega d^{-\sigma_{c}} \right)
$$

\n*ext* = $1 - (1-\vartheta)0.5\kappa (\pi_{t} - \pi_{t}^{*})^{2} - \vartheta (1-\varepsilon_{p,t}mc_{t}) - \theta_{1,t}\tilde{\tau}_{t}^{\theta_{2}/(\theta_{2}-1)}$
\n**1** Consider the $(1-\vartheta) \beta \mathbb{E}_{t} g_{z,t}\tilde{y}_{t+1}/\tilde{y}_{t} (\pi_{t+1} - \pi_{t+1}^{*}) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t}mc_{t} + \kappa^{-1} (1-\zeta)$
\n*ext* = $\psi (x_{t}\tilde{y}_{t} - \omega d)^{\sigma_{c}} \tilde{y}_{t}^{\sigma_{n}} \Phi (\tilde{m}_{t})^{-(1+\sigma_{n})} + \theta_{1,t}\tilde{\tau}_{t} (\theta_{2} + (1-\theta_{2})\tilde{\tau}_{t}^{1/(\theta_{2}-1)})$
\n**MP:** $r_{t} = r_{t-1}^{\rho} \left[r_{r} (\pi_{t}^{*}/\pi) (\pi_{t}/\pi_{t}^{*})^{\phi_{\pi}} (\tilde{y}_{t}/\tilde{y}_{t}^{n})^{\phi_{y}} \right]^{1-\rho} \varepsilon_{r,t}$
\n**Abatement**
\n**CC:** $\tilde{m}_{t} = (1-\delta_{m})\tilde{m}_{t-1} + \xi_{m} \sigma_{t} z_{t} l_{t} \tilde{y}_{t} \varepsilon_{e,t} (1-\tilde{\tau}_{t}^{1/(\theta_{2}-1)})$

[Introduction](#page-1-0)

[The NKC model](#page-5-0)

[Estimation](#page-16-0)

[The Anatomy of Green/Climateflation](#page-21-0)

[Conclusion](#page-34-0)

ESTIMATION

▶ Estimation on world data from 1985Q1 to 2023Q3 (sources: World Bank, OECD and OurWorldInData).

▶ There are four observable variables:

 $\sqrt{ }$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$

Real output growth rate
\nInflation rate
\nShort-term interest rate
\nCO₂ emissions growth rate\n
$$
\begin{bmatrix}\n\Delta \log (y_t) \\
\pi_t - 1 \\
r_t - 1 \\
\Delta \log (e_t)\n\end{bmatrix}
$$

ESTIMATION

▶ Our statistical model is an extension of [Fair and Taylor \(1983\)](#page-37-1) to deal with trends:

$$
\tilde{y}_t = g_{\Theta}(y_0, y, \{0\}_{1:T})
$$
\n(1)

$$
y_t = \mathbb{E}_{t,t+S} \left\{ g_{\Theta} \left(y_{t-1}, \tilde{y}_{t+S+1}, \varepsilon_t \right) \right\} \tag{2}
$$

$$
\mathcal{Y}_t = h_{\Theta}(y_t) \tag{3}
$$

$$
\varepsilon_t \sim \mathcal{N}\left(0, \Sigma_{\varepsilon}\right) \tag{4}
$$

- \triangleright Compute the deterministic path \tilde{y}_t , add stochastic innovations through extended path $\mathbb{E}_{t,t+S}\{\cdot\}$ with expectation horizon *S*.
- **▶ Maximize sample likelihood** $\mathcal{L}(\theta, \mathcal{Y}_{1:T^*})$ **& run Metropolis-Hastings to compute** uncertainty bands.

ESTIMATION

- ▶ Large uncertainty about future carbon tax: implications for estimation in particular at the end of the sample.
- ▶ Let $\tilde{\tau}^*_t$ denote the Paris-Agreement tax, with rising carbon tax up to 2050, we let the data inform about the market-based expectations on future carbon mitigation policies:

$$
\mathbb{E}_{t,t+S}\{\tilde{\tau}_t\}=\varphi\tilde{\tau}_t^*
$$

where $\varphi \in [0, 1]$ is the fraction of believers in Paris-Agreement policy.

STOCHASTIC AND DETERMINISTIC PATHS

[Introduction](#page-1-0)

[The NKC model](#page-5-0)

[Estimation](#page-16-0)

[The Anatomy of Green/Climateflation](#page-21-0)

[Conclusion](#page-34-0)

THE ANATOMY OF GREEN/CLIMATEFLATION

- ▶ What is the future macroeconomic landscape by the end of the century?
- ▶ We consider three alternative scenarios based on the realization of the carbon tax $\varphi \tilde{\tau}_t^*$:
	- **•** Paris-Agreement with $\varphi = 1$.
	- \triangleright Estimated carbon path with $\varphi = 0.53$.
	- \blacktriangleright Laissez-faire with $\varphi = 0$.

THREE TRANSITIONS

Figure 2: Model-implied projections based on alternative control rates of emissions

One can split the marginal cost into three term:

$$
mc_t = \underbrace{\tilde{w}_t}_{\text{standard climateflation}} / \underbrace{\Phi(m_t)}_{\text{dimenteflation}} + \underbrace{\theta_{1,t}\mu_t^{\theta_2} + \tau_{e,t}\sigma_t (1 - \mu_t)\varepsilon_{e,t}}_{\text{greenflation}},
$$
 (5)

which allows to break down inflation into 4 different forces:

▶ Very different inflation dynamics between the 2 regimes.

 \blacktriangleright What drives this gap?

- \triangleright The immediate increase in carbon tax fuels inflation.
- ▶ But increasing abatement expenditures reduces both consumption and in turn the wealth effect on the labor supply.
- ▶ Reducing emissions also stabilizes damages and inflation.

- ▶ The immediate increase in carbon tax fuels inflation.
- ▶ But increasing abatement expenditures reduces both consumption and in turn the wealth effect on the labor supply.
- ▶ Reducing emissions also stabilizes damages and inflation.

- \triangleright The immediate increase in carbon tax fuels inflation.
- ▶ But increasing abatement expenditures reduces both consumption and in turn the wealth effect on the labor supply.
- ▶ Reducing emissions also stabilizes damages and inflation.

- ▶ The immediate increase in carbon tax fuels inflation.
- ▶ But increasing abatement expenditures reduces both consumption and in turn the wealth effect on the labor supply.
- ▶ Reducing emissions also stabilizes damages and inflation.

▶ Under Laissez-faire:

- ▶ The rising damage makes resources scarcer: ever growing inflation as long as planet warms.
- ▶ Disengagement from carbon policy makes carbon price to be zero.
- ▶ Standard term follows the recessionary forces from in-sample inflation, but decreases as climate grows.

▶ Under Laissez-faire:

- ▶ The rising damage makes resources scarcer: ever growing inflation as long as planet warms.
- ▶ Disengagement from carbon policy makes carbon price to be zero.
- ▶ Standard term follows the recessionary forces from in-sample inflation, but decreases as climate grows.

▶ Under Laissez-faire:

- ▶ The rising damage makes resources scarcer: ever growing inflation as long as planet warms.
- ▶ Disengagement from carbon policy makes carbon price to be zero.
- ▶ Standard term decreases as carbon stock grows.

ADDITIONAL RESULTS

- ▶ Transition is inflationary, robust to different parametrizations (attenuation, NK slope, AD slope, etc.).
- ▶ Taylor output parameter determines if climate damages are in real or nominal terms.
- ▶ Short pain from transition (greenflation) against the long terms costs of a warming planet (climateflation).
- ▶ From monetary policy perspective, easier to manage green transition than a warming planet.

[Introduction](#page-1-0)

[The NKC model](#page-5-0)

[Estimation](#page-16-0)

[The Anatomy of Green/Climateflation](#page-21-0)

[Conclusion](#page-34-0)

CONCLUSION

- ▶ This paper has developed a four-dimensional New Keynesian model with climate externality.
- This framework allows us to identify two phenomena faced by the central bank:
	- ▶ The first one is a persistent negative supply shock called *climateflation* that arises from the deleterious effects of climate change itself:
	- ▶ The second one is a transitory positive demand shock called *greenflation* that appears following the implementation of a climate mitigation policy;
- ▶ Short pain from transition (greenflation) against the long terms costs of a warming planet (climateflation).

Thank you for your attention

- Fair, R. and Taylor, J. (1983). Solution and maximum likelihood estimation of dynamic nonlinear rational expectations models. *Econometrica*, 51:1169–1185.
- Schnabel, I. (2022). A new age of energy inflation: climateflation, fossilflation and greenflation. In *Remarks at a panel on "Monetary Policy and Climate Change" at The ECB and its Watchers XXII Conference, Frankfurt am Main*, volume 17.