The Effects of Corporate Subsidies Along Supply Chains

Elisa Navarra

ECARES, Université libre de Bruxelles

EEA 2024

• Industrial policy is on the rise: "New Economics of Industrial Policy" (Juhász et al., 2023).

• Production is increasingly fragmented in global value chains.

• Political and electoral motives shape subsidies (e.g., US swing states politics).

Subsidies, when selectively provided, generate concerns about their trade effects:

ightarrow The Subsidies and Countervailing Measures Agreement regulates subsidies multilaterally.

The effects of corporate subsidies can propagate along domestic supply chains:

- \uparrow Scale of production \rightarrow Higher demand for inputs and supply of goods/services.
- \downarrow Marginal costs of production \rightarrow Input prices' suppression.
- \downarrow Fixed costs of investment \rightarrow Increased quality of inputs, outputs, and exports.
- $\downarrow \uparrow$ Productivity .

I study the trade effects of US federal subsidies driven by electoral motives.

- 1 I combine rich subsidy data from the Freedom of Information Act and WTO notifications.
- I estimate the causal effects of subsidies on exports through an instrumental variable (IV) approach that exploits exogenous variation in swing states, based on Bown et al. (2023).
 - Direct effects of subsidies on exports.
 - Effects of subsidies on upstream and downstream industries' exports, via Input-Output tables.
- **3** I shed light on **how** the effects of subsidies propagate along domestic supply chains.

Preview of Findings

1 US federal subsidies are under-reported to the WTO.

2 Politically motivated federal subsidies **increase exports** directly and indirectly:

• Direct effects:

A 1% increase in subsidies results in a 0.32% rise in exports.

• Indirect effects:

A 1% increase in subsidies to suppliers results in a 0.29% rise in exports downstream, while a 1% increase in subsidies to customers leads to a 0.09% increase in exports upstream.

3 Mechanisms:

- No inputs' price suppression.
- \uparrow Producer prices and export prices.
- \uparrow Investment, VA, and TFP.

Contribution to the Literature

Local effects of subsidies: E.g., Lee (1996), Becker et al. (2010), Bernini and Pellegrini (2011), Aghion et al. (2015), Bloom et al. (2019), Criscuolo et al. (2019), Liu (2019), Rotemberg (2019), Lane (2020), Slattery and Zidar (2020), Juhász et al. (2021), Myers and Lanahan (2022), and Slattery (2023).

• **Trade effects of subsidies**: E.g., Bernard and Jensen (2004), Görg et al. (2008), Becker et al. (2010), Harrison and Rodríguez-Clare (2010), Broocks and Van Biesebroeck (2017), Munch and Schaur (2018), Defever et al. (2020), and Girma et al. (2020).

• Supply chain spillovers: E.g., Barrot and Sauvagnat (2016), Blonigen (2016), Erbahar and Zi (2017), Liu (2019), Carvalho et al. (2020), Moerenhout (2020), and Barattieri et al. (2023).

I use unique data from Subsidy Tracker:

- Complete coverage of US federal grants (and loans) through the Freedom of Information Act + good coverage of federal tax credits.
- Detailed information on: program, value, recipient firm, granting authority, etc.
- Coverage: 2000-19.
- I aggregate firm-level subsidies to 6-digit NAICS industries.

Direct subsidy $exposure_{j,t}$: total federal subsidies in industry *j*.

Subsidised Firms

Figure: Comparison of Subsidised and Non-Subsidised Firms in Compustat, 2000-2020

ECARES, ULB

Elisa Navarra

Subsidies by Industry

(a) Top 20 Subsidised Industries.

(b) Subsidy Concentration, HHI.

On average, 21 firms per year in a 6-digit NAICS industry receive federal subsidies.

ECARES, ULB

Subsidies Along Supply Chains

I measure supply linkages using the BEA 2002 Input-Output tables.

• **Downstream subsidy exposure**_{j,t}: subsidies in industries *i* that supply industry *j*:

Downstream subsidy exposure_{j,t} =
$$\sum_{i,i \neq j} w_{i,j} * subsidy_{i,t}$$
.

• **Upstream subsidy exposure**_{*j*,*t*}: subsidies in industries *k* that buy from industry *j*:

Upstream subsidy exposure_{j,t} =
$$\sum_{k \neq j} \theta_{j,k} * subsidy_{k,t}$$
.

Summary statistics

Outcome variables:

- Exports and Imports: WITS (concorded from HS to NAICS).
- Employment and Gross Output: US County Business Patterns and Eckert et al. (2021).
- Prices: PPI from US Bureau of Labour Statistics; Export prices (Unit Values, Comtrade).
- Investment, TFP, and Value-added: NBER-CES Manufacturing Industry Database.

IV:

- Votes outcomes and projections in presidential elections: Atlas Elections.
- Electoral votes: National Archives (US Government).

Controls:

- Trade protection: Temporary Trade Barriers (Bown et al., 2020).
- Lobbying: LobbyView.

Table: Subsidies and Exports, OLS estimates, Yearly Level, 2000-20

		Exports _{j,t}		
	(1)	(2)	(3)	(4)
Direct subsidy $exposure_{j,t}$	0.095***	0.046***	0.080***	0.040***
	(0.02)	(0.01)	(0.01)	(0.01)
Upstream subsidy $exposure_{j,t}$	0.0497	0.041*	0.059	0.034*
	(0.03)	(0.02)	(0.03)	(0.02)
Downstream subsidy $exposure_{j,t}$	0.487***	0.393***	0.432***	0.356***
	(0.09)	(0.11)	(0.11)	(0.10)
Controls	NO	NO	YES	YES
Year FE	YES	YES	YES	YES
Industry FE	NAICS-2	NAICS-4	NAICS-2	NAICS-4
Obs.	9,140	9,140	9,140	9,140
R ²	0.163	0.353	0.186	0.361

-

Building on Bown et al. (2023), I identify political subsidies through:

• Political shocks driven by changes in swing states' identity across electoral terms.

• Employment shares capturing the industry's importance for voters within states.

Intuition: Federal subsidies are skewed towards industries with high employment in swing states.

• Political shocks are driven by changes in the identity of swing states across terms.

• The shocks' intensities depend on the state's importance in the Electoral College.

Swing States

Note: Swing state: difference in the candidates' vote shares in the is < 5%.

• Political shocks are driven by changes in the identity of swing states across terms.

• The shocks' intensities depend on the state's importance in the Electoral College.

Electoral Votes

- Federal subsidy programs target industries or firms, not states.
 - Exposure to shocks varies by industry, depending on the relative importance in the state.
- Downstream and upstream exposure to shocks depend on:
 - Cost shares $w_{i,j}$ of *i* in *j*.
 - Sale shares $\theta_{j,k}$ of j in k.

Instrumental Variables

$$IV_{j,T} = \sum_s rac{L_{s,j}^{2000}}{\sum_j L_{s,j}^{2000}} * Swing \; state_{s,T} * EV_s,$$

Downstream
$$IV_{j,T} = \sum_{i \neq j}^{I} w_{i,j} * IV_{i,T},$$

Upstream
$$IV_{j,T} = \sum_{k \neq j} \theta_{k,j} * IV_{k,T}$$
.

Effects of Politically Motivated Subsidies on Exports, 2000-20

	$Exports_{j,T}$					
	(1)	(2)	(3)	(4)		
Direct subsidy exposure _{j,T}	0.317***	0.401***	0.283***	0.369***		
	(0.03)	(0.06)	(0.05)	(0.07)		
Upstream subsidy $exposure_{j,T}$	0.086*	0.015	0.082*	0.033		
	(0.05)	(0.02)	(0.04)	(0.02)		
Downstream subsidy $exposure_{j,T}$	0.288***	0.108	0.300***	0.068		
	(0.05)	(0.13)	(0.06)	(0.12)		
Controls	NO	NO	YES	YES		
Term FE	YES	YES	YES	YES		
Industry FE	NAICS-2	NAICS-4	NAICS-2	NAICS-4		
Obs.	2,280	2,280	2,280	2,280		
KP F-statistic	27.56	23.32	26.14	28.60		

-

Effects of Politically Motivated Subsidies on Exports over Output, 2000-20

	$Exports_{j,\mathcal{T}}$					
	(1)	(2)	(3)	(4)		
Direct subsidy $exposure_{j,T}$	0.017***	0.059***	0.011***	0.052***		
	(0.00)	(0.00)	(0.00)	(0.00)		
Upstream subsidy $exposure_{j,T}$	-0.018***	-0.0004	-0.017***	0.003**		
	(0.00)	(0.00)	(0.00)	(0.00)		
Downstream subsidy exposure j, T	0.050***	0.021***	0.050***	0.015***		
	(0.00)	(0.00)	(0.00)	(0.00)		
Controls	NO	NO	YES	NO		
Term FE	YES	YES	YES	YES		
Industry FE	NAICS-2	NAICS-4	NAICS-2	NAICS-4		
Obs.	2,215	2,215	2,215	2,215		
KP F-statistic	73.82	27.49	72.95	37.38		

F	C.	Δ	R	F٩	ŝ	U	I B	
-	9		••	-	ς,			

Robustness Checks and Additional Results

• Identification:

- Including the current term (up to 2024.
- Only executive first terms.
- Test for the exogeneity of the shifters.
- Subsidies to swing states.
- Control for trade protection.
- Including the diagonal of the I-O matrix.
- Additional results:
 - Effects on Imports
 - Effects on Employment

Mechanisms of Supply Chain Effects

• \uparrow Scale of production \rightarrow Employment.

Higher demand for inputs and supply of goods/services (upstream and downstream).

• \downarrow Marginal costs of production $\xrightarrow{?}$ Producer and input prices.

Input prices' suppression (downstream) \rightarrow WTO cases focus on price suppression to prove indirect harm from subsidies.

• \downarrow **Investment costs** $\xrightarrow{?}$ Investment $\xrightarrow{?}$ Value added, TFP, quality, prices.

Investment promotion: higher variety/quality of inputs and outputs. Could also affect MC.

- Countries can apply CVD on goods using subsidised inputs if they can prove pass-through.
- In 2002, the United States filed a WTO complaint about Canada's stumpage programs:

"By conferring a right to harvest timber through stumpage programs, certain provincial governments provided goods to lumber producers at less than adequate remuneration."

 The failure of the US to substantiate pass-through and price suppression resulted in the decision to impose no duty (WT/DS257/AB).

Effects of Politically Motivated Subsidies on Prices

	Producer Prices _{j,T}		Customer $Prices_{j,T}$		Input $Prices_{j,T}$		Export $Prices_{j,T}$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Direct subsidy exposure _{j,T}	0.257***	0.172***	-0.048***	-0.028	0.021**	-0.006	0.186***
	(0.01)	(0.07)	(0.01)	(0.04)	(0.01)	(0.01)	(0.02)
Upstream subsidy $exposure_{j,T}$	0.094***	0.090***	0.818***	0.900***	-0.040***	-0.014	0.240***
	(0.01)	(0.02)	(0.00)	(0.02)	(0.00)	(0.01)	(0.01)
Downstream subsidy exposure j, T	0.067***	0.139**	0.284***	0.059	0.983***	0.924***	-0.229***
	(0.01)	(0.06)	(0.01)	(0.06)	(0.06)	(0.05)	(0.08)
Controls	NO	NO	NO	NO	NO	NO	NO
Term FE	YES	YES	YES	YES	YES	YES	YES
Industry FE	NAICS-4	NAICS-4	NAICS-4	NAICS-4	NAICS-4	NAICS-4	NAICS-4
Sample	Tradable	All	Tradable	All	Tradable	All	Tradable
Obs.	2,141	3,383	2,280	5,340	2,280	5,460	2,280
KP F-statistic	16.44	1.621	23.32	1.077	23.32	1.117	23.32

Effects of Politically Motivated Subsidies on Investment, TFP, and VA

	Investr	$nent_{j,T}$	Value-A	$dded_{j,T}$	TFI	^р ј,Т
	(1)	(2)	(3)	(4)	(5)	(6)
Direct subsidy exposure _{j,T}	0.684***	0.743***	0.657***	0.720***	0.069***	0.075***
	(0.07)	(0.06)	(0.06)	(0.06)	(0.02)	(0.02)
Upstream subsidy $exposure_{j,T}$	0.039	0.145***	0.079*	0.183***	0.009**	0.026***
	(0.04)	(0.04)	(0.04)	(0.04)	(0.00)	(0.01)
Downstream subsidy $exposure_{j,T}$	-0.109	-0.227	-0.164	-0.267*	0.0414**	0.021*
	(0.15)	(0.15)	(0.14)	(0.15)	(0.02)	(0.01)
Controls	NO	NO	NO	NO	NO	NO
Term FE	YES	YES	YES	YES	YES	YES
Industry FE	NAICS-4	NAICS-4	NAICS-4	NAICS-4	NAICS-4	NAICS-4
Sample	Tradable	All	Tradable	All	Tradable	All
Obs.	2,085	2,360	2,085	2,360	2,085	2,360
KP F-statistic	9.04	13.35	9.04	13.35	9.04	13.35

I study the trade effects of US corporate subsidies driven by electoral motives.

- **1** US federal subsidies are underreported to the WTO.
- 2 Politically motivated federal subsidies increase exports directly and indirectly.
- 3 Mechanisms:
 - No Inputs' price suppression.
 - ↑ Investment, value-added, export prices.
 - \uparrow TFP in vertically connected firms.

Policy Implications:

- Politically motivated subsidies have large trade effects, directly and along supply-chains.
- Reform debate at the WTO: Enhance transparency in member states' subsidy notifications and revise legal procedures to prove pass-through effects in the SCMA.

Thank you for your attention!

The Effects of Corporate Subsidies Along Supply Chains

Elisa Navarra

ECARES, Université libre de Bruxelles

EEA 2024

- Lee, J. W. (1996). Government Interventions and Productivity Growth. *Journal of Economic Growth*, 1(3), 391–414 (cit. on p. 6).
- Bernard, A., & Jensen, J. B. (2004). Why Some Firms Export. *The Review of Economics and Statistics*, *86*(2), 561–569 (cit. on p. 6).
- Görg, H., Henry, M., & Strobl, E. (2008). Grant Support and Exporting Activity. *The Review of Economics* and Statistics, 90(1), 168–174 (cit. on p. 6).
- Becker, S., Egger, P., & Von Ehrlich, M. (2010). Going NUTS: The Effect of EU Structural Funds on Regional Performance. *Journal of Public Economics*, *94*(9-10), 578–590 (cit. on p. 6).
- Harrison, A., & Rodríguez-Clare, A. (2010).Chapter 63 trade, foreign investment, and industrial policy for developing countries* (D. Rodrik & M. Rosenzweig, Eds.). 5, 4039–4214. https://doi.org/https: //doi.org/10.1016/B978-0-444-52944-2.00001-X (cit. on p. 6).
- Bernini, C., & Pellegrini, G. (2011). How are Growth and Productivity in Private Firms Affected by Public Subsidy? Evidence From a Regional Policy. *Regional Science and Urban Economics*, 41(3), 253–265 (cit. on p. 6).
- Aghion, P., Cai, J., Dewatripont, M., Du, L., Harrison, A., & Legros, P. (2015). Industrial Policy and Competition. *American Economic Journal: Macroeconomics*, 7(4), 1–32 (cit. on p. 6).

- Barrot, J. N., & Sauvagnat, J. (2016). Input Specificity and the Propagation of Idiosyncratic Shocks in Production Networks. *The Quarterly Journal of Economics*, 131(3), 1543–1592 (cit. on p. 6).
- Blonigen, B. A. (2016). Industrial Policy and Downstream Export Performance. *The Economic Journal*, *126*(595), 1635–1659 (cit. on p. 6).
- Broocks, A., & Van Biesebroeck, J. (2017). The Impact of Export Promotion on Export Market Entry. *Journal* of International Economics, 107(100), 19–33 (cit. on p. 6).
- Erbahar, A., & Zi, Y. (2017). Cascading trade protection: Evidence from the US. *Journal of International Economics*, *108*(100), 274–299 (cit. on p. 6).
- Munch, J., & Schaur, G. (2018). The Effect of Export Promotion on Firm-Level Performance. American Economic Journal: Economic Policy, 10(1), 357–87 (cit. on p. 6).
- Bloom, N., Van Reenen, J., & Williams, H. (2019). A toolkit of policies to promote innovation. *Journal of Economic Perspectives*, 33(3), 163–84. https://doi.org/10.1257/jep.33.3.163 (cit. on p. 6).
- Criscuolo, C., Martin, R., Overman, H. G., & Van Reenen, J. (2019). Some Causal Effects of an Industrial Policy. *American Economic Review*, *109*(1), 48–85 (cit. on p. 6).
- Liu, E. (2019). Industrial Policies in Production Networks. *The Quarterly Journal of Economics*, 134(4), 1883–1948 (cit. on p. 6).

- Rotemberg, M. (2019). Equilibrium Effects of Firm Subsidies. *American Economic Review*, 109(10), 3475–3513 (cit. on p. 6).
- Bown, C., Cieszkowsky, M., Erbahar, A., & Signoret, J. (2020). Temporary Trade Barriers Database. *Database* (cit. on p. 12).
- Carvalho, V. M., Nirei, M., Saito, Y. U., & Tahbaz-Salehi, A. (2020). Supply Chain Disruptions: Evidence From the Great East Japan Earthquake. *The Quarterly Journal of Economics*, *136*(2), 1255–1321 (cit. on p. 6).
- Defever, F., Reyes, J.D., A., Riaño, & Varela, G. (2020). The Effectiveness of Cash Subsidies to Export in Nepal. *European Economic Review*, *128*(103494–103494), AFMD–93–58BR (cit. on p. 6).
- Girma, S., H., G., & Stepanok, I. (2020). Subsidies, Spillovers, and Exports. *Kiel Centre for Globalization* (*KCG*), 186(20) (cit. on p. 6).
- Lane, N. (2020). The New Empirics of Industrial Policy. *Journal of Industry, Competition, and Trade, 20*(2), 209–234 (cit. on p. 6).
- Moerenhout, T. (2020). Trade Impacts of Fossil Fuel Subsidies. *World Trade Review*, 19(S1), s1–s17 (cit. on p. 6).
- Slattery, C., & Zidar, O. (2020). Evaluating State and Local Business Incentives. *Journal of Economic Perspectives*, 34(2), 90–118 (cit. on p. 6).

- Eckert, F., Fort, T. C., Schott, P. K., & Yang, N. J. (2021). *Imputing Missing Values in the US Census Bureau's County Business Patterns* (tech. rep.). National Bureau of Economic Research. (Cit. on p. 12).
- Juhász, R., Lane, N., Oehlsen, E., & Pérez, V. C. (2021). The Who, What , How of Industrial Policy. *mimeo* (cit. on p. 6).
- Myers, K. R., & Lanahan, L. (2022). Estimating spillovers from publicly funded r&d: Evidence from the us department of energy. American Economic Review, 112(7), 2393–2423. https://doi.org/10.1257/aer. 20210678 (cit. on p. 6).
- Barattieri, A., Cacciatore, M., & Traum, N. (2023).Estimating the Effects of Government Spending Through the Production Network. (31680) (cit. on p. 6).
- Bown, C., Conconi, P., Erbahar, A., & Trimarchi, L. (2023). Politically Motivated Protection. *mimeo*, (15648) (cit. on pp. 4, 14, 53).
- Juhász, R., Lane, N. J., & Rodrik, D. (2023). *The New Economics of Industrial Policy* (Working Paper No. 31538) National Bureau of Economic Research. https://doi.org/10.3386/w31538 (cit. on p. 1).
- Slattery, C. (2023). Bidding for Firms: Subsidy Competition in the US. *forthcoming in Journal of Political Economy* (cit. on p. 6).

ECARES, ULB

US Notifications to the WTO

- Using NLP techniques, I combine subsidy data from the FOIA with MS WTO notifications.
- I shed light on a gap in US subsidy notifications to the WTO:

Only \approx 30% of federal subsidies and 60% of state programs are notified, the largest ones.

Figure: Example of Subsidy Notifications to the WTO

State	Programme Title	Programme	Form of	Policy Objective	To Whom	Amount
		Authority	Subsidy			
Alabama	Property Tax		Tax Exemption	To encourage	Manufactures of	The maximum period of an abatement of
	Abatement		(state/county/	economic	aluminum, aluminum	non-educational property taxes is ten
			municipal	growth.	products, or calcium	years.
			property tax)		cyanamide.	
Alabama	Poultry	Agricultural	Loans	To support	Poultry Industry	\$750,000 environmental enhancement
	Environmental	Development		environmental		programme. Project provides low-interest
	Enhancement	Authority		projects.		loans for construction of poultry compost
	Project					structures and installation of freezer units
						to be used for the disposal of dead birds.

Attacl	hment	III (rev	ised)
otification	of Sta	te-Leve	Measure

N

The WTO SCMA's taxonomy:

- Specific: to an industry/area/firm: actionable.
- *Non-specific:* not covered by the SCMA.
- *Prohibited:* export/local content subsidies.

Figure: US Federal Subsidies, 2000-19.

US Notifications to the WTO

- Using NLP techniques, I combine subsidy data from the FOIA with MS WTO notifications.
- I shed light on a gap in US subsidy notifications to the WTO:

Only \approx 30% of federal subsidies and 60% of state programs are notified, the largest ones.

Figure: Example of Subsidy Notifications to the WTO

State	Programme Title	Programme	Form of	Policy Objective	To Whom	Amount
		Authority	Subsidy			
Alabama	Property Tax		Tax Exemption	To encourage	Manufactures of	The maximum period of an abatement of
	Abatement		(state/county/	economic	aluminum, aluminum	non-educational property taxes is ten
			municipal	growth.	products, or calcium	years.
			property tax)		cyanamide.	
Alabama	Poultry	Agricultural	Loans	To support	Poultry Industry	\$750,000 environmental enhancement
	Environmental	Development		environmental		programme. Project provides low-interest
	Enhancement	Authority		projects.		loans for construction of poultry compost
	Project					structures and installation of freezer units
						to be used for the disposal of dead birds.

Attacl	hment	III (rev	ised)
otification	of Sta	te-Leve	Measure

N

y Applied Tariffs.

In 2002, the United States filed a WTO complaint about Canada's stumpage programs:

"By conferring a right to harvest timber through stumpage programs, certain provincial governments provided goods to lumber producers at less than adequate remuneration," WT/DS257/AB.

Canada to seek judicial review of latest U.S. decision on softwood lumber duties

'Unfair, unjust and illegal'

- Under WTO law, indirect harm from subsidies can lead to CVD on imports as long as **pass-through** can be demonstrated.
- The failure of countries to substantiate pass-through, with case law traditionally focusing on **price suppression**, has led to the failure of numerous cases.

Back to Mechanisms

"Some states that may be competitive in November's election, including **Florida**, raked in **millions in infrastructure grants** awarded Wednesday by the Department of Transportation, while blue states like New York got comparatively little.[...]

Arizona, Minnesota and North Carolina, all-important swing states, led the pack too, with more than 10 per cent of the \$1 billion haul among them."

Politico, September 2020.

Back

2002 NAICS 6-digit Industry Classification: 1179 industries.

Figure: **315233**: Women's and Girls' Cut and Sew Dress Manufacturing.

Figure: **315234**: Women's and Girls' Cut and Sew Suit, Coat, Tailored Jacket, and Skirt Manufacturing.

NAICS UP	Supplier	NAICS DOWN	User	coeff
334413	Semiconductor and Related Device Manufacturing	334413	Storage Battery Manufacturing	0.028
334413	Semiconductor and Related Device Manufacturing	336411	Aircraft Manufacturing	0.029
331112	Silicon ans Electrometallurgical Ferooalloy	334413	Semiconductor and Related Device Manufacturing	0.005
331111	Iron and Steel Mill	334413	Semiconductor and Related Device Manufacturing	0.005

Back

Figure: Subsidy to a Real Estate Company, Subsidy Tracker, NAICS Code: 531110.

Subsidy Tracker Individual Entry

Company: Steele Denver Gardens LLC Parent Company: Subsidy Source: federal State in Which Facility Is Located: Colorado Project Description: Solar Electricity Year: 2011 Subsidy Value: S138,024 Program Name: Payments for Specified Energy Property in Lieu of Tax Credits (ARRA Section 1603) Awarding Agency: Treasury Department Type of Subsidy: federal grant Source O tata: Treasury Department: (<u>click here</u>) Source Notes: In online information source is not working, check the Tracker inventory page for an updated link.

Figure: Subsidy to Sequoia (Tesla) Solar Panel Company, Subsidy Tracker, NAICS Code: 221114.

Company: Sequida Pacific Solar I, LLC Parent Company: Tesla Inc. Subaidy Source: federal State in Which Facility Is Located: Arizona Project Description: Solar Electricity Year: 2013 Major Industry of Parent: motor vehicles and energy Subaidy Value: S11.474.729 Program Name: Payments for Specified Energy Property In Lieu of Tax Credits (ARRA Section 1603) Awarding Agency: Treasury Department Type of Subaidy: Idearia I reasury Department (click here) Source Otas: Treasury Department: (click here)

Variable	Obs.	Mean (USD)	Std. Dev.	# 0s	% 0s
		All ind	lustries (1179)		
Direct subsidy exposure j,t	21,360	2,584,655	32,800,000	17,931	83.95
Downstream subsidy $exposure_{j,t}$	21,360	1,328,865	6,569,044	80	0.37
Upstream subsidy $exposure_{j,t}$	21,360	3,721,750	30,400,000	563	2.64
		Tradable	industries (450	5)	
Direct subsidy exposure _{j,t}	9,120	1,747,313	19,900,000	7,823	85.78
Downstream subsidy $exposure_{j,t}$	9,120	5,273,686	38,800,000	20	0.22
Upstream subsidy $exposure_{j,t}$	9,120	1,203,317	6,110,789	268	2.94
		Non-tradal	ole industries (6	512)	
Direct subsidy exposure _{j,t}	12,240	3,208,557	39,700,000	10,108	82.58
Downstream subsidy $exposure_{j,t}$	12,240	1,422,410	6,889,463	60	0.49
Upstream subsidy $exposure_{j,t}$	12,240	2,565,405	22,100,000	295	2.41

Figure: Federal Subsidies by Type, Annual Average.

▲ Back

Table: The Effects of Subsidies on Exports, 2000-20, First Stage

	(1)	(2)	(3)	(4)
Direct subsidy exposure _{j,T}	17.72***	16.53***	15.56***	15.60***
	(1.77)	(1.80)	(1.77)	(1.51)
Upstream subsidy $exposure_{j,T}$	-1.448***	0.0834*	-1.151***	0.107
	(0.05)	(0.04)	(0.10)	(0.06)
Downstream subsidy $exposure_{i,T}$	4.989***	1.427***	4.376***	1.510***
	(0.11)	(0.18)	(0.06)	(0.13)
R ²	0.091	0.354	0.115	0.359
	Upstream subsidy $exposure_{j,T}$			
	(1)	(2)	(3)	(4)
Direct subsidy exposure _{j,T}	3.869***	0.317*	3.707***	-0.358*
	(0.26)	(0.15)	(0.24)	(0.16)
ECARES, ULB	Elisa Nava	irra		EEA 2024 13 /

Direct subsidy exposure_{*i*,T}

	Exports _{j, T}			
	Untransformed	Untransformed Log		
	(1)	(2)	(3)	
Direct subsidy exposure _{j,T}	344.2***	1.010***	0.324***	
	(7.56)	(0.13)	(0.03)	
Downstream subsidy $exposure_{j,T}$	63.65***	0.375***	0.345***	
	(8.06)	(0.02)	(0.05)	
Upstream subsidy $exposure_{j,T}$	-69.94***	-0.060	0.082*	
	(12.42)	(0.05)	(0.05)	
Industry FE	YES	YES	YES	
Term FE	YES	YES	YES	
Obs.	2,275	428	2,275	
KP F-statistic	16.75 169.3		26.09	

Table: Effects of Subsidies on Exports, Direct and Indirect Exposure.

▲ Back

Effects of Subsidies on Exports, Controlling for Trade Protection

	$Exports_{j,\mathcal{T}}$			
	(1)	(2)	(3)	(4)
Direct subsidy exposure j, T	0.332***	0.399***	0.298***	0.365***
	(0.03)	(0.06)	(0.04)	(0.08)
Upstream subsidy $exposure_{j,T}$	0.067*	0.010	0.066*	0.029
	(0.04)	(0.02)	(0.04)	(0.02)
Downstream subsidy exposure j, T	0.377***	0.082	0.379***	0.050
	(0.06)	(0.13)	(0.07)	(0.14)
Direct AD exposure j, T	0.196***	0.316***	0.246**	0.357***
	(0.07)	(0.10)	(0.11)	(0.12)
Upstream AD exposure j, T	0.190*	0.657**	0.151	0.579**
	(0.11)	(0.28)	(0.13)	(0.27)
Downstream AD exposure _{j,T}	-0.956**	-0.623***	-0.789**	-0.578***
	(0.39)	(0.19)	(0.33)	(0.19)
Industry FE	YES	YES	YES	YES
Term FE	YES	YES	YES	YES
Obs.	2,280	2,280	2,280	2,280
KP F-statistic	25.36	20.27	24.05	24.42

The Effects of Subsidies on Exports, First Terms, 2004-20

	$Exports_{j,\mathcal{T}}$			
	(1)	(2)	(3)	(4)
Direct subsidy exposure _{j,T}	0.313***	0.426***	0.272***	0.393***
	(0.03)	(0.08)	(0.05)	(0.09)
Upstream subsidy $exposure_{j,T}$	0.092***	0.067***	0.079**	0.075***
	(0.03)	(0.01)	(0.03)	(0.01)
Downstream subsidy $exposure_{j,T}$	0.322***	-0.009	0.348***	-0.046
	(0.05)	(0.17)	(0.05)	(0.18)
Industry FE	YES	YES	YES	YES
Term FE	YES	YES	YES	YES
Obs.	1,368	1,368	1,368	1,368
KP F-statistic	22.35	28.39	20.08	34.29

Subsidies to Firms Located in Swing States, 2000-2019

(a) Number of Subsidised Firms

(b) Average Subsidies in Swing States

Back

Swing state_{s,T} = $\alpha + \beta$ Direct subsidy exposure_{s,T} + $\delta_s + \delta_T + \epsilon_{s,T}$

Votes difference_{s,T} = $\alpha + \beta$ Direct subsidy exposure_{s,T} + $\delta_s + \delta_T + \epsilon_{s,T}$

Table: Identity of Swing States and Direct Subsidy Exposure.

	Swing state dummy _{s,T}	Difference in vote shares s, T
	(1)	(2)
Direct subsidy exposure _{s, T}	4.53e-09	-3.63e-09
,	(1.03e-08)	(2.60e-09)
State FE	YES	YES
Term FE	YES	YES
Obs.	255	255
R ²	0.441	0.843

Notes: OLS estimates. Direct subsidy exposure_{*s*, τ} is the weighted average of subsidies to industry *j* in term τ , using employment shares as weights, and aggregated to the state *s* level.

Bown et al. (2023) show that the identity of swing states does not depend on previous exposure to import competition, trade protection, or employment growth.

	$Exports_{j,\mathcal{T}}$				
	Including the I-O Diagonal		Leontief In	verse Matrix	
	(1)	(2)	(3)	(4)	
Downstream subsidy $exposure_{j,T}$	0.475***		0.617***		
	(0.08)		(0.09)		
Upstream subsidy exposure j, T		0.120**		0.357***	
		(0.04)		(0.06)	
Industry FE	YES	YES	YES	YES	
Term FE	YES	YES	YES	YES	
Obs.	2,280	2,280	2,280	2,280	
KP F-statistic	1,129	13,613	1,907	16.30	

Effects of Subsidies on Employment, 2000-20

	$Employment_{j,\mathcal{T}}$			
	(1)	(2)	(3)	(4)
Direct subsidy exposure _{j,T}	0.601***	0.767***	0.655***	0.748***
	(0.07)	(0.08)	(0.07)	(0.06)
Upstream subsidy exposure j, T	0.587***	0.082***	0.555***	0.103***
	(0.06)	(0.01)	(0.06)	(0.02)
Downstream subsidy $exposure_{j,T}$	-1.269***	-0.141***	-1.239***	-0.221***
	(0.05)	(0.03)	(0.06)	(0.02)
Controls	NO	NO	YES	YES
Industry FE	NAICS-2	NAICS-4	NAICS-2	NAICS-4
Term FE	YES	YES	YES	YES
Obs.	2,280	2,280	2,280	2,280
KP F-statistic	28.79	23.17	25.94	28.26

The Effects of Politically Motivated Subsidies on Imports

	Imports _{j, T}			
	(1)	(2)	(3)	(4)
Direct subsidy exposure _{j,T}	0.219***	0.373***	0.172***	0.340***
	(0.02)	(0.04)	(0.04)	(0.05)
Upstream subsidy $exposure_{j,T}$	0.057	0.131***	0.055	0.151***
	(0.04)	(0.01)	(0.04)	(0.00)
Downstream subsidy $exposure_{j,T}$	0.109**	-0.300***	0.121***	-0.345***
	(0.04)	(0.11)	(0.05)	(0.10)
Controls	NO	NO	YES	NO
Term FE	YES	YES	YES	YES
Industry FE	NAICS-2	NAICS-4	NAICS-2	NAICS-4
Obs.	2,280	2,280	2,280	2,280
KP F-statistic	28.79	23.17	25.94	28.26

▲ Back

Effects of Politically Motivated Subsidies on Exports, 2000-24

	$Exports_{j,\mathcal{T}}$				
Direct subsidy exposure _{i.T}	0.268***	0.390***	0.268***	0.390***	
	(0.04)	(0.08)	(0.04)	(0.08)	
Upstream subsidy $exposure_{j,T}$	0.155***	0.152***	0.155***	0.152***	
	(0.04)	(0.03)	(0.04)	(0.03)	
Downstream subsidy $exposure_{j,T}$	0.240*	0.118	0.240*	0.118	
	(0.14)	(0.22)	(0.14)	(0.22)	
Controls	NO	NO	YES	YES	
Term FE	YES	YES	YES	YES	
Industry FE	NAICS-2	NAICS-4	NAICS-2	NAICS-4	
Obs.	2,736	2,736	2,736	2,736	
KP F-statistic	28.56	12.47	28.56	12.47	

