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Motivation

e Classic econometric analysis of auction data, very large literature
— number of bidders K is small and known (e.g., Athey and Haile, 2002)
— number of auctions n is large (e.g., Guerre, Perrigne, and Vuong, 2000)

— multiple (sometimes all) bids are observed

e Example: homogeneous timber auction




Second-Price Auction

e For illustration, consider the classic second-price auction with IPVs

— equilibruim strategy: bidder ¢ submits her value V; ~ Fy,

* K is the number of (potential) bidders
x order statistics V(l) > \/(2) > e > V(K)
— transaction price P = V(z), the second largest order stat
Fp () = Iy, () = Fy () + KFy () (1= Fy ()
— number of auctions n is large = nonparametrically estimate F'p

— K is small and known = estimate Fy, by inverting the above



Motivation cont’d

e We consider the different situation
— number of bidders K is large in each auction
— number of auctions n is small /fixed

— only the winning bid /transaction price is observed

e Example: art painting and Hong Kong vehicle license plate
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The New Framework

e We develop a new framework
— number of auctions n is small /fixed
— number of potential bidders K is large in each auction

— only P is observed, but not K =

only require observing (P4, ..., Pp) for a fixed n > 3

e Our asymptotic framework:

n is fixed (small) while K — oo (large)
— present second-price auctions with IPVs

— extend to first-price auctions and to conditional IPV



Asymptotic Frameworks
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EV theory ...



Review of Extreme Value Theory

e Consider one auction first. We assume Fj, is within the domain of attrac-
tion (DoA) of Extreme Value (EV) distribution

e Extreme Value Theory: There exist constants ax and bg such that

aK
where the CDF of Z1 must be the generalized EV dist.

o [ ep(—(1+e)78) g0
“elw) = { exp(—exp(—7))  £=0

— EV theory to the sample maximum is similar as CLT to sample mean

— & is the tail index that characterizes the tail heaviness

is this condition strong? ...



Review of EV Theory, cont’d

e The DoA assumption is mild and satisfied by many distributions

Dist. Cauchy Pareto(ar) t(v) Gaussian Uniform | Poisson

£ = 1 1/ 1/v 0 —1 X

— essentially requires fy is smooth (von Mises condition)

e Joint convergence of first d order statistics:
=P
(‘/(1)7 ‘/(2)7 ey Vv(d)) - bK

aK
where joint PDF is given by

~

d ~ ~
— (41, 22, ..., Z)

0G¢(2)

d
Ge(zg) 1] 9¢(2:)/Ge(2i) with ge(z) = 0z

1=1




Coming Back to Auction

e EV theory implies that

i bK i 22 =7
aK
with density
i 1/
frie(@)={ L+ &) ¢ exp(=(14E2)"" /%) £#0
exp(—2x) exp(— exp(—x)) £=0

o If OR; and bKj for y =1, ..., n are known, the problem is straightforward:
— let K be the numbers of bidder in the jth auction
d :
- (P‘7 — bKj)/aKj — Zj for ] = 1, ceey M

— inference about £ and other features using n i.i.d. draws from fZ|€(:c)



Asymptotic Framework

e Unfortunately aK, and bKj are unknown and difficult to estimate

— they depend on details of Fy, beyond &
o Let K = minj<;j<,{K;} and assume K;/K — 1 for all j

e Lemma 1: there exist constants ay and by such that for any auction 7,

P;—b Vio),; — b
JOK _ (2)y " UK d o,

aK aK
= P, ..., Pp share the same constants ax and by, which are still un-

known...



Self-normalization

e Sort the transaction prices as Py 2 Py 2 - 2 Py

— consider the following self-normalized statistics

Py — P, P — P,
b (1 @~ P Py (”),o)
Py = iy

(1 33 —17 26 — 17 o)
"33 -17'33 — 17’

Py = Py

Data =

— EV theory and continuous mapping theorem imply

Loy —
p* % 7 — (1, (2) “n) ...,o) ,
Z(1) — Z(n)

whose PDF is fZ*|§ is derived by change of variables, that is ...

10



The Density

e In particular
fz+)e(27)
b(&) —2n log (Zn_ (1 + §z;.‘3)—1/€) N

= nll (2 J=1
nil( ")/ A (1+2) > log (1 + €2ts)

- Z>I< = (1,25, ,Z;;_]_,O)

— I () is the gamma function

— b(&) =oc0if £ >0 and —1/& otherwise
e We can compute this density via Gaussian quadrature

e Now using fz*|€(z*), we illustrate the inference about £ and other features
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Why Care about &

e Commonly adopted assumption (e.g., Guerre, Perrigne, and Vuong, 2000)
— v* =sup{v: Fy (v) <1} < o©

— the density fy is bounded in (0, c0)

e Four cases given a continuous fy,
- ¢£>0:v"<ooand fyy(v) > 0asv — v*
- £e€(-1,0):v" <ooand fyy (v) — 0as v — v*
—f=-1:v"<ooand fy () € [C,C] C (0, 00)

- &< —1:v"< o0 and fy (v) — oo as v — v*
%4
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Figure lllustration
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Necessary Condition Stated in &

e Lemma 2: Suppose (i) v* < oo, (ii) fiy € [C,C] C (0, 0), and (iii) fy/
is continuous, then

£ =—1.

— if we exclude fy (v) — oo, we have £ > —1

— if we assume [E [sz] < 00, we have £ < 1/2

e Then the hypothesis testing problem becomes

Ho : £ = —1 against Hy : (—1,0.5)
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Likelihood Ratio Test

e We have a composite alternative

Ho : £ = —1 against Hy : £ € (—1,0.5)

= the asym. optimal test is (Miiller, 2011)

S(P) = 1 Ji=1,0.5] fz+|c (PT) w (§) d§ -

fzre=—1 (P¥)

= it maximizes the w-averaged average power

. : d
= among all equivariant tests relying on P* — Z*

= w (-) some weight, say uniform

inference about other features ...
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Other Features of the Auction

e Lemma 3: often-studied objects of interests are all functions of & within
our framework

1. winner's expected utility i = E [V(l) — V(z)]

“—K—>r(1—f),
aK

2. seller’s expected revenue 7 = E [V(z)]

T —bg >r(2—§)—1
ap §

3. optimal reserve price v = arg maxy Tk (’y)

YK —bk 1
ap 1—-¢
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Seller’s Expected Revenue

e We construct confidence intervals U (P4, ..., Pp) for mg = E [V(z)] that

— satisfy the asymptotic coverage

P(rp € U)>1—«forall £ € [—1,0.5]
— (nearly) minimize the weighted average length
[ B ligth (U)] w (¢) d

— satisfy the equivariance

U(aP +b)=aU((P)+b
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Cl about Seller’'s Expected Revenue

Recall that our data and object of interest satisfy

(P —bg T — bK) d (Z.7%)

Y

aK aK
Where P — (P]_, ...,Pn), Z — (Z]_, ceey Zn)

Challenge: £ is unknown and (ag, bg) are unknown

Aim to construct an asymptotically valid confidence interval U (-)

min | E [Igth (U(P))] w (€) dé
£€e[—1,0.5]
st. P(wg € U(P)) > 95% for all £ € [—1,0.5]

Impose equivariance U (aP + b) = aU (P) + b to eliminate (ax, bg)...
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Extensions

First-price auctions
y .
f_(l)ﬂ F (U)K]_l du

Fy (V(l),j)Kj_l

Lemma 4: there exist constants a and b with K = mini<;<,{K},

(P1,-, Pn) — bk d

aK
where fX|§ depends only on &

()(]_7 ceey Xn)

Binding reserve price is allowed

Conditional IPV is allow if we observe > 3 bids in a single auction
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Conclusion

e Better approximation to empirical settings when K is large

— K might not be observed because of

x binding reserve price
* selective entry (Gentry and Li, 2014)

— multiple bids might not be observed

* ascending-price auction (Athey and Haile, 2002)

= we cannot identify Fy, but can do inference about its tail feature

asymptotically, it’s all is about &






