Inference in Auctions with Many Bidders **Based on Transaction Prices**

Federico Bugni Yulong Wang

Northwestern

Syracuse

EEA Congress in Rotterdam

Aug, 2024

Motivation

- Classic econometric analysis of auction data, very large literature
 - number of bidders K is small and known (e.g., Athey and Haile, 2002)
 - number of auctions n is large (e.g., Guerre, Perrigne, and Vuong, 2000)
 - multiple (sometimes all) bids are observed
- Example: homogeneous timber auction

Second-Price Auction

- For illustration, consider the classic second-price auction with IPVs
 - equilibruim strategy: bidder i submits her value $V_i \sim F_V$
 - * K is the number of (**potential**) bidders
 - * order statistics $V_{(1)} \ge V_{(2)} \ge \cdots \ge V_{(K)}$
 - transaction price $P = V_{(2)}$, the **second largest order stat**

$$F_{P}(\cdot) = F_{V_{(2)}}(\cdot) = F_{V}(\cdot)^{K} + KF_{V}(\cdot)^{K-1}(1 - F_{V}(\cdot))$$

– number of auctions n is large \Rightarrow nonparametrically estimate F_P

- K is small and known \Rightarrow estimate F_V by inverting the above

Motivation cont'd

- We consider the different situation
 - number of bidders K is large in each auction
 - number of auctions n is small/fixed
 - only the winning bid/transaction price is observed
- Example: art painting and Hong Kong vehicle license plate

n < 21

n = 4

The New Framework

- We develop a new framework
 - number of auctions n is small/fixed
 - number of **potential** bidders K is large in each auction
 - only P is observed, but not $K \Rightarrow$

only require observing $(P_1, ..., P_n)$ for a fixed $n \geq 3$

• Our asymptotic framework:

n is fixed (small) while $K \to \infty$ (large)

- present second-price auctions with IPVs
- extend to first-price auctions and to conditional IPV

Asymptotic Frameworks

Ex Au Au Au n	$\begin{array}{l} \text{ction 1} \\ \text{ction 2} \\ \vdots \\ \text{ction } n \\ \rightarrow \infty \end{array}$	Bidder 1 $V_{(1),1}$ $V_{(1),2}$: $V_{(1),n}$:	Bidder 2 $V_{(2),1}$ $V_{(2),2}$: $V_{(2),n}$:	···· Bic V V	$\begin{bmatrix} \text{der } K \\ (K), 1 \\ (K), 2 \\ \vdots \\ (K), n \\ \vdots \end{bmatrix}$	
New	Bidder 1	L Bidder	$2 \cdots K$	$[\rightarrow \infty]$	Plate	Price
Auction 1	$V_{(1),1}$	$V_{(2),1}$	V	$(\infty),1$	D	\$26m
Auction 2	$V_{(1),2}$	$V_{(2),2}$	V	$(\infty),2$	R	\$33m
÷	i	i		:	W	\$33m
Auction n	$V_{(1),n}$	$V_{(2),n}$, V	$(\infty), n$	V	\$17m

 EV theory \ldots

Review of Extreme Value Theory

- Consider one auction first. We assume F_V is within the domain of attraction (DoA) of **Extreme Value** (EV) distribution
- Extreme Value Theory: There exist constants a_K and b_K such that

$$\frac{V_{(1)} - b_K}{a_K} \xrightarrow{d} \tilde{Z}_1$$

where the CDF of \tilde{Z}_1 must be the generalized EV dist.

$$G_{\xi}(x) = \begin{cases} \exp(-(1+\xi x)^{-1/\xi}) & \xi \neq 0\\ \exp(-\exp(-x)) & \xi = 0 \end{cases}$$

- EV theory to the sample maximum is similar as CLT to sample mean
- ξ is the **tail index** that characterizes the tail heaviness

Review of EV Theory, cont'd

• The DoA assumption is mild and satisfied by many distributions

Dist.	Cauchy	$Pareto(\alpha)$	t(v)	Gaussian	Uniform	Poisson
$\xi =$	1	1/lpha	1/v	0	-1	Х

- essentially requires f_V is smooth (von Mises condition)
- Joint convergence of first *d* order statistics:

$$\frac{(V_{(1)}, \widetilde{V_{(2)}}, ..., V_{(d)}) - b_K}{a_K} \xrightarrow{d} (\tilde{Z}_1, \tilde{Z}_2, ..., \tilde{Z}_d)$$

where joint PDF is given by

$$G_{\xi}(z_k) \prod_{i=1}^d g_{\xi}(z_i) / G_{\xi}(z_i)$$
 with $g_{\xi}(z) = rac{\partial G_{\xi}(z)}{\partial z}$

Coming Back to Auction

• EV theory implies that

$$\frac{P - b_K}{a_K} \xrightarrow{d} \tilde{Z}_2 \equiv Z$$

with density

$$f_{Z|\xi}(x) = \begin{cases} (1+\xi x)^{-\frac{2+\xi}{\xi}} \exp(-(1+\xi x)^{-1/\xi}) & \xi \neq 0\\ \exp(-2x) \exp(-\exp(-x)) & \xi = 0 \end{cases}$$

- If a_{K_j} and b_{K_j} for j = 1, ..., n are known, the problem is straightforward:
 - let K_j be the numbers of bidder in the *j*th auction

-
$$(P_j - b_{K_j})/a_{K_j} \xrightarrow{d} Z_j$$
 for $j = 1, ..., n$

- inference about ξ and other features using n i.i.d. draws from $f_{Z|\xi}(x)$

Asymptotic Framework

- Unfortunately a_{K_i} and b_{K_i} are unknown and difficult to estimate
 - they depend on details of F_V beyond ξ
- Let $K = \min_{1 \le j \le n} \{K_j\}$ and assume $K_j/K \to 1$ for all j
- Lemma 1: there exist constants a_K and b_K such that for any auction j,

$$\frac{P_j - b_K}{a_K} = \frac{V_{(2),j} - b_K}{a_K} \xrightarrow{d} Z$$

 \Rightarrow $P_1,...,P_n$ share the same constants a_K and $b_K,$ which are still unknown...

Self-normalization

- Sort the transaction prices as $P_{(1)} \ge P_{(2)} \ge \cdots \ge P_{(n)}$
 - consider the following self-normalized statistics

$$P^* = \left(1, \frac{P_{(2)} - P_{(n)}}{P_{(1)} - P_{(n)}}, ..., \frac{P_{(n-1)} - P_{(n)}}{P_{(1)} - P_{(n)}}, 0\right)$$

Data = $\left(1, \frac{33 - 17}{33 - 17}, \frac{26 - 17}{33 - 17}, 0\right)$

- EV theory and continuous mapping theorem imply

$$\mathbf{P}^* \xrightarrow{d} \mathbf{Z}^* = \left(1, \frac{Z_{(2)} - Z_{(n)}}{Z_{(1)} - Z_{(n)}}, ..., 0\right),$$

whose PDF is $f_{\mathbf{Z}^*|\xi}$ is derived by change of variables, that is ...

The Density

• In particular

$$f_{\mathbf{Z}^*|\xi}(\mathbf{z}^*) = n!\Gamma(2n) \int_0^{b(\xi)} s^{n-2} \exp\left(\begin{array}{c} -2n\log\left(\sum_{j=1}^n \left(1+\xi z_j^*s\right)^{-1/\xi}\right) \\ -\left(1+\frac{2}{\xi}\right) \sum_{j=1}^n \log\left(1+\xi z_j^*s\right) \end{array}\right) ds$$

-
$$\mathbf{z}^* = (1, z_2^*, ..., z_{n-1}^*, 0)$$

– $\Gamma\left(\cdot\right)$ is the gamma function

- $b(\xi) = \infty$ if $\xi \ge 0$ and $-1/\xi$ otherwise

- We can compute this density via Gaussian quadrature
- Now using $f_{\mathbf{Z}^*|\xi}(\mathbf{z}^*)$, we illustrate the inference about ξ and other features

Why Care about ξ

• Commonly adopted assumption (e.g., Guerre, Perrigne, and Vuong, 2000)

$$- v^* = \sup\{v : F_V(v) < 1\} < \infty$$

– the density
$$f_V$$
 is bounded in $(0,\infty)$

• Four cases given a continuous f_V

$$\begin{aligned} &-\xi \ge 0: v^* \le \infty \text{ and } f_V(v) \to 0 \text{ as } v \to v^* \\ &-\xi \in (-1,0): v^* < \infty \text{ and } f_V(v) \to 0 \text{ as } v \to v^* \\ &-\xi = -1: v^* < \infty \text{ and } f_V(\cdot) \in [\underline{C}, \overline{C}] \subset (0, \infty) \\ &-\xi < -1: v^* < \infty \text{ and } f_V(v) \to \infty \text{ as } v \to v^* \end{aligned}$$

Figure Illustration

Necessary Condition Stated in ξ

Lemma 2: Suppose (i) v^{*} < ∞, (ii) f_V ∈ [C, C] ⊂ (0,∞), and (iii) f_V is continuous, then

$$\xi = -1.$$

- if we exclude $f_V(v)
 ightarrow \infty$, we have $\xi \geq -1$
- if we assume $\mathbb{E}\left[V_i^2
 ight] < \infty$, we have $\xi < 1/2$
- Then the hypothesis testing problem becomes

$$H_0: \xi = -1$$
 against $H_1: (-1, 0.5)$

Likelihood Ratio Test

• We have a composite alternative

$$H_0: \xi = -1$$
 against $H_1: \xi \in (-1, 0.5)$

 \Rightarrow the asym. **optimal** test is (Müller, 2011)

$$arphi(\mathbf{P}^*) = \mathbf{1}\left[rac{\int_{[-1,0.5]} f_{\mathbf{Z}^*|\xi}\left(\mathbf{P}^*
ight) w\left(\xi
ight) d\xi}{f_{\mathbf{Z}^*|\xi=-1}\left(\mathbf{P}^*
ight)} > \mathsf{cv}
ight]$$

 \Rightarrow it maximizes the $w\mbox{-}averaged$ average power

- \Rightarrow among all equivariant tests relying on $\mathbf{P}^* \xrightarrow{d} \mathbf{Z}^*$
- $\Rightarrow w(\cdot)$ some weight, say uniform

inference about other features ...

Other Features of the Auction

• Lemma 3: often-studied objects of interests are all functions of ξ within our framework

1. winner's expected utility
$$\mu_K \equiv \mathbb{E}\left[V_{(1)} - V_{(2)}\right]$$

 $\frac{\mu_K}{a_K} \rightarrow \Gamma(1 - \xi),$

2. seller's expected revenue $\pi_K \equiv \mathbb{E}\left[V_{(2)}\right]$

$$\frac{\pi_K - b_K}{a_K} \to \frac{\Gamma\left(2 - \xi\right) - 1}{\xi}$$

3. optimal reserve price $\gamma_K = \arg \max_{\gamma} \pi_K(\gamma)$

$$\frac{\gamma_K - b_K}{a_K} \to \frac{1}{1 - \xi}$$

Seller's Expected Revenue

- We construct confidence intervals $U(P_1, ..., P_n)$ for $\pi_K \equiv \mathbb{E}\left[V_{(2)}\right]$ that
 - satisfy the asymptotic coverage

$$\mathbb{P}(\pi_K \in U) \geq 1 - \alpha$$
 for all $\xi \in [-1, 0.5]$

- (nearly) minimize the weighted average length

$$\int \mathbb{E}\left[\mathsf{lgth}\left(U\right) \right] w\left(\xi \right) d\xi$$

- satisfy the equivariance

$$U\left(a\mathbf{P}+b\right) = aU\left(\mathbf{P}\right) + b$$

CI about Seller's Expected Revenue

• Recall that our data and object of interest satisfy

$$\left(rac{\mathbf{P}-b_K}{a_K},rac{\pi_K-b_K}{a_K}
ight) \stackrel{d}{
ightarrow} (\mathbf{Z},\pi^*)$$

where $\mathbf{P}=(P_1,...,P_n)$, $\mathbf{Z}=(Z_1,...,Z_n)$

- Challenge: ξ is unknown and (a_K, b_K) are unknown
- Aim to construct an asymptotically valid confidence interval $U(\cdot)$

$$\begin{split} \min \int_{\xi \in [-1,0.5]} \mathbb{E} \left[\operatorname{lgth} \left(U(\mathbf{P}) \right) \right] w\left(\xi \right) d\xi \\ \text{s.t. } \mathbb{P} \left(\pi_K \in U\left(\mathbf{P} \right) \right) \geq 95\% \text{ for all } \xi \in [-1,0.5] \end{split}$$

• Impose equivariance $U(a\mathbf{P}+b) = aU(\mathbf{P}) + b$ to eliminate $(a_K, b_K)...$

Extensions

• First-price auctions

$$P_{j} = V_{(1),j} - \frac{\int_{-\infty}^{V_{(1),j}} F_{V}(u)^{K_{j}-1} du}{F_{V}(V_{(1),j})^{K_{j}-1}}$$

• Lemma 4: there exist constants a_K and b_K with $K = \min_{1 \le j \le n} \{K_j\}$,

$$\frac{(P_1, \dots, P_n) - b_K}{a_K} \xrightarrow{d} (X_1, \dots, X_n)$$

where $f_{X|\xi}$ depends only on ξ

- Binding reserve price is allowed
- Conditional IPV is allow if we observe \geq 3 bids in a single auction

Conclusion

- Better approximation to empirical settings when K is large
 - K might not be observed because of
 - * binding reserve price
 - * selective entry (Gentry and Li, 2014)
 - multiple bids might not be observed
 - * ascending-price auction (Athey and Haile, 2002)
 - \Rightarrow we cannot identify F_V but can do inference about its tail feature

asymptotically, it's all is about ξ

