Inference in Auctions with Many Bidders Based on Transaction Prices

Federico Bugni Yulong Wang

Northwestern Syracuse

EEA Congress in Rotterdam

Aug, 2024

Motivation

- Classic econometric analysis of auction data, very large literature
	- number of bidders K is small and known (e.g., Athey and Haile, 2002)
	- number of auctions n is large (e.g., Guerre, Perrigne, and Vuong, 2000)
	- multiple (sometimes all) bids are observed
- Example: homogeneous timber auction

Second-Price Auction

- For illustration, consider the classic second-price auction with IPVs
	- equilibruim strategy: bidder i submits her value $V_i \sim F_V$
		- $*$ K is the number of (potential) bidders
		- * order statistics $V_{(1)} \geq V_{(2)} \geq \cdots \geq V_{(K)}$
	- transaction price $P = V_{(2)}$, the second largest order stat

$$
F_P\left(\cdot\right)=F_{V_{(2)}}\left(\cdot\right)=F_V\left(\cdot\right)^K+KF_V\left(\cdot\right)^{K-1}\left(1-F_V\left(\cdot\right)\right)
$$

- number of auctions n is large \Rightarrow nonparametrically estimate F_P

 \overline{K} is small and known \Rightarrow estimate F_V by inverting the above

Motivation cont'd

- \bullet We consider the different situation
	- number of bidders K is large in each auction
	- number of auctions n is small/fixed
	- $-$ only the winning bid/transaction price is observed
- Example: art painting and Hong Kong vehicle license plate

 $n < 21$ n = 4

The New Framework

- We develop a new framework
	- number of auctions n is small/fixed
	- number of **potential** bidders K is large in each auction
	- only P is observed, but not $K \Rightarrow$

only require observing $(P_1, ..., P_n)$ for a fixed $n \geq 3$

• Our asymptotic framework:

n is fixed (small) while $K \to \infty$ (large)

- $-$ present second-price auctions with IPVs
- $-$ extend to first-price auctions and to conditional IPV

Asymptotic Frameworks

	Existing Auction 1 Auction 2 Auction n $n \to \infty$	$V_{(1),1}$ $V_{(1),2}$ $V_{(\mathbf{1}),n}$	Bidder 1 Bidder 2 $V_{(2),1}$ $V_{(2),2}$ $V_{(2),n}$	$\ddot{\bullet}$ $\ddot{\bullet}$ $\ddot{\bullet}$	Bidder K $V_{(K),1}$ $V_{(K),2}$ $V_{(K),n}$:		
New Auction 1 Auction 2	Bidder 1 $V_{(1),1}$ $V_{(1),2}$	Bidder 2 $V_{(2),1}$ $V_{(2),2}$		$K\to\infty$ $V_{(\infty),1}$ $V_{(\infty),2}$	Plate D $\mathbf R$	Price \$26m \$33m	
Auction $\,n\,$	$V_{(1),n}$			$V_{(\infty),n}$	W $\rm V$	\$33m \$17m	

EV theory ...

 $\sqrt{2}$

 l I $\sqrt{}$ $\overline{1}$

Review of Extreme Value Theory

- Consider one auction first. We assume F_V is within the domain of attraction (DoA) of Extreme Value (EV) distribution
- Extreme Value Theory: There exist constants a_K and b_K such that

$$
\frac{V_{(1)} - b_K}{a_K} \stackrel{d}{\to} \tilde{Z}_1
$$

where the CDF of $\tilde Z_1$ must be the generalized EV dist.

$$
G_{\xi}(x) = \begin{cases} \exp(-(1+\xi x)^{-1/\xi}) & \xi \neq 0\\ \exp(-\exp(-x)) & \xi = 0 \end{cases}
$$

 $-$ EV theory to the sample maximum is similar as CLT to sample mean

 σ = ξ is the tail index that characterizes the tail heaviness

is this condition strong?
$$
\ldots
$$

Review of EV Theory, cont'd

• The DoA assumption is mild and satisfied by many distributions

- essentially requires f_V is smooth (von Mises condition)
- \bullet Joint convergence of first d order statistics:

$$
\frac{P}{(V_{(1)}, V_{(2)}, ..., V_{(d)}) - b_K} \xrightarrow{d} (\tilde{Z}_1, \tilde{Z}_2, ..., \tilde{Z}_d)
$$

where joint PDF is given by

$$
G_{\xi}(z_k) \prod_{i=1}^d g_{\xi}(z_i)/G_{\xi}(z_i) \text{ with } g_{\xi}(z) = \frac{\partial G_{\xi}(z)}{\partial z}
$$

Coming Back to Auction

EV theory implies that

$$
\frac{P - b_K}{a_K} \stackrel{d}{\to} \tilde{Z}_2 \equiv Z
$$

with density

$$
f_{Z|\xi}(x) = \begin{cases} (1+\xi x)^{-\frac{2+\xi}{\xi}} \exp(-(1+\xi x)^{-1/\xi}) & \xi \neq 0\\ \exp(-2x) \exp(-\exp(-x)) & \xi = 0 \end{cases}
$$

- $\bullet\,$ If a_{K_j} and b_{K_j} for $j=1,...,n$ are known, the problem is straightforward:
	- I let K_j be the numbers of bidder in the jth auction

$$
{\textstyle \quad -\ (P_j-b_{K_j})/a_{K_j} \stackrel{d}{\rightarrow} Z_j \text{ for } j=1,...,n}
$$

— inference about ξ and other features using n i.i.d. draws from $f_{Z|\xi}(x)$

Asymptotic Framework

- \bullet Unfortunately a_{K_j} and b_{K_j} are unknown and difficult to estimate
	- they depend on details of F_V beyond ξ
- Let $K = min_{1 \leq j \leq n} \{K_j\}$ and assume $K_j/K \to 1$ for all j
- Lemma 1: there exist constants a_K and b_K such that for any auction j ,

$$
\frac{P_j - b_K}{a_K} = \frac{V_{(2),j} - b_K}{a_K} \xrightarrow{d} Z
$$

 \Rightarrow $P_1, ..., P_n$ share the same constants a_K and b_K , which are still unknown...

Self-normalization

- Sort the transaction prices as $P_{(1)} \ge P_{(2)} \ge \cdots \ge P_{(n)}$
	- $-$ consider the following self-normalized statistics

$$
\mathbf{P}^* = \left(1, \frac{P_{(2)} - P_{(n)}}{P_{(1)} - P_{(n)}}, \dots, \frac{P_{(n-1)} - P_{(n)}}{P_{(1)} - P_{(n)}}, 0\right)
$$

Data = $\left(1, \frac{33 - 17}{33 - 17}, \frac{26 - 17}{33 - 17}, 0\right)$

 $-$ EV theory and continuous mapping theorem imply

$$
\mathbf{P}^* \stackrel{d}{\to} \mathbf{Z}^* = \left(1, \frac{Z_{(2)} - Z_{(n)}}{Z_{(1)} - Z_{(n)}}, ..., 0\right),
$$

whose PDF is $f_{{\bf Z}^*|\xi}$ is derived by change of variables, that is $...$

The Density

• In particular

$$
f_{\mathbf{Z}^*|\xi}(\mathbf{z}^*)
$$

= $n! \Gamma(2n) \int_0^{b(\xi)} s^{n-2} \exp\left(-2n \log \left(\sum_{j=1}^n \left(1 + \xi z_j^* s\right)^{-1/\xi}\right)) ds - \left(1 + \frac{2}{\xi}\right) \sum_{j=1}^n \log \left(1 + \xi z_j^* s\right)\right) ds$

$$
- \mathbf{z}^* = (1, z_2^*, ..., z_{n-1}^*, 0)
$$

 $- \Gamma(\cdot)$ is the gamma function

 $\zeta - b(\xi) = \infty$ if $\xi \ge 0$ and $-1/\xi$ otherwise

- We can compute this density via Gaussian quadrature
- $\bullet \,\,$ Now using $f_{{\bf Z}^*|\xi}({\bf z}^*)$, we illustrate the inference about ξ and other features

Why Care about ξ

Commonly adopted assumption (e.g., Guerre, Perrigne, and Vuong, 2000)

$$
-\,\,v^*=\sup\{v:F_V\left(v\right)<1\}<\infty
$$

$$
- \hspace{0.1cm} \textsf{the density } f_V \textsf{ is bounded in } (\mathsf{0}, \infty)
$$

• Four cases given a continuous f_V

$$
-\xi \geq 0: v^* \leq \infty \text{ and } f_V(v) \to 0 \text{ as } v \to v^*
$$

$$
-\xi \in (-1,0): v^* < \infty \text{ and } f_V(v) \to 0 \text{ as } v \to v^*
$$

$$
-\xi = -1: v^* < \infty \text{ and } f_V(\cdot) \in [\underline{C}, \overline{C}] \subset (0,\infty)
$$

$$
-\xi < -1: v^* < \infty \text{ and } f_V(v) \to \infty \text{ as } v \to v^*
$$

Figure Illustration

Necessary Condition Stated in ξ

 $\bullet\,$ Lemma 2: Suppose (i) $v^*<\infty$, (ii) $f_V\in [\underline{C},C]\subset (0,\infty)$, and (iii) f_V is continuous, then

$$
\xi=-1.
$$

- if we exclude $f_V(v) \rightarrow \infty$, we have $\xi \geq -1$
- $-$ if we assume $\mathbb E$ $\sqrt{ }$ V_i^2 i i $< \infty$, we have $\xi < 1/2$
- Then the hypothesis testing problem becomes

$$
H_0: \xi = -1
$$
 against $H_1: (-1, 0.5)$

Likelihood Ratio Test

We have a composite alternative

$$
H_0: \xi = -1
$$
 against $H_1: \xi \in (-1, 0.5)$

 \Rightarrow the asym. **optimal** test is (Müller, 2011)

$$
\varphi(\mathbf{P}^*) = \mathbf{1} \left[\frac{\int_{[-1,0.5]} f_{\mathbf{Z}^*|\xi}(\mathbf{P}^*)\, w\left(\xi\right) d\xi}{f_{\mathbf{Z}^*|\xi=-1}(\mathbf{P}^*)} > \mathsf{cv} \right]
$$

 \Rightarrow it maximizes the w-averaged average power

- \Rightarrow among all equivariant tests relying on $\mathbf{P}^{*} \overset{d}{\rightarrow} \mathbf{Z}^{*}$
- \Rightarrow $w(\cdot)$ some weight, say uniform

inference about other features ...

Other Features of the Auction

• Lemma 3: often-studied objects of interests are all functions of ξ within our framework

1. winner's expected utility
$$
\mu_K \equiv \mathbb{E}\left[V_{(1)} - V_{(2)}\right]
$$

$$
\frac{\mu_K}{a_K} \to \Gamma(1-\xi)\,,
$$

2. seller's expected revenue $\pi_K \equiv \mathbb{E}$ $[V(2)]$

$$
\frac{\pi_K-b_K}{a_K}\to \frac{\Gamma\left(2-\xi\right)-1}{\xi}
$$

3. optimal reserve price $\gamma_K = \arg \max_{\gamma} \pi_K(\gamma)$

$$
\frac{\gamma_K-b_K}{a_K}\to \frac{1}{1-\xi}
$$

Seller's Expected Revenue

- $\bullet\,$ We construct confidence intervals $U\left(P_{1},...,P_{n}\right)$ for $\pi_{K}\equiv\mathbb{E}$ $\left\lceil V_{(2)} \right\rceil$ that
	- $-$ satisfy the asymptotic coverage

$$
\mathbb{P}\left(\pi_K \in U\right) \ge 1 - \alpha \text{ for all } \xi \in [-1, 0.5]
$$

 $-$ (nearly) minimize the weighted average length

$$
\int \mathbb{E}\left[\mathsf{lgth}\left(U\right)\right]w\left(\xi\right)d\xi
$$

 $-$ satisfy the equivariance

$$
U\left(a\mathbf{P}+b\right)=aU\left(\mathbf{P}\right)+b
$$

CI about Seller's Expected Revenue

• Recall that our data and object of interest satisfy

$$
\left(\frac{\mathbf{P} - b_K}{a_K}, \frac{\pi_K - b_K}{a_K}\right) \stackrel{d}{\rightarrow} (\mathbf{Z}, \pi^*)
$$
\n
$$
\left(\begin{array}{cc} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{Z} - (\mathbf{Z} & \mathbf{Z}) \end{array}\right)
$$

where $P = (P_1, ..., P_n)$, $\mathbf{Z} = (Z_1, ..., Z_n)$

- Challenge: ξ is unknown and (a_K, b_K) are unknown
- \bullet Aim to construct an asymptotically valid confidence interval $U\left(\cdot\right)$

$$
\mathsf{min} \int_{\xi \in [-1,0.5]} \mathbb{E} \left[\mathsf{lgth}\left(U(\mathbf{P})\right) \right] w\left(\xi\right) d\xi
$$
s.t.
$$
\mathbb{P}\left(\pi_K \in U\left(\mathbf{P}\right)\right) \geq 95\% \text{ for all } \xi \in [-1,0.5]
$$

• Impose equivariance $U\left(a\mathbf{P}+b\right)=aU\left(\mathbf{P}\right)+b$ to eliminate $(a_K,b_K)...$

Extensions

First-price auctions

$$
P_j = V_{(1),j} - \frac{\int_{-\infty}^{V_{(1),j}} F_V(u)^{K_j - 1} du}{F_V(V_{(1),j})^{K_j - 1}}
$$

• Lemma 4: there exist constants a_K and b_K with $K = \min_{1 \le j \le n} \{K_j\}$,

$$
\frac{(P_1, ..., P_n) - b_K}{a_K} \stackrel{d}{\rightarrow} (X_1, ..., X_n)
$$

where $f_{X|\xi}$ depends only on ξ

- Binding reserve price is allowed
- Conditional IPV is allow if we observe ≥ 3 bids in a single auction

Conclusion

- \bullet Better approximation to empirical settings when K is large
	- K might not be observed because of
		- binding reserve price
		- selective entry (Gentry and Li, 2014)
	- $-$ multiple bids might not be observed
		- ascending-price auction (Athey and Haile, 2002)
	- \Rightarrow we cannot identify F_V but can do inference about its tail feature

asymptotically, it's all is about ξ

