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Motivation

• Classic econometric analysis of auction data, very large literature

— number of bidders K is small and known (e.g., Athey and Haile, 2002)

— number of auctions n is large (e.g., Guerre, Perrigne, and Vuong, 2000)

— multiple (sometimes all) bids are observed

• Example: homogeneous timber auction
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Second-Price Auction

• For illustration, consider the classic second-price auction with IPVs

— equilibruim strategy: bidder i submits her value Vi ∼ FV

∗ K is the number of (potential) bidders

∗ order statistics V(1) ≥ V(2) ≥ · · · ≥ V(K)

— transaction price P = V(2), the second largest order stat

FP (·) = FV(2)
(·) = FV (·)K +KFV (·)K−1 (1− FV (·))

— number of auctions n is large ⇒ nonparametrically estimate FP

— K is small and known ⇒ estimate FV by inverting the above
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Motivation cont’d

• We consider the different situation

— number of bidders K is large in each auction

— number of auctions n is small/fixed

— only the winning bid/transaction price is observed

• Example: art painting and Hong Kong vehicle license plate

n < 21 n = 4
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The New Framework

• We develop a new framework

— number of auctions n is small/fixed

— number of potential bidders K is large in each auction

— only P is observed, but not K ⇒

only require observing (P1, ..., Pn) for a fixed n ≥ 3

• Our asymptotic framework:

n is fixed (small) while K →∞ (large)

— present second-price auctions with IPVs

— extend to first-price auctions and to conditional IPV
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Asymptotic Frameworks



Existing Bidder 1 Bidder 2 · · · Bidder K
Auction 1 V(1),1 V(2),1 V(K),1

Auction 2 V(1),2 V(2),2 V(K),2
... ... ... ...

Auction n V(1),n V(2),n V(K),n

n→∞ ... ... ...




New Bidder 1 Bidder 2 · · · K →∞
Auction 1 V(1),1 V(2),1 V(∞),1

Auction 2 V(1),2 V(2),2 V(∞),2
... ... ... ...

Auction n V(1),n V(2),n V(∞),n




Plate Price
D $26m
R $33m
W $33m
V $17m


EV theory ...
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Review of Extreme Value Theory

• Consider one auction first. We assume FV is within the domain of attrac-
tion (DoA) of Extreme Value (EV) distribution

• Extreme Value Theory: There exist constants aK and bK such that

V(1) − bK
aK

d→ Z̃1

where the CDF of Z̃1 must be the generalized EV dist.

Gξ(x) =

{
exp(− (1 + ξx)−1/ξ) ξ 6= 0
exp(− exp(−x)) ξ = 0

— EV theory to the sample maximum is similar as CLT to sample mean

— ξ is the tail index that characterizes the tail heaviness

is this condition strong? ...
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Review of EV Theory, cont’d

• The DoA assumption is mild and satisfied by many distributions

Dist. Cauchy Pareto(α) t(v) Gaussian Uniform Poisson
ξ = 1 1/α 1/v 0 −1 X

— essentially requires fV is smooth (von Mises condition)

• Joint convergence of first d order statistics:

(V(1),

=P︷︸︸︷
V(2), ..., V(d))− bK

aK

d→ (Z̃1, Z̃2, ..., Z̃d)

where joint PDF is given by

Gξ(zk)
d∏
i=1

gξ(zi)/Gξ(zi) with gξ(z) =
∂Gξ(z)

∂z

7



Coming Back to Auction

• EV theory implies that
P − bK
aK

d→ Z̃2 ≡ Z

with density

fZ|ξ(x) =

 (1 + ξx)
−2+ξ

ξ exp(− (1 + ξx)−1/ξ) ξ 6= 0
exp(−2x) exp(− exp(−x)) ξ = 0

• If aKj and bKj for j = 1, ..., n are known, the problem is straightforward:

— let Kj be the numbers of bidder in the jth auction

— (Pj − bKj)/aKj
d→ Zj for j = 1, ..., n

— inference about ξ and other features using n i.i.d. draws from fZ|ξ(x)
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Asymptotic Framework

• Unfortunately aKj and bKj are unknown and diffi cult to estimate

— they depend on details of FV beyond ξ

• Let K = min1≤j≤n{Kj} and assume Kj/K → 1 for all j

• Lemma 1: there exist constants aK and bK such that for any auction j,

Pj − bK
aK

=
V(2),j − bK

aK

d→ Z

⇒ P1, ..., Pn share the same constants aK and bK , which are still un-
known...
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Self-normalization

• Sort the transaction prices as P(1) ≥ P(2) ≥ · · · ≥ P(n)

— consider the following self-normalized statistics

P∗ =

1,
P(2) − P(n)

P(1) − P(n)
, ...,

P(n−1) − P(n)

P(1) − P(n)
, 0


Data =

(
1,

33− 17

33− 17
,

26− 17

33− 17
, 0
)

— EV theory and continuous mapping theorem imply

P∗ d→ Z∗ =

1,
Z(2) − Z(n)

Z(1) − Z(n)
, ..., 0

 ,
whose PDF is fZ∗|ξ is derived by change of variables, that is ...
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The Density

• In particular

fZ∗|ξ(z
∗)

= n!Γ (2n)
∫ b(ξ)

0
sn−2 exp

 −2n log
(∑n

j=1

(
1 + ξz∗j s

)−1/ξ
)

−
(

1 + 2
ξ

)∑n

j=1
log

(
1 + ξz∗j s

)
 ds

— z∗ = (1, z∗2, ..., z
∗
n−1, 0)

— Γ (·) is the gamma function

— b (ξ) =∞ if ξ ≥ 0 and −1/ξ otherwise

• We can compute this density via Gaussian quadrature

• Now using fZ∗|ξ(z∗), we illustrate the inference about ξ and other features
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Why Care about ξ

• Commonly adopted assumption (e.g., Guerre, Perrigne, and Vuong, 2000)

— v∗ = sup{v : FV (v) < 1} <∞

— the density fV is bounded in (0,∞)

• Four cases given a continuous fV

— ξ ≥ 0 : v∗ ≤ ∞ and fV (v)→ 0 as v → v∗

— ξ ∈ (−1, 0) : v∗ <∞ and fV (v)→ 0 as v → v∗

— ξ = −1 : v∗ <∞ and fV (·) ∈ [C,C] ⊂ (0,∞)

— ξ < −1 : v∗ <∞ and fV (v)→∞ as v → v∗
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Figure Illustration
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Necessary Condition Stated in ξ

• Lemma 2: Suppose (i) v∗ <∞, (ii) fV ∈ [C,C] ⊂ (0,∞), and (iii) fV
is continuous, then

ξ = −1.

— if we exclude fV (v)→∞, we have ξ ≥ −1

— if we assume E
[
V 2
i

]
<∞, we have ξ < 1/2

• Then the hypothesis testing problem becomes

H0 : ξ = −1 against H1 : (−1, 0.5)
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Likelihood Ratio Test

• We have a composite alternative

H0 : ξ = −1 against H1 : ξ ∈ (−1, 0.5)

⇒ the asym. optimal test is (Müller, 2011)

ϕ(P∗) = 1

∫[−1,0.5] fZ∗|ξ (P∗)w (ξ) dξ

fZ∗|ξ=−1 (P∗)
> cv


⇒ it maximizes the w-averaged average power

⇒ among all equivariant tests relying on P∗ d→ Z∗

⇒ w (·) some weight, say uniform

inference about other features ...
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Other Features of the Auction

• Lemma 3: often-studied objects of interests are all functions of ξ within
our framework

1. winner’s expected utility µK ≡ E
[
V(1) − V(2)

]
µK
aK
→ Γ (1− ξ) ,

2. seller’s expected revenue πK ≡ E
[
V(2)

]
πK − bK
aK

→ Γ (2− ξ)− 1

ξ

3. optimal reserve price γK = arg maxγ πK (γ)

γK − bK
aK

→ 1

1− ξ
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Seller’s Expected Revenue

• We construct confidence intervals U (P1, ..., Pn) for πK ≡ E
[
V(2)

]
that

— satisfy the asymptotic coverage

P (πK ∈ U) ≥ 1− α for all ξ ∈ [−1, 0.5]

— (nearly) minimize the weighted average length∫
E [lgth (U)]w (ξ) dξ

— satisfy the equivariance

U (aP+ b) = aU (P) + b
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CI about Seller’s Expected Revenue

• Recall that our data and object of interest satisfy(
P− bK
aK

,
πK − bK
aK

)
d→ (Z,π∗)

where P = (P1, ..., Pn), Z = (Z1, ..., Zn)

• Challenge: ξ is unknown and (aK, bK) are unknown

• Aim to construct an asymptotically valid confidence interval U (·)

min
∫
ξ∈[−1,0.5]

E [lgth (U(P))]w (ξ) dξ

s.t. P (πK ∈ U (P)) ≥ 95% for all ξ ∈ [−1, 0.5]

• Impose equivariance U (aP+ b) = aU (P) + b to eliminate (aK, bK)...
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Extensions

• First-price auctions

Pj = V(1),j −
∫ V(1),j
−∞ FV (u)Kj−1 du

FV
(
V(1),j

)Kj−1

• Lemma 4: there exist constants aK and bK with K = min1≤j≤n{Kj},

(P1, ..., Pn)− bK
aK

d→ (X1, ..., Xn)

where fX|ξ depends only on ξ

• Binding reserve price is allowed

• Conditional IPV is allow if we observe ≥ 3 bids in a single auction
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Conclusion

• Better approximation to empirical settings when K is large

— K might not be observed because of

∗ binding reserve price

∗ selective entry (Gentry and Li, 2014)

— multiple bids might not be observed

∗ ascending-price auction (Athey and Haile, 2002)

⇒ we cannot identify FV but can do inference about its tail feature

asymptotically, it’s all is about ξ
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