Aggregate welfare impacts due to aging differentials in integrated capital market

Thomas Davoine

University of Applied Sciences Western Switzerland (EHL, HES-SO), Lausanne Institute for Advanced Studies (IHS), Vienna

August 2024

Next

Motivation

- Approach
- Results
- Conclusion

• Populations age at different speed in different countries

- For instance, the old-age dependency ratio (65+ / 15-64 year olds) is projected to increase to 47% in 50 years in France, 53% in Germany and 61% in Poland (Eurostat, 2018)
- Households in fast-aging countries need to increase saving more (to maintain consumption past retirement)
- Theoretically, capital should flow from fast-aging towards slow-aging countries (interest rate differentials)
- Welfare in fast-aging countries should be larger in integrated capital markets (compared to separated ones)
- ... and possible lower in slow-aging countries
- Research question: at the aggregate level, what are welfare impacts from capital market integration with countries aging at different speed?

• Populations age at different speed in different countries

- For instance, the old-age dependency ratio (65+ / 15-64 year olds) is projected to increase to 47% in 50 years in France, 53% in Germany and 61% in Poland (Eurostat, 2018)
- Households in fast-aging countries need to increase saving more (to maintain consumption past retirement)
- Theoretically, capital should flow from fast-aging towards slow-aging countries (interest rate differentials)
- Welfare in fast-aging countries should be larger in integrated capital markets (compared to separated ones)
- ... and possible lower in slow-aging countries
- Research question: at the aggregate level, what are welfare impacts from capital market integration with countries aging at different speed?

- Populations age at different speed in different countries
 - For instance, the old-age dependency ratio (65+ / 15-64 year olds) is projected to increase to 47% in 50 years in France, 53% in Germany and 61% in Poland (Eurostat, 2018)
- Households in fast-aging countries need to increase saving more (to maintain consumption past retirement)
- Theoretically, capital should flow from fast-aging towards slow-aging countries (interest rate differentials)
- Welfare in fast-aging countries should be larger in integrated capital markets (compared to separated ones)
- ... and possible lower in slow-aging countries
- Research question: at the aggregate level, what are welfare impacts from capital market integration with countries aging at different speed?

- Populations age at different speed in different countries
 - For instance, the old-age dependency ratio (65+ / 15-64 year olds) is projected to increase to 47% in 50 years in France, 53% in Germany and 61% in Poland (Eurostat, 2018)
- Households in fast-aging countries need to increase saving more (to maintain consumption past retirement)
- Theoretically, capital should flow from fast-aging towards slow-aging countries (interest rate differentials)
- Welfare in fast-aging countries should be larger in integrated capital markets (compared to separated ones)
- ... and possible lower in slow-aging countries
- Research question: at the aggregate level, what are welfare impacts from capital market integration with countries aging at different speed?

- Populations age at different speed in different countries
 - For instance, the old-age dependency ratio (65+ / 15-64 year olds) is projected to increase to 47% in 50 years in France, 53% in Germany and 61% in Poland (Eurostat, 2018)
- Households in fast-aging countries need to increase saving more (to maintain consumption past retirement)
- Theoretically, capital should flow from fast-aging towards slow-aging countries (interest rate differentials)
- Welfare in fast-aging countries should be larger in integrated capital markets (compared to separated ones)
- ... and possible lower in slow-aging countries
- Research question: at the aggregate level, what are welfare impacts from capital market integration with countries aging at different speed?

Next

- Motivation
- Approach
- Results
- Conclusion

- Using a large-scale multi-country OLG model for more precise quantitative results
- Existing single-country OLG model used on a regular basis for policy evaluation
 - Extension of Jaag, Keuschnigg and Keuschnigg (2010) to multiple skill groups
- Detailed modelling of labour markets and institutions, with:
 - Single composite good with constant exchange rates
 - Endogenous labor supply decisions along intensive and extensive margins
- Extension to a multi-country model to capture spillover effects due to capital markets integration
 - Assumption: only capital is endogenously mobile (Buiter, 1981)
 - Labor is mobile across countries, but exogenously defined (migration flows, from demographic projections)
 - A stylized rest-of-the-world country captures non-EU trade flows

- Using a large-scale multi-country OLG model for more precise quantitative results
- Existing single-country OLG model used on a regular basis for policy evaluation
 - Extension of Jaag, Keuschnigg and Keuschnigg (2010) to multiple skill groups
- Detailed modelling of labour markets and institutions, with:
 - Single composite good with constant exchange rates
 - Endogenous labor supply decisions along intensive and extensive margins
- Extension to a multi-country model to capture spillover effects due to capital markets integration
 - Assumption: only capital is endogenously mobile (Buiter, 1981)
 - Labor is mobile across countries, but exogenously defined (migration flows, from demographic projections)
 - A stylized rest-of-the-world country captures non-EU trade flows

- Using a large-scale multi-country OLG model for more precise quantitative results
- Existing single-country OLG model used on a regular basis for policy evaluation
 - Extension of Jaag, Keuschnigg and Keuschnigg (2010) to multiple skill groups
- Detailed modelling of labour markets and institutions, with:
 - Single composite good with constant exchange rates
 - Endogenous labor supply decisions along intensive and extensive margins
- Extension to a multi-country model to capture spillover effects due to capital markets integration
 - Assumption: only capital is endogenously mobile (Buiter, 1981)
 - Labor is mobile across countries, but exogenously defined (migration flows, from demographic projections)
 - A stylized rest-of-the-world country captures non-EU trade flows

- Using a large-scale multi-country OLG model for more precise quantitative results
- Existing single-country OLG model used on a regular basis for policy evaluation
 - Extension of Jaag, Keuschnigg and Keuschnigg (2010) to multiple skill groups
- Detailed modelling of labour markets and institutions, with:
 - Single composite good with constant exchange rates
 - Endogenous labor supply decisions along intensive and extensive margins
- Extension to a multi-country model to capture spillover effects due to capital markets integration
 - Assumption: only capital is endogenously mobile (Buiter, 1981)
 - Labor is mobile across countries, but exogenously defined (migration flows, from demographic projections)
 - A stylized rest-of-the-world country captures non-EU trade flows

Next

- Motivation
- Approach
- Results
- Conclusion

	Demographics		Macroeconomics			Welfare
	Pop (%)	OADR	GDI	GDP/capita (%)		CEV (%)
	50y	50y/ISS	CE	CMU	\triangle	Alive+born 1-100y
Austria	19.5	1.7	-9.4	-9.1	0.3	0.9
Belgium	24.4	1.5	-2.7	-6.0	-3.3	2.9
Czech Republic	-3.4	2.0	-7.1	-10.1	-2.9	0.4
Denmark	22.2	1.5	-7.6	-10.2	-2.6	2.7
Finland	5.0	1.5	-4.6	-5.0	-0.3	3.3
France	17.3	1.6	-5.6	-3.6	2.0	-0.3
Germany	-1.7	1.5	-3.7	-5.3	-1.6	2.3
Italy	-5.1	1.9	-3.9	-6.4	-2.5	1.3
Netherlands	17.0	1.6	-4.4	-7.2	-2.8	4.8
Poland	-13.9	2.5	-8.8	-11.1	-2.3	-0.1
Slovakia	-4.7	2.4	-7.9	-9.3	-1.4	-1.8
Spain	6.6	2.2	-4.5	-5.8	-1.2	-1.2
Sweden	38.7	1.4	-5.0	-5.1	0.0	5.3
United Kingdom	26.3	1.6	-8.7	-7.1	1.5	-1.5
NROW	16.3	1.7	-5.7	-5.1	0.6	0.2
SROW	21.8	3.0	-9.6	-11.4	-1.8	1.0
World			-9.5	-10.0	-0.5	0.8

Aging impacts, integrated vs separated capital markets

- Slow-aging impatient countries (France, UK): attract capital, generating production gains and welfare losses
- Slow-aging patient countries (*Denmark*, *Finland*, *Netherlands*, *Sweden*): the opposite
- Fast-aging countries (Czechia, Poland, Slovakia, Spain): export capital, reducing domestic production and suffering from welfare losses
- Overall, worldwide aggregate welfare gains equivalent to 0.8% of lifetime consumption (on average for households alive or born in next 100 years)

- Slow-aging impatient countries (France, UK): attract capital, generating production gains and welfare losses
- Slow-aging patient countries (*Denmark, Finland, Netherlands, Sweden*): the opposite
- Fast-aging countries (Czechia, Poland, Slovakia, Spain): export capital, reducing domestic production and suffering from welfare losses
- Overall, worldwide aggregate welfare gains equivalent to 0.8% of lifetime consumption (on average for households alive or born in next 100 years)

- Slow-aging impatient countries (France, UK): attract capital, generating production gains and welfare losses
- Slow-aging patient countries (*Denmark, Finland, Netherlands, Sweden*): the opposite
- Fast-aging countries (Czechia, Poland, Slovakia, Spain): export capital, reducing domestic production and suffering from welfare losses
- Overall, worldwide aggregate welfare gains equivalent to 0.8% of lifetime consumption (on average for households alive or born in next 100 years)

- Slow-aging impatient countries (France, UK): attract capital, generating production gains and welfare losses
- Slow-aging patient countries (*Denmark, Finland, Netherlands, Sweden*): the opposite
- Fast-aging countries (Czechia, Poland, Slovakia, Spain): export capital, reducing domestic production and suffering from welfare losses
- Overall, worldwide aggregate welfare gains equivalent to 0.8% of lifetime consumption (on average for households alive or born in next 100 years)

Mechanism(s)

Redistribution across countries:

- Returns on investment are higher in slow-aging (resp. impatient) countries, as households save less to finance consumption after retirement
- Large capital flows towards slow-aging and impatient countries (France, UK), increasing capital for domestic production but depressing returns to investments for domestic households (compared to separated capital markets)

Aggregate welfare gains:

- Households in slow-aging and impatient countries did not save much in the 1st place, so the welfare loss (due to the loss on returns) is not very large ...
- ... and dominated by the (capital income) gains in capital-exporting countries, who saved much

Mechanism(s)

Redistribution across countries:

- Returns on investment are higher in slow-aging (resp. impatient) countries, as households save less to finance consumption after retirement
- Large capital flows towards slow-aging and impatient countries (France, UK), increasing capital for domestic production but depressing returns to investments for domestic households (compared to separated capital markets)

Aggregate welfare gains:

- Households in slow-aging and impatient countries did not save much in the 1st place, so the welfare loss (due to the loss on returns) is not very large ...
- ... and dominated by the (capital income) gains in capital-exporting countries, who saved much

Mechanism(s)

Redistribution across countries:

- Returns on investment are higher in slow-aging (resp. impatient) countries, as households save less to finance consumption after retirement
- Large capital flows towards slow-aging and impatient countries (France, UK), increasing capital for domestic production but depressing returns to investments for domestic households (compared to separated capital markets)

Aggregate welfare gains:

- Households in slow-aging and impatient countries did not save much in the 1st place, so the welfare loss (due to the loss on returns) is not very large ...
- ... and dominated by the (capital income) gains in capital-exporting countries, who saved much

Illustration of mechanism

Decomposition: aging vs savings differentials

Demographics		Macroeconomics			Welfare
Pop (%)	OADR	GDP/capita (%)			CEV (%)
50y	50y/ISS	CE	CMU	\triangle	Alive+born 1-100y
17.3	1.6	-5.6	-3.6	2.0	-0.3
17.0	1.6	-4.4	-7.2	-2.8	4.8
-13.9	2.5	-8.8	-11.1	-2.3	-0.1
17.0	1.6	-8.3	-8.4	-0.1	-0.2
17.3	1.6	-5.9	-3.9	2.0	-3.5
	Demog Pop (%) 50y 17.3 17.0 -13.9 17.0 17.3	Demographics Pop (%) OADR 50y 50y/ISS 17.3 1.6 17.0 1.6 -13.9 2.5 17.0 1.6 17.3 1.6 17.0 1.6 17.3 1.6	Demographics Mac Pop (%) OADR GDI 50y 50y/ISS CE 17.3 1.6 -5.6 17.0 1.6 -4.4 -13.9 2.5 -8.8 17.0 1.6 -8.3 17.3 1.6 -5.9	Demographics Macroecono Pop (%) OADR GDP/capita 50y 50y/ISS CE CMU 17.3 1.6 -5.6 -3.6 17.0 1.6 -4.4 -7.2 -13.9 2.5 -8.8 -11.1 17.0 1.6 -8.3 -8.4 17.3 1.6 -5.9 -3.9	$\begin{tabular}{ c c c c } \hline Demographics & Macroeconomics \\ \hline Pop (\%) & OADR & GDP/capita (\%) \\ \hline 50y & 50y/ISS & CE & CMU & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Notes: Poland (CTF) = Poland with counterfactual initial population structure and aging, matching French values; *Netherlands* (CTF) = the Netherlands with counterfactual initial trade balance, matching French values;

Next

- Motivation
- Approach
- Results
- Conclusion

Summary

- Capital markets integration with differentials in aging speed generate aggregate welfare gains
- On average, CEV gains amount to 0.8% of lifetime consumption (households alive or born in next 100 years)
- These gains are close to other benefits from policy harmonization or market integration found in the literature, e.g.
 - Removal of US business cycle fluctuations: 0.1 to 1.0% CEV gains (Krusell et al, 2009)
 - US tax harmonization: 0.6 to 1.2% CEV gains (Fajgelbaum et al, 2019)
 - International risk sharing: 0.5% CEV gains (Coeurdacier et al., 2020)

Summary

- Capital markets integration with differentials in aging speed generate aggregate welfare gains
- On average, CEV gains amount to 0.8% of lifetime consumption (households alive or born in next 100 years)
- These gains are close to other benefits from policy harmonization or market integration found in the literature, e.g.
 - Removal of US business cycle fluctuations: 0.1 to 1.0% CEV gains (Krusell et al, 2009)
 - US tax harmonization: 0.6 to 1.2% CEV gains (Fajgelbaum et al, 2019)
 - International risk sharing: 0.5% CEV gains (Coeurdacier et al., 2020)

Policy implications

- Capital markets are getting increasingly integrated ...
- ... but some barriers remain (eg insolvency law differentials), whose removal are costly
- Results in this research (aggregate welfare gains): another motivation for continuing the efforts of policy harmonization

Policy implications

- Capital markets are getting increasingly integrated ...
- ... but some barriers remain (eg insolvency law differentials), whose removal are costly
- Results in this research (aggregate welfare gains): another motivation for continuing the efforts of policy harmonization

Thank you for your comments !

Appendix: details on OLG model

- Existing single-country OLG model used on a regular basis for policy evaluation, such as:
 - Fiscal devaluation in 4 EU countries (for DG TAXUD)
 - 2015 Austrian tax reforms (for Austrian Ministry of Finance)
- = extension of Jaag, Keuschnigg and Keuschnigg (2010) to multiple skill groups
- Detailed modelling of labour markets and institutions, including:
 - Single composite good with constant exchange rates
 - Endogenous labor supply decisions along intensive and extensive margins
 - Eight age groups with age-dependent mortality rates
 - Three skill groups
 - Capital-skill complementarity in production
 - Frictional unemployment with static search-and-matching
 - Endogenous firms investment and hiring decisions
 - Public policy instruments: progressive taxation, earnings-related pensions, social security

Appendix: household maximization problem

Given a skill level *i*, households maximize expected lifetime utility $V_0^{0,i}$ in period a = 0, with:

$$V_t^{a,i} = \max\left[\left(Q_t^{a,i}\right)^{\rho} + \gamma^a \beta \left(GV_{t+1}^{a,i}\right)^{\rho}\right]^{1/\rho},$$

such that the budget constraint (with reverse life-insurance) holds:

$$G\gamma^{a}A_{t+1}^{a,i}=R_{t+1}\left(A_{t}^{a,i}+y_{t}^{a,i}-C_{t}^{a,i}\right).$$

With effort-adjusted consumption (Greenwood, Hercowitz and Huffman, 1988):

$$Q^{a,i} = C^{a,i} - \bar{\varphi}^{a,i} \left(\delta^{a,i}, s^{a,i}, l^{a,i} \right),$$

for total disutility of labor (net of outside option values, with an assumption):

$$\begin{split} \bar{\varphi}^{\mathfrak{a},i} &= \delta^{\mathfrak{a},i} \left[\left(1 - u^{\mathfrak{a},i} \right) \varphi^{\mathsf{L},i} \left(l^{\mathfrak{a},i} \right) + \left(1 - \varepsilon^{\mathfrak{a},i} \right) \varphi^{\mathsf{S},i} \left(s^{\mathfrak{a},i} \right) \right] \\ &\varphi^{\mathsf{P},i} \left(\delta^{\mathfrak{a},i} \right) \; - \; \left(1 - \delta^{\mathfrak{a},i} + \delta^{\mathfrak{a},i} u^{\mathfrak{a},i} \right) h^{\mathfrak{a},i}. \end{split}$$

Appendix: overview of household labor supply decisions

