We are not in a Gaussian world anymore: Implications for the composition of official foreign assets¹

José A. Camarena^a Juan P. Medina^b Daniel Riera-Crichton^c Carlos A. Vegh^d Guillermo Vuletin^a

> ^aWorld Bank ^bBusiness School, Universidad Adolfo Ibáñez, Chile ^cBates College ^dJohns Hopkins University and NBER

> > August, 2024

¹The views expressed in this paper are those of the authors and do not necessarily represent the views of the World Bank $\square \square \square$

Non-Gaussian shocks & Insurance

Motivation

- How do emerging markets (EM) protect themselves against risk?
 - Mostly through accumulation of international reserves as self-insurance... but little state-contingent assets.
- Here, we identify two related puzzles addressed by different strings of the literature
 - **Puzzle I**: Welfare gains of financial integration are surprisingly small. [Cole and Obstfeld, 1991; Gourinchas and Jeanne, 2006; and many others]
 - **Puzzle II**: Why not holding state-contingent assets instead of (or in addition to) international reserves (non-contingent)? [Caballero and Panageas, 2004, 2005]

Decomposition of welfare gains

 Decompose the gain of financial integration in two segments: (i) from financial autarky to incomplete markets (only a risk-free asset); and (ii) from incomplete markets to complete markets (full set of Arrow-Debreu assets).

• Size of $\tilde{\phi}_1$ and ϕ_2 capture, respectively, the incentives to accumulate risk-free assets and state-contingent assets.

Decomposition of welfare gains II

- Adding our note to Puzzle II: There is a composition effect of welfare gains that has been overlooked when shocks are normally distributed:
 - Most of the gains come from incomplete markets to complete markets $(\phi_2>>\widetilde{\phi}_1\approx 0)$

So..who is right? The shape of risk may hold the answer

Non-Gaussian	shocks a	Ł	Insurance
--------------	----------	---	-----------

December, 2023

イロン イ理 とく ヨン イ ヨン

5/29

э

- We fit macroeconomic disaster governed by power-law distribution to the income risks and:
- We are able to increase substantially the size of welfare gains (ϕ_1) [Puzzle I]
- Not all gains come from incomplete to complete markets (φ
 ₁ is not small relative to φ₂) to reconcile the observation of accumulation of risk-free asset in emerging economies [Puzzle II]

Related literature

- Gains of financial integration: Cole and Obstfeld (1991); Tesar (1995); Gourinchas and Jeanne (2003); Mendoza (1995); Martin (2010); Van Wincoop (1998)
- Accumulation of reserves as self-insurance to risks: Aizenman and Marion (2002); Jeanne and Ranciere (2006); Jeanne (2007); Bianchi et al (2018)
- Rare macroeconomic disasters and macro-finance implications: Rietz (1998); Barro (2006); Barro (2009); Barro and Urzua (2008); Barro and Jin (2011).
- Benefits of contingent asset holdings vs. FX reserves as precautionary savings: Caballero and Panageas (2004, 2005).

Outline

- 2 Evidence of macroeconomic disasters
 - 3 Basic Ideas
- 4 Model economy under normal and power-law distributions

8/29

Evidence of macroeconomic disasters

Estimation of macroeconomic disasters

- Annual data for 156 countries, 1900-2018 (Bolt et al, 2018; WEO).
- Using real GDP per capital, we identify disaster observations following Barro and Jin (2011).
- For each disaster *i*, define *x_i* as the minimum real GDP per capita relative to the pre-disaster level.
- Reciprocal $z_i = 1/x_i$. Then, the pdf for z_i is [power-law distribution] $f(z_i) = (\alpha 1)(z_{min})^{\alpha 1}(z_i)^{-\alpha}$, $\alpha > 1$
- MLE estimation for α conditional on z_{min} is:

$$\hat{\alpha} = 1 + n \left[\sum_{i=1}^{n} \ln \left(\frac{z_i}{z_{min}} \right) \right]^{-1}$$

• We then follow Clauset et al (2009) to choose z_{min} that minimizes the distance between the cumulative density function of the data and of the fitted model for the observations for z.

Estimation of macroeconomic disasters

Table: Estimated parameters of the income distribution

	Disaster regime (Power-law dist.)						
	2 _{min}	_	â	р	û	ô	
Est.	95% Confidence Interval	Est. 95% Confidence Interval					
1.1899	(1.1158, 1.3917)	4.5980	(3.9846, 5.6343)	0.0274	0.0262	0.0450	

Notes: The power-law and log-normal distributions are fitted through R implementation of Gillespie (2015) and Delignette-Muller and Dutang (2015), respectively. 95% confidence intervals of \hat{z}_{min} and $\hat{\alpha}$ from 5,000 bootstrap simulations, following methods developed in Clauset *et al.* (2009). The point estimates for $\hat{\mu}$ and $\hat{\sigma}$ and the value of pare computed as explained in the text.

Basic Ideas

Non-Gaussian	shocks	&	Insurance
--------------	--------	---	-----------

December, 2023

ヨト・イヨト

2

Prudent consumer

- Consider a two-period small open economy.
- The endowment in period 1, y_1 , is deterministic.
- The endowment in period 2, y_2 , is stochastic with $\mathbb{E}[y_2] = y_1$
- Lifetime expected utility (welfare) is given by: $W = u(C_1) + \beta \mathbb{E}[u(C_2)]; u(C) = (C^{1-\gamma} - 1)/(1-\gamma)$, and γ is the coefficient of risk aversion.
- 3 market arrangements:
 - Financial autarky (FA): $C_1^{FA} = y_1$, $C_2^{FA} = y_2$.
 - Incomplete markets (IM): $C_1^{IM} = y_1 B_1$, $C_2^{IM} = y_2 + (1+r)B_1$
 - Complete markets (CM): $C_1^{\bar{C}M} = y_1$, $C_2^{CM} = y_1$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Prudent consumer (cont.)

Welfare is maximized under complete markets:

$$W_{CM} = u(y_1) + \beta u(y_1)$$

 The welfare gains of having complete markets relative to the case of financial autarky are the value of φ₁ that satisfies:

$$W_{FA}(\phi_1) = u((1+\phi_1)C_1^{FA}) + \beta \mathbb{E}\left[u((1+\phi_1)C_2^{FA})\right] = W_{CM}$$

• In the same vein, we define the relative gains from IM to CM:

$$W_{IM}(\phi_2) = u((1+\phi_2)C_1^{IM}) + \beta \mathbb{E}\left[u((1+\phi_2)C_2^{IM})\right] = W_{CM}$$

14 / 29

- Let $\widetilde{\phi}_1$ denote the welfare gains from FA to IM.
- We can derive the following relationship:

• Therefore, given ϕ_1 and ϕ_2 , we can compute ϕ_1 .

Welfare gains composition: simple binomial distribution for y_2

Table: Welfare gains as function of the size of the shocks

у ^Н	у ^L	ϕ_1 (total)	ϕ_2 (segment 2)	ϕ_2/ϕ_1	$ ilde{\phi}_1$ (segment 1)
1.0	1.0	0	0	n/a	0
1.1	0.9	0.75	0.74	98.0%	0.01%
1.2	0.8	3.13	2.90	92.5%	0.2%
1.3	0.7	7.54	6.36	84.3%	1.11%
1.4	0.6	14.8	11.0	74.4%	3.41%
1.5	0.5	26.7	16.9	63.4%	8.35%
1.6	0.4	46.6	24.1	51.7%	18.2%

Note: Calculations assume $\gamma = 3$. Here, as the distance b/w y^H and y^L increases, the distribution of income in period 2 has fatter tails.

Model economy under normal and power-law distributions

- More formal incorporation of income risk estimated from macroeconomic disasters
- Two-period model for a small open economy
- Y_1 ; $Y_2 = Y_x$, x a continuous random variable with pdf given by $f_X(x)$. Assume $\mathbb{E}[x] = g_x$
- Rest of the world consists of a continuum of identical economies
- There is full risk sharing among the economies in the rest of world.

Complete markets

• Optimal conditions for the consumption are:

$$(C_1)^{-\gamma} = \lambda,$$

 $\beta f_X(x) (C_2(x))^{-\gamma} = \lambda p(x).$

• The assumption of full risk sharing in the rest of the world implies:

$$p(x) = \beta f_X(x) \left(\frac{Y}{Yexp(g_x)}\right)^{\gamma} = \beta f_X(x) exp(-\gamma g_x).$$

• \Rightarrow $C_1 = C_2(x) = Y$.

• Welfare under complete markets is given by:

$$W_{CM} = \frac{(Y)^{1-\gamma} - 1}{1-\gamma} + \beta \frac{(Y)^{1-\gamma} \exp((1-\gamma)g_x) - 1}{1-\gamma}$$
(18)

Financial autarky

 Welfare under financial autarky, adding a potential compensation to consumption of a factor of 1 + φ₁, is given by the following equation (19):

$$W_{FA}(\phi_1) = \frac{(Y(1+\phi_1))^{1-\gamma} - 1}{1-\gamma} + \beta \mathbb{E}\left[\frac{(Y_X(1+\phi_1))^{1-\gamma} - 1}{1-\gamma}\right]$$

• Using (18) and (19), it follows that:

$$\begin{split} &(1+\phi_1)^{1-\gamma} + (1+\phi_1)^{1-\gamma}\beta \mathbb{E}\left[(x)^{1-\gamma}\right] = (1+\beta exp((1-\gamma)g_x)).\\ \bullet \ \Rightarrow \ \ \phi_1 = \left(\frac{1+\beta exp((1-\gamma)g_x)}{1+\beta \mathbb{E}\left[(x)^{1-\gamma}\right]}\right)^{\frac{1}{1-\gamma}} - 1. \end{split}$$

Incomplete markets

• Defining $\tilde{b}_1 \equiv b_1/Y$, then the optimal saving decision can be written as:

$$\left(1-\widetilde{b}_{1}\right)^{-\gamma}=\beta R\mathbb{E}\left[\left(x+R\widetilde{b}_{1}\right)^{-\gamma}\right]$$

• *R* satisfies $1/R = \beta exp(-\gamma g_x)$. Hence, last equation becomes:

$$(1 - \widetilde{b}_1)^{-\gamma} = \exp(\gamma g_x) \mathbb{E}\left[(x + R\widetilde{b}_1)^{-\gamma}\right]$$

•
$$\Rightarrow$$
 $W_{IM}(\phi_2) = \frac{(Y(1+\phi_2)(1-\tilde{b}_1))^{1-\gamma}-1}{1-\gamma} + \beta \mathbb{E}\left[\frac{(Y(1+\phi_2)(x+R\tilde{b}_1))^{1-\gamma}-1}{1-\gamma}\right]$

• Using $W_{IM}(\phi_2)$ and (24), and solving for ϕ_2 , we have:

$$\phi_{2} = \left(\frac{1 + \beta \exp((1 - \gamma)g_{x})}{(1 - \widetilde{b}_{1})^{1 - \gamma} + \beta \mathbb{E}\left[(x + R\widetilde{b}_{1})^{1 - \gamma}\right]}\right)^{\frac{1}{1 - \gamma}} - 1$$

Types of risk and welfare gains

• Income risk type I: Normal distribution

- $\log(x) \sim N(\mu_x, \sigma_x^2)$.
- μ_x and σ_x are computed indirectly based on the information in table with estimation of macroeconomic disasters
- Income risk type II: Combination of normal and power-law distributions

With probability $1 - p : \log(x) = \log(\tilde{x}) \sim N(\tilde{\mu}_x, \tilde{\sigma}_x^2)$.

With probability p: x = 1/z.

• *z*, the reciprocal of the contraction size in the case of disaster, follows a power law distribution with pdf:

$$f_Z(z) = (lpha - 1)(z_{min})^{lpha - 1} z^{-lpha}$$
 , $lpha > 1$

z_{min}, *α*, *p*, *μ̃_x*, and *σ̃_x* comes directly from table with estimation of macroeconomic disasters.

- 小田 ト イヨト 一日

- Income risk type II: Combination of normal and power-law distributions (cont.)
- From our estimation for α we consider three cases: (i) Power-law medium: α = 4.60 (point estimate); (ii) Power-law low: α = 5.63 (upper bound estimate); and (iii) Power-law high: α = 3.98 (lower bound estimate)

Type I risks

Table: Welfare gains from financial autarky to complete markets (ϕ_1)

			γ			
2.0	2.5	3.0	3.5	4.0	4.5	5.0
0.177%	0.221%	0.264%	0.307%	0.350%	0.393%	0.435%

Table: Non-contingent bond holdings with type I risks (\tilde{b}_1)

			γ			
2.0	2.5	3.0	3.5	4.0	4.5	5.0
0.26%	0.31%	0.35%	0.39%	0.43%	0.47%	0.51%

Table: Welfare gains from non-contingent bond to complete markets (ϕ_2)

2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.177% 0.220% 0.263% 0.305% 0.347% 0.387% 0.429%				γ			
0.177% 0.220% 0.263% 0.305% 0.347% 0.387% 0.429%	2.0	2.5	3.0	3.5	4.0	4.5	5.0
	0.177%	0.220%	0.263%	0.305%	0.347%	0.387%	0.429%

Table: Welfare gains from financial autarky to complete markets (ϕ_1)

				γ			
α	2.0	2.5	3.0	3.5	4.0	4.5	5.0
3.98	0.69%	1.11%	1.91%	4.30%	∞	∞	∞
4.60	0.53%	0.80%	1.20%	1.95%	3.80%	20.50%	∞
5.63	0.40%	0.56%	0.77%	1.07%	1.52%	2.35%	4.34%

イロト イポト イヨト イヨト

æ

Type II risks (cont.)

Table: Non-contingent bond holdings with type II risks (\tilde{b}_1)

				γ			
α	2.0	2.5	3.0	3.5	4.0	4.5	5.0
3.98	1.58%	2.42%	3.46%	4.91%	6.06%	7.81%	9.52%
4.60	1.10%	1.53%	2.24%	3.12%	4.62%	5.72%	7.59%
5.63	0.74%	0.99%	1.32%	1.84%	2.39%	3.19%	4.33%

Table: Welfare gains from non-contingent bond to complete markets (ϕ_2)

				γ			
α	2.0	2.5	3.0	3.5	4.0	4.5	5.0
3.98	0.66%	1.01%	1.48%	2.16%	2.98%	4.16%	5.59%
4.60	0.52%	0.74%	1.06%	1.49%	2.19%	2.95%	4.14%
5.63	0.39%	0.54%	0.73%	1.00%	1.29%	1.74%	2.34%

< 4 ₽ >

Composition of welfare gains (illustration with $\gamma = 3.5$)

Non-Gaussian shocks & Insurance

27 / 29

Conclusions

N	lon-(Gaussi	ian s	hock	<s &<="" th=""><th>Ins</th><th>urance</th></s>	Ins	urance
---	-------	--------	-------	------	--	-----	--------

December, 2023

< □ > < □ > < □ > < □ > < □ >

2

Policy conclusions

- Traditionally, welfare gains of financial integration are very small and almost all of them are accrued from incomplete (IM) to complete markets (CM).
- The policy implication in this Gaussian world would thus be to hold few non-contingent assets given that its pay-off is almost nil.
- In the presence of a power-law distribution, welfare gains are about the same in the first segment (from FA to IM) as in the second (from IM to CM).
- Our policy conclusion is thus that, in a world of fat tails, there is a clear theoretical case for self-insurance with non-contingent assets (FX reserves).