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Data collection in economics

Old-generation data collection: Often captures quantities now more readily available
in administrative datasets

E.g., income, employment, education, benefit take-up, etc.

Other inputs to economic decisions are harder to measure

E.g., preferences, beliefs, expectations, risk attitudes, etc.

New-generation data collection can be more

customizable, controllable, interactive

promises to do much more than capturing coarse measures of these important
economic inputs



Getting high-quality data on preferences

Reliably estimating valuations generally requires eliciting a series of responses to
proposed choice sets (Discrete Choice Experiment):

Direct questions about valuations? anchoring effects, highly uncertain, greater
potential for hypothetical bias, . . .

Multiple price lists? order effects, reference point effects, range bias, complexity,
difficulty accommodating multiple dimensions . . .

Eliciting multiple pairwise choices helps respondents think through tradeoffs more
clearly (Feld, Nagy, and Osman, 2020)



Discrete choice experiments in economics

Broad range of applications in recent years:

Labor economics: Preferences for job attributes (Eriksson & Kristensen 2014, Mas
& Pallais 2017, Wiswall & Zafar 2018, Mas & Pallais 2019,Johnston 2021, Feld et
al. 2022, Folke & Rickne 2022, Maestas et al. 2023), for discrimination (Kuhn &
Osaki 2023)

Other examples in many fields:

Public economics
Health economics
Development economics
Environmental economics
Urban, real estate, transportation
Measuring time and risk preferences in psychology and economics



Discrete choice experiments (DCE)

DCEs often require asking each respondent multiple questions to narrow down
their preferences. But trade-offs from having more questions. . .

(-) Less thoughtful responses (survey fatigue)

(-) Non-response bias (higher attrition rates)

(-) Higher cost of data collection (can be expensive)

A shortcut researchers often have to make:

Pool choice data across respondents to estimate “average preferences” of an entire
group

A less often discussed point: this shortcut can lead to biased estimates (will revisit)



Bayesian Adaptive Choice Experiments (BACE)

We propose the use of dynamic adaptive choice experiments to replace existing
static choice experiments widely used to elicit preferences which simultaneously:

Efficiently obtain individual-level preference estimates while accommodating
flexible underlying utility functions

Overcome statistical biases when aggregating data across respondents to
obtain average group-level estimates



Adaptative Choice Experiments

Optimal dynamic experimental design to estimate parameters efficiently dates back to
Wald (1950)

Designs are chosen often some information criterion:

(Negative) mean squared error of the model’s predictions (Fedorov 1972; Cohn et
al. 1996; Schein 2005)

Entropy of the responses (Bates et al. 1996)

Mutual information between the response and the parameters (this paper, and
also used in psychology, neuroscience)

Introduce their own information criterion like EC2 (Wang, Filiba, and Camerer
2010; Imai and Camerer 2017)

Norm of the Hessian of the posterior at its mode (Toubia et al. 2013)



This Paper

New theoretical results

Characterize the designs the procedure using Shannon mutual information
criterion generates and document its advantages

Establish convergence properties

Computational aspects of BACE

Population Monte Carlo (PMC) methods for computing posteriors and mutual
information (numerical integration)

Bayesian Optimization for finding the most-informative design

Simulations

Package github.com/tt-econ/bace and Manual tt-econ.github.io/BACE

github.com/tt-econ/bace
tt-econ.github.io/BACE
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BACE general framework

θ ∈ Θ: compact and convex set of preferences parameters

D ∈ D: set of designs/designs the experimenter can show the respondent

x ∈ X : respondent’s choices in compact and connected metric space

t ∈ {1, . . . ,T}: time period

(d1:t , x1:t) ≡ ((d1, x1), . . . , (dt , xt)): set of past designs and answers



The Procedure

We propose the analyst choose menu choose design d that maximizes

u(d) =
∫

θ

∫
x
log

[
Pr(θ|x , d )

Pr(θ)

]
Pr(x|θ, d)dx Pr(θ)dθ

Roughly, log
[
Pr(θ|x ,d )
Pr(θ)

]
measures the difference between the posterior and the prior after

observing (x , d)

∫
x log

[
Pr(θ|x ,d )
Pr(θ)

]
Pr(x|θ, d)dx is the expected distance if the agent has preference

parameter θ

Therefore, u captures the expected movement of the posterior



Dynamic Procedure

Prior
Pr(θ | (x , d)(1:t))

Optimal question design
{dt+1} = argmaxdt u(dt)

Observe answer choice
(x , d)(t+1)

Posterior
Pr(θ | (x , d)(1:t+1))

θ—parameter vector of interest
dt—the question design presented at time t

(x , d)t—answer input at time t

t + 1← t



Example: Job amenity bundles

Two job scenarios differing by: earnings, work-from-home, control over schedule

Jobs j ∈ {0, 1} consist of earnings yj and amenity aj ∈ {0, 1} and amenity
bj ∈ {0, 1}

uj = log(yj ) + αaj + βbj + γajbj

Probability of making an error when facing {j , j ′} is a Gumbel distribution with
scale parameter σ

Also consider the case in which the probability of choosing at random is fixed
p ∈ [0, 1]

Estimation procedure:

Posterior mean

MLE



How does it look like



How does it look like



How does it look like



Simulations: Interaction term γ—true versus estimated



Simulations: Interaction term γ—average MSE
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BACE formula—binary choice

The general BACE framework above accommodates any type of choice set: binary,
multiple, or continuous

For the theoretical results, we first focus on the binary choice case, and later
extend the results

We simplify the notations in this section:

Denote the current prior as Π(·) ≡ Pr(·|x (1:t), d (1:t)) with density f with full
support

A design d is a set of two alternatives (a, b) (symmetric), a, b ∈ A

A binary answer x is ⟨a, b⟩ if alternative a is chosen over b and ⟨b, a⟩ otherwise

The likelihood function is then ℓ⟨a, b|θ⟩

As a shorthand, denote the posterior when design (a, b) is presented and a is chosen
over b as f (θ|⟨a, b⟩)



BACE formula—binary choice

We want to choose a design d = (a, b) to maximize a utility function u(a, b) defined
by the mutual information. The formula is elegant but does not reveal much

u(a, b) =
∫
Θ

(
ℓ(⟨a, b⟩|θ) log

(
f (θ|⟨a, b⟩)

f (θ)

)
+ ℓ(⟨b, a⟩|θ) log

(
f (θ|⟨b, a⟩)

f (θ)

))
dΠ

Our first result opens the black box:

Theorem
Suppose there exists (a, b) such that ℓ(⟨a, b⟩|θ) = 1 if and only if x ≻θ y and
Π(θ|x ≻θ y) = Π(θ|y ≻θ x) = 1

2 . Then, (a, b) maximizes u



Non-Continuous Errors

Without any assumptions on ℓ, such menu may not exist... Moreover, ℓ may be such
that the optimization problem is not well defined:

1. ℓ(⟨a, b⟩|θ) = 1 whenever x ≻θ y

2. ℓ(⟨a, b⟩|θ) = q > 1
2 whenever x ≻θ y ,

Problem is well defined if the experimenter only considers finitely many alternatives:

Proposition

Let X̂ ⊂ X be a finite set of alternatives. Assume ℓ(θ, x , y) = q whenever x ≻θ y for
some q ∈ ( 12 , 1]. Then (x , y) maximizes u if and only if

(x , y) ∈ argmin
(x ′,y ′)∈X̂×X̂

∣∣∣∣Π(θ|x ′ ≻θ y ′)− 1

2

∣∣∣∣+ ∣∣∣∣Π(θ|y ′ ≻θ x ′)− 1

2

∣∣∣∣



Non-Continuous Errors

Result implies that if there exists (a, b) such that Π(θ|a ≻θ b) = 1
2 , then the menu

{a, b} is consistent with BACE. When does such pair always exist?

Condition is technical but intuitive

Amounts to stating that there exists a menu {x , y} from which no matter what
the subject chooses, it would only be consistent with “50%” of the preferences

Testing Assumption: let λ be the Lebesgue measure and assume that

1. For any α ∈ (0,λ(Θ)), there exists a menu {x , y} such that λ({θ|x ≻θ y}) = α

2. αn → α implies xαn → xα and yαn → yα



Consistency

We are interested in answering the question: If an experimenter uses BACE, will she
learn the true preference? If so, how fast?

Assume the subject does not make mistakes: ℓ(θ, x , y) = 1 whenever x ≻θ y

Testing condition

θ∗ ∈ Θ is the true preference

Characterization and consistency results for the case in which the subject is allowed to
make mistakes will come later



Intuition

Our results imply that if an experimenter uses BACE, she will only observe sequences
(xt , yt)∞

t=1 of revealed preferences such that

1. xT ⪰θ∗ yT for all T

2. ΠT (θ|x ≻θ y) = 1
2 for all T

where ΠT = Π(·|(xt , yt)Tt=1)

Define a sequence (xt , yt)∞
t=1 as BACE-compatible if it satisfies (1) and (2)

Notice that at each T , observing (xT , yT ) rules out half of the mass of ΠT

Formally ΠT−1(supp(ΠT )) =
1
2

Implies ΠT degenerates as fast as 1
2T
→ 0



Characterization

Proposition

If (xt , yt)∞
t=1 is BACE-compatible, then

1. ΠT → δθ∗ weakly

2. for any T ,

Π(supp(Π(·|(xt , yt)Tt=1))) =
1

2T
.



Continuous Errors
What if the problem is well defined (ℓ is continuous) but the perfect menu does not
exist?

Turns out that even when it does not exist, the optimal menu is characterized by
similar properties

Theorem
Assume ℓ is continuous. Then d = (a, b) maximizes u if and only if

(a, b) ∈ argmax
(a′,b′)∈H

∫
Θ

[
ℓ(⟨a′, b′⟩|θ) log(ℓ(⟨a′, b′⟩|θ))+

ℓ(⟨b′, a′⟩|θ) log(ℓ(⟨b′, a′⟩|θ))
]
dΠ,

where H represents the set of all pairs (a, b) satisfying∫
Θ
ℓ(⟨a, b⟩|θ)dΠ =

1

2
.
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.



BACE formula remarks: Half-space partitioning designs

H = {(a, b)|
∫

Θ
ℓ(⟨a, b⟩|θ)dΠ =

1

2
}

H are the designs that partition the space of preference in 1
2 according to the current

prior

Intuitively,
∫

Θ ℓ(⟨a, b⟩|θ)dΠ is the ex-ante probability of observing the respondent
choose a over b

If
∫

Θ ℓ(⟨a, b⟩|θ)dΠ > 1
2 , then it is more likely to observe a being chosen

which means you will not learn much if you indeed observe a being chosen.



BACE formula remarks: Entropy

Objective function has a nice interpretation:∫
Θ

[
ℓ(⟨a′, b′⟩|θ) log(ℓ(⟨a′, b′⟩|θ)) + ℓ(⟨b′, a′⟩|θ) log(ℓ(⟨b′, a′⟩|θ))

]
dΠ

Recall that for a Bernoulli random variable with probability p, its entropy is given by

−p log(p)− (1− p) log(1− p)

Corollary

BACE generates the design that minimizes entropy over the half-space-partitioning
designs. Thus:

1. Designs that are dominated in terms of error probabilities are never chosen.

2. If mistakes are not preference dependent, then BACE generates the design from
H that minimizes the error probability.



Consistency

Assume a continuous ℓ. Does the procedure work?

Same questions as before

A more involved approach is needed to define convergence of beliefs

1. Need to show that if the experimenter uses BACE, each θ induces a well defined
probability measure Pθ over (X × X )∞

2. θ ∼ Π and (X1,Y1), (X2,Y2), . . . |θ ∼ Pθ jointly define non-i.i.d. Bayesian inference
problem

3. The experimenter is consistent at θ ∈ Θ if for every neighborhood U of θ, we have

Π(U |(Xt ,Yt)
T
t=1)→ 1 almost surely under Pθ,

Goal: Show that an experimenter who uses BACE is consistent



BACE Consistency

Theorem
There exists a set ΘΠ with Π(ΘΠ) = 1 such that the experimenter is consistent at all
θ ∈ ΘΠ.

Intuition:

By Martingale Convergence Theorem, beliefs will converge

Since BACE only generates half-space-partitioning menus, in the limit, the
posterior distribution cannot assign positive weight to more than one parameter

Finally, each θ is more likely to generate a sequence that is more consistent with
⪰θ than with another ⪰θ′ so beliefs cannot be mistaken in the limit



Remarks

In the proof we only use the Half-Space-Partitioning property of BACE

Thus result holds for any procedure that also generates Half-Space-Partitioning
menus

Unfortunately, no rate of convergence (in general)

If people make mistakes at a fixed probability (1− q), then the rate is

2t [(q, (1− q))]
t
2 → 0



Concluding remarks

In the paper we also prove

Achieves the highest rate of convergence when subjects do not make mistakes

Works for uncertain parametric error

There exists an incentive compatible payment procedure

Works for probabilistic Data



Thank You!



Implementation details: Priors ↫



Implementation details: Question space ↫



Implementation details: Utility function ↫



Implementation details: Qualtrics 1 ↫



Implementation details: Qualtrics 2 ↫



Implementation
Main challenges

Computational burden of the optimal next-based scenario

How to implement outside of the lab

Implementation

1. Pre-calculate the “optimal tree”

Tree size grows exponentially and include many unlikely paths

Fixed tree by setting and prior

2. Calculate in real time and adapt to any setting and prior ✓

Design and answer spaces can be discretized =⇒ calculation of I (d) boils down to
having a reliable estimate for the posterior

Use Population Mote Carlo for “posterior” calculation

Employ Bayesian optimization to find the best next-scenario



Implementation

Population Mote Carlo (PMC)

1. Given (d t , x t), sample θ’s according to the current prior

2. Estimate posterior distribution for each θi to get P(θi |(d t , x t))

3. Select a proposal distribution q and sample θ′i ∼ q(θi )

4. Calculate weights wi =
ℓ(x |d t ,θ′i )
qi (θ′i |θi )

and normalize them to sum to 1

5. Resample θ′i with replacement using the weights

6. Build a discrete measure ∑N
i=1 wiδθ′i

Discrete measure can be used to approximate I (dt+1)



Implementation

Bayesian Optimization: max
dt+1

I (dt+1)

1. Evaluate I at N random points to get d1, ..., dN

2. Fit the observed data with a Gaussian Process

3. For each d we can calculate the expected improvement with respect to the best di
in the sample

Has a closed-form solution

4. Choose the d with the highest expected improvement



Implementation

Backend Framework

Create a profile in PostgreSQL database that will store relevant information for
that user, such as the current estimate of the posterior distribution

REST API using the FastAPI framework calculates the optimal next scenario and
transmits it to Qualitrics (or Survey Monkey)

User observes question and answers accordingly

Question and answer are transmitted to the Server which updates the posterior
using PMC

Posterior, answer, and question are stored in PostgreSQL

Takes 1-2 seconds



Implementation

https://github.com/tt-econ/bace

https://github.com/tt-econ/bace

