DYNAMIC PRICING IN BILATERAL RELATIONSHIPS: EXPERIMENTAL EVIDENCE

Stefan Buehler, University of St. Gallen Thomas Epper, CNRS/IESEG, Univ. Lille Nicolas Eschenbaum, Swiss Economics Roberta Koch, University of St. Gallen

EEA-ESEM 2024, Rotterdam August 26, 2024

MOTIVATION

Point of departure

- The prices of many goods and services vary over time.
- · Sellers are increasingly tracking individual consumers.
- · Scant empirical evidence due to a lack of clean field data.

Why do prices vary over time?

- 1. The economic environment changes (e.g., demand, cost).
- 2. Agents **update their beliefs** about a fixed economic environment.

What we do

Study a fixed environment in the lab where the seller updates her belief about the buyer's willingness to pay.

1

OUR APPROACH

Received wisdom: The Coase (1972) conjecture and its failures

- Without commitment, a durable good monopolist is **gradually lowering prices** (Stokey 1981; Bulow 1982; Fudenberg et al. 1985, Gul et al. 1986).
- But: "Coasian dynamics" do not always emerge (Hart & Tirole 1988; Board & Pycia 2014; Tirole 2016, Nava & Schiraldi 2019).

"Simplest" setting: Finite bilateral relationship (Hart & Tirole 1988)

- Finite: $T < \infty$ periods.
- · Bilateral: 1 seller/1 buyer
- · Asymmetric information: buyer has private valuation.
- Mode of trade: sale/rental and non-/commitment

Research question

How well does dynamic monopoly pricing theory work in the lab?

LITERATURE

Coasian dynamics (selection)

Coase (1972), Stokey (1981), Gul et al. (1986), Hart & Tirole (1988), Board & Pycia (2014), Tirole (2016), Nava & Schiraldi (2019).

Experimental evidence on the Coase conjecture

Reynolds (2000), Cason & Sharma (2001), Fanning (2022), Fanning & Kloostermann (2022).

Ultimatum games

Camerer & Thaler (1995), Fehr & Schmidt (1999), Camerer (2003), Oosterbeek et al. (2004)

Our contribution

Go beyond the Coase conjecture and study **Sale vs. Rent** and **Non-Commitment vs. Commitment** (2x2 treatments).

PREVIEW OF RESULTS

Main takeaway

Theory does a good job at predicting **mean prices** but cannot capture the **widely different individual price paths**.

Three new insights

- Role of commitment
 Commitment has less bite than theory predicts.
- Selling vs. renting Theory works better for renting than for selling.
- Strategic behavior
 Under selling, the majority of sellers and high-value buyers is strategic. Under renting, ratcheting is key, whereas strategic delay is less important.

THEORY

SETUP

Assumptions (Hart & Tirole 1988)

- Finite-horizon durable-good setting, with zero production cost and unit demand in every period $t = 1, ..., T < \infty$.
- The buyer and seller are risk-neutral and have the same discount factor $\delta \in (0,1)$.
- The **buyer** has private per-period valuation $b \in \{\underline{b}, \overline{b}\}$, with $\overline{b} > \underline{b} > 0$.
- The **seller**'s prior belief that the valuation is high is μ_1 , with $\mu_1 > \underline{b}/\bar{b} \equiv \bar{\mu}$.

Mode of trade: sale vs. rental

- Let $x_t(b) \in \{0,1\}$ denote the consumption choice of a type-b buyer in period t.
- Sale: The good is sold once and for all future periods (i.e., if $x_t = 1$, then $x_{t+1} = 1, ..., x_T = 1$).
- Rental: The good can be rented in every period separately.

5

Buyer

$$U(b) = \mathbb{E}\left[\sum_{t=1}^{T} \delta^{t-1} x_t(b) (b - p_t)\right], \quad b \in \{\underline{b}, \overline{b}\}, \tag{1}$$

Seller

$$\pi = \mathbb{E}\left[\sum_{t=1}^{T} \delta^{t-1} x_t(b) p_t\right]. \tag{2}$$

Notation

Let $\Delta_t \equiv \sum_{\tau=t}^{\tau} \delta^{\tau-t}$ denote the (present discounted) number of periods from t onward.

EXPERIMENT

BASICS

- Programmed in oTree, conducted in the Behavioral Lab at University of St. Gallen, Switzerland.
- 1,410 bilateral relationships in 18 sessions (< 2h per session).
- Show-up fee of CHF 20; assigned as anonymous buyers or sellers to a single session that implemented the sale or rental model.
- Random matching for relationships of ten periods (T = 10).

Treatments

- 1. Sale with commitment [SC].
- 2. Sale without commitment [SNC].
- 3. Rental with commitment [RC].
- 4. Rental with commitment [RNC].
- Average earnings in the sale and rental model were CHF 24 and CHF 32, respectively.

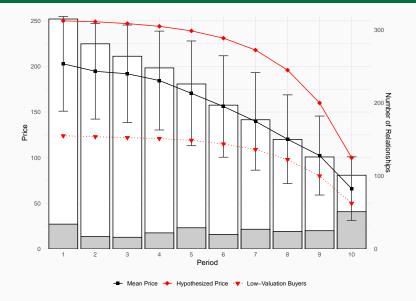
7

PARAMETER VALUES

Table 1: Parameter Values

Parameter	Label	Value
Horizon	T	10
Low valuation	<u>b</u>	50
High valuation	\overline{b}	100
Relative valuation	$\underline{b}/\bar{b} \equiv \overline{\mu}$	0.5
Prior belief (high valuation)	μ_1	0.6
Discount factor	δ	0.6

SCREENSHOT: PRICING WITH COMMITMENT (t=1)



Screenshot: Pricing without commitment (t=1)

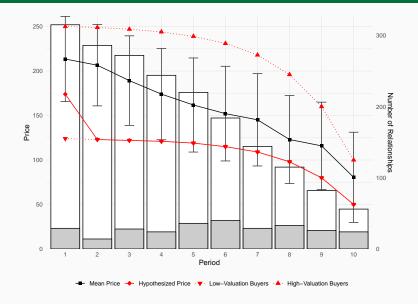
RESULTS 1: SALE

SALE WITH COMMITMENT [SC]

SALE WITH COMMITMENT [SC]: ANALYSIS

Hypothesis 1 (Sale with Commitment)

Sellers commit to a declining path of prices $p_1, p_2, ..., p_{10}$ that fully extract the surplus of high-value buyers, and only high-value buyers purchase.


Obervations

- 1. Declining mean prices: sellers understand that the value diminishes.
- 2. Sellers leave substantial rent to buyers: \sim 30% of the surplus.
- 3. "Too much trade (too late)": trade happens in all 10 periods (not just the first), and the good is sold in 265 of 315 relationships (> 60%).
- 4. "Average Efficiency": 30% of the expected surplus is realized.

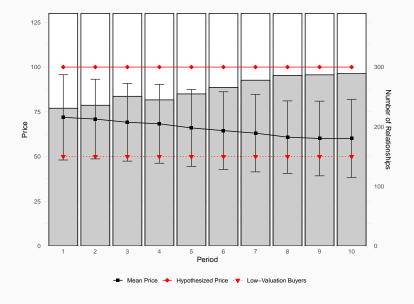
Comparison to Ultimatum game

- Rent distribution is similar (Osterbeek et al. 2004), but two key differences: surplus is (i) uncertain and (ii) changes over time.
- Explanations: social preferences, risk aversion, non-exp. discounting.

SALE WITHOUT COMMITMENT [SNC]

SALE WITHOUT COMMITMENT [SNC]: ANALYSIS

Hypothesis 2 (Sale without Commitment)


The seller sets the price $p_1 = 174$ in the first period, and, if rejected, lowers the price to $p_2 = 123$ in the second period. Given this pricing strategy, a high-valuation buyer is indifferent between purchasing in the first or second period, while a low-valuation buyer purchases in the second period.

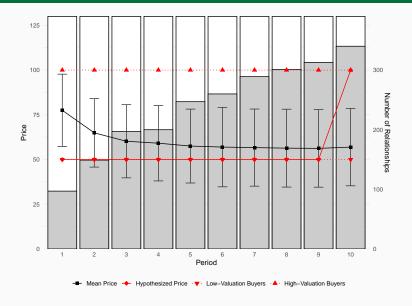
Obervations

- 1. **Declining mean prices**, which is consistent with Coasian dynamics.
- 2. **Higher-than-predicted mean prices**, first price even higher than in the SC treatment (213.51 vs. 202.89, p < 0.01 Wilcox).
- 3. "Too little trade (too late)": trade happens in all 10 periods (not just the first two), but only in 283 of 315 relations (< 100%).
- 4. "Average Efficiency": 25% of the expected surplus is realized.

RESULTS 2: RENTAL

RENTAL WITH COMMITMENT [RC]

RENTAL WITH COMMITMENT [RC]: ANALYSIS


Hypothesis 3 (Rental with commitment)

Sellers commit to constant prices $p_t = 100$, t = 1, ..., 10, that fully extract the surplus of high-valuation buyers, and only high-valuation buyers rent the good in each period.

Obervations

- 1. Mean prices are almost constant, if anything slightly declining.
- 2. **Mean prices are lower than predicted**, sellers leave ca. 35% of the surplus.
- 3. "Too much trade": trade happens in all 10 periods, and the good is rented in 290 of 390 relations (> 60%).
- 4. "Average Efficiency": 99% of the expected surplus is realized, but consumers earn higher-than-predicted share.

RENTAL WITHOUT COMMITMENT [RNC]

RENTAL WITHOUT COMMITMENT [RNC]: ANALYSIS

Hypothesis 4 (Rental without commitment)

Sellers set constant rental prices $p_t^{RNC} = 50$ for t = 1, ..., 9, so that high- and low-valuation buyers rent the good each period. In period 10, the price is $p_{10}^{RNC} = 100$ and fully extracts the surplus of high-valuation buyers.

Obervations

- 1. Mean prices are gradually declining at the beginning, then roughly constant ("hockey stick").
- 2. Mean prices are higher than predicted, but significantly lower than with commitment (60.25 vs. 65.49, p < 0.01, Wilcox).
- 3. "Too much trade": trade happens in all 10 periods, and the good is rented most often in the last period (in 340 of 390 relationships).
- 4. "Average Efficiency": 66% of the expected surplus is realized, which is less than with commitment.

DISCUSSION

DISCUSSION

Role of commitment

Why do sellers commit to prices that leave rents to buyers?

- · Commitment is **not salient** in the experiment.
- Inverse endowment effect (Kahnemann et al. 1990) because the good becomes obsolete when the relationship ends.

Selling vs. renting

Why does theory work better for renting?

- The dynamics of renting are easier to understand.
- · Yet, even under renting, we observe **complex** price paths.

Strategic behavior

Who behaves strategically?

- Under selling, the majority of sellers and buyers behaves strategically.
- Under renting, ratcheting is predominant.

CONCLUSION

CONCLUSION

Main takeaway

Theory does a good job at predicting **mean prices** but cannot capture the **widely different individual price paths**.

Three new insights

- Role of commitment
 Commitment has less bite than theory predicts.
- Selling vs. renting Theory works better for renting than for selling.
- Strategic behavior
 Under selling, the majority of sellers and high-value buyers is strategic. Under renting, ratcheting is key, whereas strategic delay is less important.