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Abstract

We study the Structural Vector Autoregressions (SVARs) that impose internal and ex-

ternal restrictions to set-identify the Forecast Error Variance Decomposition (FEVD). This

object measures the importance of shocks for macroeconomic fluctuations and is there-

fore of first-order interest in business cycle analysis. We make the following contributions.

First, we characterize the endpoints of the FEVD as the extreme eigenvalues of a symmetric

reduced-form matrix. A consistent plug-in estimator naturally follows. Second, we use the

perturbation theory to prove that the endpoints of the FEVD are differentiable with respect

to the reduced-form parameters. Third, we rely on inference for eigenvalues to construct

confidence intervals that are uniformly consistent in level and have asymptotic Bayesian

interpretation. We also describe the conditions to derive uniformly consistent confidence

intervals for impulse responses. A Monte-Carlo exercise demonstrates the approach prop-

erties in finite samples. A credit supply application illustrates our toolkit. Finally, our

machinery can be also used to quantify the sensitivity of the standard Bayesian inference

to the choice of an unrevisable prior.
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1 Introduction and Related Literature

A common practice in empirical macroeconomics is to set-identify the parameters of a Struc-

tural Vector Autoregression (SVAR). This relies on sign restrictions (Uhlig (2005) and sub-

sequent literature) and Proxy SVARs, where set-identification naturally arises when the in-

strument is not fully exogenous (correlated with shocks other than that of interest -plausible

proxy-), e.g. Piffer and Podstawski (2018), Braun and Brüggemann (2022), Ludvigson et al.

(2021), Fusari (2023), Caggiano et al. (2021) and Caggiano and Castelnuovo (2023). In this

setting, the Forecast Error Variance Decomposition (FEVD) is a pivotal object. It describes

the contribution or importance of the identified shock to explain the fluctuations (volatility)

of the variables of interest over time. It is reported in any empirical application along with

the Impulse Response Functions (IRFs) and yields pivotal economic information, especially for

business cycle analysis (Christiano et al., 1999; Smets and Wouters, 2007; Beaudry and Portier,

2006). Furthermore, it is also a crucial object of interest in the recent empirical research on

the long-term (“hysteresis”) effects of demand shocks (Benati and Lubik, 2022; Furlanetto

et al., forthcoming). FEVD is also commonly used as a source of identifying information, the

so-called Max Share Identification, popularized by Uhlig (2004). For example, this approach

identifies technology shocks as those which explain the most of the FEV decomposition of labor

productivity at 10-year period (Francis et al., 2014).1

Empirical practice for the estimation and inference of set-identified FEVD mostly employs

Bayesian methods (Arias et al., 2018). The main concern about standard Bayesian analysis in

set-identified frameworks is that the posterior distributions are influenced by the prior spec-

ification, even asymptotically (Poirier, 1998; Baumeister and Hamilton, 2015). Second, any

selection of prior breaks down the asymptotic equivalence between Bayesian and frequentist

inference, in the sense that the former asymptotically lies inside the true identified set (Moon

and Schorfheide, 2012). This led to alternative methodologies that do not require the char-

acterization of a prior specification over the set-identified structural parameters. Granziera

et al. (2018) proposed a frequentist approach, where a moment-inequality-minimum-distance

toolkit delivers estimation and inference for the IRFs. Gafarov et al. (2018) presented a delta-

method interval for the IRFs. Giacomini and Kitagawa (2021) [GK21] delivered robust Bayes

credible interval that achieves a given credibility level regardless of the prior specified over the

set-identified structural parameters.2 The common feature of those prior-robust contributions

1Other applications include DiCecio and Owyang (2010) (technology shocks), Barsky and Sims (2011) and

Kurmann and Sims (2021) (news shocks), Mumtaz et al. (2018) (credit shocks), Mumtaz and Theodoridis (2023)

(inflation target shocks), Caldara et al. (2016) (uncertainty and credit shocks), Levchenko and Pandalai-Nayar

(2020) (sentiment shocks) and Angeletos et al. (2020) (a variety of supply and demand shocks). Volpicella

(2022) and Carriero and Volpicella (2024) extended the setting allowing set-identification and multiple-shock

identification, respectively.
2See Giacomini et al. (2022a) for the extension to plausible proxy SVARs.
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is that they are specifically constructed for estimation and inference of IRFs. In principle,

an exception allowing robust inference for the set-identified FEVD is GK21. However, i) the

computational challenges of the toolkit prevent its wide use in the empirical practice and ii) it

does not have frequentist validity when used for the FEVD (in order for that to be the case,

differentiability of the FEVD, which is a novel contribution of this paper, is required).

We provide a computationally viable estimation and inference toolkit for the FEVD in

set-identified SVARs without relying on any prior specification. The toolkit can be also used

to quantify the sensitivity of the standard Bayesian inference to the choice of an unrevisable

prior. First, we characterize the lower and upper bounds of the set of the FEVD as the extreme

eigenvalues of a symmetric reduced-form matrix. We show that those endpoints correspond

to the solutions of a quadratic constrained optimization problem involving the orthonormal

matrix transforming reduced-form shocks into structural shocks. In particular, the problem

can be solved iteratively by active (binding) set strategies or interior point methods where each

iteration requires the solution of an equality constrained problem. Consistency of a plug-in

estimator follows. A user-friendly algorithm is provided. Second, we prove the differentiability

of the endpoints with respect to the reduced-form parameters. A by-product of the FEVD

differentiability is that we can guarantee frequentist validity of the robust Bayesian inference

in GK21 when applied to the FEVD. Third, we propose a delta-method interval adjusted by the

length of the identified set that is both uniformly consistent in level and has asymptotic Bayesian

interpretation (in the sense that restores the Bayesian-frequentist asymptotic equivalence for

the FEVD). Furthermore, we illustrate that our machinery has computational advantages with

respect to GK21 and is extremely user-friendly. We also show the adjustment under which a

delta-method confidence interval for set-identified IRFs, i.e. Gafarov et al. (2018), is uniformly

consistent. A simple Monte Carlo simulation displays the properties of the approach in finite

samples and draws the attention to the improvements in coverage by using a set-length adjusted

delta-method confidence interval. In particular, our approach delivers better coverage than

confidence intervals for the FEVD based on plugging-in the estimated IRFs from GK21 and

Gafarov et al. (2018). The empirical application, which relies on the set-identification strategy

of credit supply shocks in Mumtaz et al. (2018), illustrates the toolkit. It puts some evidence

that, i) under a standard Bayesian approach, the findings about the FEVD are mostly driven by

an unrevisable prior rather than identification itself and ii) its computational efficiency makes it

viable for SVARs with several variables and restrictions, unlike alternative robust frameworks,

e.g. GK21.

While our coverage statements hold for the true value of the object of interest, i.e. FEVD,

rather than for its true identified set, literature for the inference over interval-defined parameters

typically faces a well-known trade-off. On the one hand, valid confidence intervals - in the sense

that the coverage is at least equal to the nominal confidence level- for the parameter of interest
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are not necessarily valid for the set. On the other hand, valid confidence intervals for the set

are unnecessarily conservative for the targeted parameter (Imbens and Manski, 2004; Stoye,

2009).3 Thus, we also provide users with a further confidence interval for the identified set.

Our proposal has two main limitations. First, while it can accommodate zero restrictions

on more shocks under some conditions, sign constraints can restrict a single shock only. It is

true that some applications sign-restrict more shocks. However, the empirical practice often

sign-constrains a single shock: among many others, see Uhlig (2005), Scholl and Uhlig (2008),

Baumeister and Hamilton (2018), Dedola et al. (2017) and Arias et al. (2019) for identifica-

tion of monetary policy shocks; Fujita (2011) identifies the effects of labour market shocks;

Beaudry et al. (2011) study the effects of sentiment shocks; the application of Amir-Ahmadi

and Drautzburg (2021) identifies news shocks; Dedola and Neri (2007), Peersman and Straub

(2009) and Mumtaz and Zanetti (2012) sign-restrict technology shocks; Mumtaz et al. (2018)

analyse the effects of credit supply shocks. Furthermore, estimation and inference frameworks

for sign-restricted impulse responses typically allow constraints on a single shock only; this

applies to the frequentist machinery in Granziera et al. (2018) and the delta-method of Ga-

farov et al. (2018). In principle, robust Bayesian approach of GK21 allow both zero and sign

restrictions on more shocks; in practice, the non-linear nature of the algorithm for inference

makes the methodology cumbersome as the number of constraints increases. Classical Bayesian

approach in Arias et al. (2018) accommodates restrictions on a multiplicity of shocks, but it is

sensitive to the prior specification, even asymptotically.

Second, when our framework is applied to Proxy SVARs, the instrument cannot be weak.

The intuition being that the latter would make the reduced-form gradient matrix of the con-

straints rank deficient, so that the Karush-Kuhn-Tucher conditions cannot be derived.

This article is related to the literature providing estimation and inference for the shocks

contribution to volatility in dynamic models. Early literature includes Lütkepohl (1990), who

presented delta-method intervals for the FEVD in point-identified SVARs. Our paper extends

their setting to set-identified SVARs. Phillips (1998) illustrated the FEVD asymptotics for

nonstationary VAR. Amisano and Giannini (1997) delivered the asymptotics for the FEVD in

SVARs. Braun and Mittnik (1993) analysed the effect of some VAR misspecifications on the

FEVD estimation, e.g. omitted variables, ignored moving average terms, incorrectly specified

lag lengths, or incorrect orthogonalization of innovations. Lanne and Nyberg (2016) relied

on the well-known generalized IRFs to propose generalized FEVD. Gorodnichenko and Lee

(2020) presented an estimator in local projections. Plagborg-Møller and Wolf (2022) proposed a

frequentist procedures for conducting inference in a general moving-average model with external

3Imbens and Manski (2004), Stoye (2009), Gafarov et al. (2018) and Granziera et al. (2018) focused on

inference over parameter; Giacomini and Kitagawa (2021) provided a valid confidence interval for the set;

Plagborg-Møller andWolf (2022) proposed inference over the set, but suggested - in the practical implementation-

to adjust it for the parameter.
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instruments. The framework they consider also includes set-identification.

This paper also shares the spirit of the delta-method in Gafarov et al. (2018). They provide

inference for the set-identified IRFs, and the extension to the FEVD is practically feasible,

but not recommended. The reason being that the FEVD at a given horizon is a non-linear

function of IRFs in previous periods. For each horizon, Gafarov et al. (2018) characterize the

upper and lower bounds of the IRFs by finding the optimal rotation matrix, i.e. structural

model. However, using their estimated IRFs as plug-in estimator for the FEVD implies that

the latter comes from a multiplicity of structural models (rotation matrices), resulting in a loss

of interpretability.4 Furthermore, some by-products of our paper include i) conditions under

which the toolkit in Gafarov et al. (2018) can accommodate zero restrictions on more shocks,

ii) showing that adjusting the IRFs confidence interval in Gafarov et al. (2018) by the set-

length makes it uniformly, rather than point-wise, consistent, and iii) estimating the FEVD by

plugging-in the estimated IRFs from Gafarov et al. (2018) delivers poor coverage.

The paper is organized as follows. Section 2 introduces the SVAR and econometric frame-

work. Section 3 delivers estimation, differentiability and inference for the FEVD in set-identified

SVARs. Section 4 illustrates the Monte-Carlo simulations. Section 5 presents the empirical

application. Section 6 concludes. Appendix provides omitted proofs (Appendix A), data de-

scription of the empirical application (Appendix B), additional simulation results (Appendix

C) and further findings from the empirical application (Appendix D).

2 Econometric Framework

2.1 SVAR

Consider a SVAR(p) model

A0yt = a+

p∑
j=1

Ajyt−j + ϵt (2.1)

for t = 1, . . . , T, where yt is an n× 1 vector of endogenous variables, ϵt an n× 1 vector white

noise process, normally distributed with mean zero and variance-covariance matrix In, Aj is

an n × n matrix of structural coefficient for j = 0, . . . , p. A0 has positive diagonal elements

(with sign normalisations), and is invertible. The initial conditions y1, . . . ,yp are given. Let

xt =
(
y′
t−1, . . . ,y

′
t−p

)′
and A+ = (A1, . . . ,Ap); we can write the SVAR(p) as

A0yt = a+A+xt + ϵt, (2.2)

with θ = (A0,A+) structural parameters. The reduced-form VAR is as follows:

yt = b+Bxt + ut, (2.3)

4The same critique applies to usage of the toolkit in Granziera et al. (2018) for computation of the FEVD.
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where b = A−1
0 a is an n× 1 vector of constants, Bj = A−1

0 Aj , ut = A−1
0 ϵt denotes the n× 1

vector of reduced-form errors. var(ut) = E(utu
′
t) = Σ = A−1

0 (A−1
0 )′ is the n × n variance-

covariance matrix of reduced-form errors. Assume that the reduced-form VAR is invertible into

an infinite-order moving average (VMA(∞)) process.

We can reparameterize the VAR and write

yt = b+Bxt +ΣtrQεt, (2.4)

where Σtr denotes the lower triangular Cholesky matrix with non-negative diagonal coefficients

of Σ, Q ∈ Θ(n) is an n × n matrix and Θ(n) characterises the set of all orthonormal such

matrices. The mapping is the following: B = A−1
0 A+, Σ = A−1

0 (A−1
0 )′, and Q = Σ−1

tr A−1
0 ;

alternatively, A0 = Q′Σ−1
tr and A+ = Q′Σ−1

tr B. Sign normalisations on A0 correspond to

diag(Q′Σ−1
tr ) ≥ 0n×1. Thus, the VMA(∞) is

yt = b+
∞∑
h=0

Ch(B)ut−h = b+
∞∑
h=0

Ch(B)ΣtrQεt, (2.5)

with Ch(B) being the h-th term of (In −
∑p

h=1BhL
h)−1. The impulse response function of

variable i to the j-th shock at horizon h is

rijh = e′iCh(B)ΣtrQej = c′ih(ϕ)qj , (2.6)

where ei is the i-th column vector of In, qj is the j-th column of Q, c′ih(ϕ) represents the i-th

row vector ofCh(B)Σtr and ϕ collects the reduced-form parameters: ϕ ≡ (b′, vec(B)′, vech(Σ)′) ∈
Ξ ⊂ Rd. Note that vec(•) stacks the columns of any n × z matrix • to form a nz × 1 vector,

vech(•) vectorizes any n×n symmetric matrix • into a n(n+1)
2 ×1 vector, and ⊗ is the Kronecker

product. Finally, in this paper the notation “−1” refers to the inverse for square matrices and

the pseudo-inverse for non-square and/or reduced-rank matrices.

2.2 Forecast Error Variance Decomposition

The h-step ahead Forecast Error (FE) for a SVAR, as in equation (2.1), given all the data up

to t− 1, is FE(h) ≡ yt+h − yt+h|t−1. Thus, the FEV at horizon h is

FEV (h) ≡ E
[
(yt+h − yt+h|t−1)(yt+h − yt+h|t−1)

′] . (2.7)

As a result, the contribution of shock j to the FEV of variable i at horizon h is

FEV Dijh ≡
FEV i

j (h)

FEV i(h)
=

∑h
h̃=0

r2
ijh̃∑n

j=1

∑h
h̃=0

r2
ijh̃

, (2.8)
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where FEV i
j (h) is the FEV of variable i due to shock j at horizon h, FEV i(h) denotes the

total FEV of variable i at horizon h, and 0 ≤ FEV Di
j(h) ≤ 1 by definition. Faust (1998) and

Uhlig (2004) showed that equation (2.8) can be written as

FEV Dijh = (Qej)
′Υi

h(ϕ)(Qej) = q′jΥ
i
h(ϕ)qj , (2.9)

where Υi
h(ϕ) =

∑h
h̃=0

cih̃(ϕ)c′
ih̃
(ϕ)∑h

h̃=0
c′
ih̃
(ϕ)cih̃(ϕ)

is a symmetric positive semidefinite n× n real matrix.

The FEVD represents the contribution of the identified shock to explain the fluctuations

of the variables of interest over time. It is reported in any empirical application along with

IRFs and provides important economic information and can be also employed for identification

(Max Share approach). For local projections, the measure of shock importance is typically

the Forecast Variance Ratio (FVR) (Gorodnichenko and Lee, 2020; Plagborg-Møller and Wolf,

2022). While the two measures usually diverge (the FVR is based on the observables, the

FEVD relies on all structural shocks), they are equivalent if all SVAR shocks are invertible,

e.g. there is no information asymmetry between agent and econometrician.5 This is why the

SVAR literature has ignored the discrepancy between the two concepts. Furthermore, while

we impose stationarity, if the deviations from some equilibrium relationship are stationary, e.g.

Engle and Granger (1987), results of this paper apply to the FEVD of target variables to the

disturbances of the equilibrium.

Standard econometric literature mostly focuses on estimation and inference for IRFs; on

the other hand, this paper provides a toolkit targeting set-identified FEVD.

2.3 Set-Identification

Set-identification for structural parameters and their functions, such as FEV Dijh, arises when

reduced-form parameters ϕ cannot pin down a unique A0. Any A0 = Q′Σ−1
tr satisfies Σ =

A−1
0 (A−1

0 )′, so the identified set for A0 is {A0 = Q′Σ−1
tr : Q ∈ Θ(n)}, where Θ(n) is the set

of n× n orthonormal matrices. Identification therefore requires to placing a set of restrictions

on Q, i.e. reducing the set of feasible Qs to a subspace Q ∈ Θ(n). The identified set for the

FEVD would be

ISFEV D(ϕ) = {FEV Dijh : Q ∈ Q}. (2.10)

The following subsections describe the common identifying restriction used for set-identification.

2.3.1 Zero Restrictions

Set-identifying zero restrictions include constraints on some off-diagonal elements of A0, on

the lagged coefficients Al for l = 1, . . . , p, on the contemporaneous responses A−1
0 , and on the

5For the formal definition of invertibility and related concepts, see Chapter 17 in Kilian and Lütkepohl (2017).
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long-run responses (LIR =
∑∞

h=0Ch(B)ΣtrQ). All these constraints are linear restrictions

on the columns of Q:

(i, j)th element of A0 = 0 ⇔ (Σ−1
tr ej)

′qi = 0 (2.11)

(i, j)th element of Al = 0 ⇔ (Σ−1
tr Blej)

′qi = 0 (2.12)

(i, j)th element of A−1
0 = 0 ⇔ (e′iΣ

−1
tr )qj = 0 (2.13)

(i, j)th element of LIR = 0 ⇔

[
e′i

∞∑
h=0

Ch(B)Σtr

]
qj = 0. (2.14)

Also, exogeneity conditions in Proxy SVARs can be characterized as exclusion restrictions on

the columns of the orthonormal matrix: E(mtε
′
t) = DΣtrQ =

[
0k×(n−k),Ψ

]
, where mt is

the k × 1 vector containing k instruments, D is a reduced-form k × n matrix coming from

the regression of mt on yt (first-stage regression) and Ψ is the k × k matrix representing the

strength of the instruments, i.e. the correlation between mt and the k instrumented shocks.67

The exogeneity restrictions between mt and a shock j can be expressed as

(1 : k, j)th elements of E(mtε
′
t) = 0 ⇔ DΣtrqj = 0. (2.15)

Thus, we can collect the zero restrictions as follows:

F (ϕ,Q) ≡


F1(ϕ)q1

...

Fn(ϕ)qn

 = 0(
∑n

i=1 fi)×1, Fi(ϕ): fi × n, (2.16)

where fi denotes the number of zero restrictions on shock i. In other words, each row of Fi(ϕ)

collects the coefficient vector of an exclusion constraints that restricts qi as in (2.11)-(2.15). If

fi = 0, there are no zero restrictions on qi and Fi(ϕ) does not exist.

2.3.2 Sign Restrictions

Sign constraints can be imposed alone or in addition to zero restrictions. Let shj denote the

number of sign restrictions on impulse responses at horizon h. The sign restrictions on shock

j are Shj(ϕ)qj ≥ 0, where Shj(ϕ) ≡ D̃hjCh(B)Σtr is a shj × n matrix and D̃hj is the

shj×n selection matrix that selects the sign-restricted responses from the n×1 response vector

Ch(B)Σtrqj . The nonzero elements of D̃hj can be equal to 1 or to -1 depending on the sign

of the restriction on the impulse response of interest. By considering multiple horizons, the

whole set of sign restrictions placed on the j−th shock is Sj(ϕ)qj ≥ 0. Specifically, Sj is a

6The instruments are relevant if and only if rank(Ψ) = k.
7With instruments, ϕ includes the reduced-form parameters from the first-stage regression. We do not

formalize this to avoid heavier notation.
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(
sj =

∑h̄j

h=0 shj

)
×n matrix defined by Sj(ϕ) =

[
S′
0j(ϕ), . . . ,S

′
h̄jj

(ϕ)
]′
. Let IS ⊂ {1, 2, . . . , n}

be the set of indices such that j ∈ IS if some of the impulse responses to the j-th structural

shock are sign-constrained. Thus, the set of sign restrictions on the shock j is

Sj(ϕ)qj ≥ 0, for j ∈ IS . (2.17)

With abuse of notation, let

S(ϕ,Q) ≥ 0 (2.18)

collect all sign restrictions Sj(ϕ)qj ≥ 0 for any j ∈ IS . Equation (2.18) also nests sign

constraints on structural objects other than impulse responses, e.g. Arias et al. (2019), ranking

restrictions in Amir-Ahmadi and Drautzburg (2021) and sign-restricted factor models (Amir-

Ahmadi and Uhlig, 2015; Korobilis, 2022; Stock and Watson, 2016).

2.3.3 The Identified Set for the FEVD

The identified set for the FEVD is

ISFEV D(ϕ) = {FEV Dijh : Q ∈ Q(ϕ|F ,S)}, (2.19)

where Q(ϕ|F ,S) is the set of Qs that satisfy the zero restrictions (2.16), sign restrictions (2.18)

and sign normalizations:

Q(ϕ|F ,S) = {Q ∈ θ(n) : S(ϕ,Q) ≥ 0,F (ϕ,Q) = 0, diag(Q′Σ−1
tr ) ≥ 0}. (2.20)

Definition of the endpoints for ISFEV D(ϕ) follows.

Definition 2.1 Given a vector of the reduced-form parameters ϕ, a shock of interest j∗,

lij∗h(ϕ) and uij∗h(ϕ) are the lower- and upper-bound of ISFEV D(ϕ), respectively:

lij∗h(ϕ) ≡ minQ(Qej)
′Υi

h(ϕ)(Qej) s.t. S(ϕ,Q) ≥ 0, F (ϕ,Q) = 0, diag(Q′Σ−1
tr ) ≥ 0

(2.21)

and

uij∗h(ϕ) ≡ maxQ(Qej)
′Υi

h(ϕ)(Qej) s.t. S(ϕ,Q) ≥ 0, F (ϕ,Q) = 0, diag(Q′Σ−1
tr ) ≥ 0.

(2.22)

q
j∗

and q̄j∗ denote the optimizers corresponding to lij∗h(ϕ) and uij∗h(ϕ), respectively.

In this article, we consider constraints that make the model set-identified:
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Assumption A1 (Set-Identification) Without loss of generality, order the variables such that

f1 ≥ . . . fn ≥ 0. In case of ties, order the shock of interest first. Condition fi ≤ n − i for all

i = 1, . . . , n with strict inequality for at least one i ∈ {1, . . . , n} must hold (Rubio-Ramirez

et al., 2010).

This assumption guarantees the set-identification of any structural object and its functions,

e.g. IRFs and FEVD. In a Proxy SVAR setting, with a single instrument (dim(mt) = 1)

for a single shock, set-identification for the whole Q arises when the instrument is free to be

correlated with two shocks at least for n ≥ 3 (plausibly exogenous instrument).8 With multiple

instruments for multiple shocks, for n ≥ 3 and 1 < k < n− 1 set-identification naturally arises

for all the columns of Q unless additional zero restrictions are imposed.9 Set-identification

through plausibly exogenous instruments, often combined with sign restrictions, is increasingly

getting common (Piffer and Podstawski, 2018; Braun and Brüggemann, 2022; Ludvigson et al.,

2021; Fusari, 2023; Caggiano et al., 2021; Caggiano and Castelnuovo, 2023).

The following assumption allows to derive the Karush-Kuhn-Tucker conditions when zero

restrictions are imposed on more shocks. If the assumption failed, the results of this paper

would still hold for settings where a single shock is zero-constrained.

Assumption A2 (Zero Restrictions) Assume the order of variable in Assumption A1 and let

j∗ denote the shock of interest. j∗ ≥ 2 and fi < n− 1 for all i = 1, . . . , j∗ − 1 must hold.

Lemma 2.1 technically proves why, under the previous assumption, we can use the Karush-

Kuhn-Tucker conditions; the intuition being that, if we are interested in shock j∗, Assumption

A2 guarantees that the set of FEV Dij∗h is affected by restrictions on qj∗ only, i.e. the Karush-

Kuhn-Tucker conditions are a function of the constraints on j∗ only.

Lemma 2.1 Suppose that Assumption A2 holds. Then zero restrictions on shocks 1, . . . , j∗ −
1, j∗ + 1, . . . , n− 1 leave the set of FEV Dij∗h unchanged for i = 1, . . . , n and h = 0, . . . .

Zero constraints on more shocks are typically imposed in Proxy SVARs. Let us focus on the

single instrument case -k = 1 for shock j∗-. Here, set-identification for the shock would imply

that the instrument is correlated with two shocks at least (including j∗): recalling restrictions

(2.15) delivers f1 = f2 = · · · = fj∗−1 = 1, fj∗ = fn = 0. Assumption A2 is satisfied for

n ≥ 3. Without instruments, it is hard to find applications with set-identification where

more shocks are zero-restricted; for example, the popular exercise in Arias et al. (2019) zero-

restricts monetary policy shock only. Thus, we believe that Assumption A2 covers most of the

8For k = 1 and exogenous instrument, fi = 1 for i = 1, . . . , n − 1 and fn = 0: columns q1, . . . , qn−1 are

set-identified, while qn is point-identified.
9For k = n− 1, f1 = n− 1 and fi = 0 for i = 2, . . . , n. As a result, q1 is point-identified; the other columns

are set-identified.
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empirically relevant cases. A by-product of Lemma 2.1 is that the toolkit in Gafarov et al.

(2018) can be employed with zero constraints on more shocks under Assumption A2.

Given a reduced-form parameters vector ϕ, we also assume that the identified set of the

FEVD is non-empty, i.e. identifying assumptions do not contradict each other and are not

rejected at ϕ.

Assumption A3 (Non-Emptiness) ISFEV D(ϕ) as defined in equation (2.19) is non-empty

at ϕ.

Of course, non-emptiness applies to the sets of any structural objects. Literature provides

several frameworks to check for non-emptiness (Giacomini and Kitagawa, 2021; Giacomini

et al., 2022b; Amir-Ahmadi and Drautzburg, 2021; Uhlig, 2005; Granziera et al., 2018; Arias

et al., 2018).

Our characterization of the endpoints relies on using the Karush-Kuhn-Tucker conditions.

The following assumption is therefore needed:

Assumption A4 (Linear Independence) Given a constrained shock j∗, Fj∗(ϕ) and Sj∗(ϕ)

are linearly independent at ϕ.

This assumption is common in the relevant literature: Gafarov et al. (2018) and Giacomini

and Kitagawa (2021) rely on that. To the best of our knowledge, Proxy SVARs with weak

instruments is the only empirically relevant setting where the assumption is not satisfied. The

following example illustrates our reasoning.

Example 2.1 (Weak Proxy) Suppose that there are no sign restrictions and the only zero

restrictions come from set-identifying exogeneity constraints. In this case, we would have

Fj∗(ϕ) = DΣtr, (2.23)

where Fj∗(ϕ) is a k × n matrix. The relevance condition rank(Ψ) = k holds if and only if

rank(D) = k. Suppose that the instrument is weak. This leads to

rank(Ψ) < k ⇒ rank(D) < k ⇒ rank(DΣtr) < k. (2.24)

because rank(DΣtr) ≤ min{rank(D), rank(Σtr)}. This implies that Fj∗(ϕ) is rank deficient

and Assumption A4 fails.

3 Estimation and Inference for Set-Identified FEVD

This section describes the main results. Section 3.1 provides the characterization of the FEVD

endpoints and proposes a consistent estimator. Section 3.2 proves the differentiability of the

11



endpoints. Section 3.3 (i) constructs a delta-method confidence interval that is both uniformly

consistent in level and has asymptotic Bayesian interpretation and (ii) proposes a further

confidence interval for users mostly interested in the inference over the set (rather than the

FEVD).

3.1 Estimation

Proposition 3.1 characterizes the set of the FEVD up to a set of active, i.e. binding, constraints.

Put it another way, should we knew the active constraints, we would be able to characterize

the set of the FEVD. As a result, evaluating the set at different active constraints and checking

the primal feasibility leads to the optimizers and endpoints of the FEVD for problems in (2.21)

and (2.22) (Theorem 3.1).

First, let us introduce some more definitions. Let r(ϕ) be the m× n matrix collecting the

gradient vectors of the m constraints that are active at an optimizer of problem (2.21)-(2.22).

The m rows of r(ϕ) consist of the fj∗ rows of the matrix Fj∗(ϕ) and srj∗ out of the sj∗ rows

from Sj∗(ϕ), i.e. m = fj∗ + srj∗ . In particular, there are
∑min(n−1−fj∗ ,sj∗ )

i=0
sj∗ !

i!(sj∗−i)! possible

combinations of active constraints, i.e. possible ways to construct r(ϕ).

Definition 3.1 Assume that a single shock j∗ is sign-constrained and r(ϕ) collects the gradient

vectors of the active constraints. lij∗h(ϕ, r) and uij∗h(ϕ, r) are defined as follows:

lij∗h(ϕ, r) ≡ minqj∗q
′
j∗Υ

i
h(ϕ)qj∗ s.t. r(ϕ)qj∗ = 0, (3.1)

and

uij∗h(ϕ, r) ≡ maxqj∗q
′
j∗Υ

i
h(ϕ)qj∗ s.t. r(ϕ)qj∗ = 0. (3.2)

Let q
j∗
(r) and q̄j∗(r) denote the optimizer of problem (3.1) and (3.2), respectively.

The next Proposition solves the quadratic programming in (3.1) and (3.2).

Proposition 3.1 Suppose that Assumptions A1-A4 hold and a single shock j∗ is sign-constrained.

Then

uij∗h(ϕ, r) = λmax(ϕ, r) = max{λ1(ϕ, r), . . . , λn(ϕ, r)}, (3.3)

with

det [Z(ϕ, r)− λτ (ϕ, r)In] = 0 for all τ = 1, . . . , n (3.4)

and

q̄j∗(r) = ±eignvct(λmax(ϕ, r),Z(ϕ, r)), (3.5)

12



where Z(ϕ, r) = [In − P (ϕ, r)]Υi
h(ϕ), P (ϕ, r) = r(ϕ)′ [r(ϕ)r(ϕ)′]−1 r(ϕ) and q̄j∗(r) is the

eigenvector associated to λmax(ϕ, r). We can obtain the minimum as follows:

lij∗h(ϕ, r) = λmin(ϕ, r) = min{λ1(ϕ, r), . . . , λn(ϕ, r)} for λmin(ϕ, r) ̸= 0.

For λmin(ϕ, r) = 0:

lij∗h(ϕ, r) =

0 if ∃q|FEV Dij∗h = 0

λ+
min(ϕ, r) otherwise,

(3.6)

where λ+
min(ϕ, r) is the smallest non-zero eigenvalue.

In other words, the bounds of the FEVD subject to active constraints are given by the maximum

and minimum eigenvalues of the n × n matrix Z(ϕ, r). Note that, in absence of constraints,

Z(ϕ, r) ≡ Υi
h(ϕ). Given the characterization of the bounds as eigenvalues, an associated

feasible eigenvector can be found, i.e. both eignvct(λmax(ϕ, r),Z(ϕ, r)) and

−eignvct(λmax(ϕ, r),Z(ϕ, r)) are associated to the same eigenvalue. For λmin(ϕ, r) = 0, the

Karush-Kuhn-Tucker conditions are not always satisfied. As a result, if a column vector q

delivering FEV Dij∗h = 0 does not exist, the lower bound is given by the smallest non-zero

eigenvalue. On the other hand, λmax(ϕ, r) ̸= 0 from Assumption A1.

In the technical proof, we rely on Rao (1964) to show that the eigenvalues of Z(ϕ, r) are

equivalent to those of the symmetric matrix

Z̃(ϕ, r) = Υi
h(ϕ)

1
2 [In − P (ϕ, r)]Υi

h(ϕ)
1
2

′
. (3.7)

In practice, we can use Z̃(ϕ, r) for the calculation of the eigenvalues of Z(ϕ, r). On top of

obvious computational gains, this will allow us to derive the differentiability of the endpoints

(Section 3.2). The relationship between the optimizer q̄j∗(r) and the eigenvector ¯̃qj∗(r) of

Z̃(ϕ) is the following:

q̄j∗(r) ={¯̃q′j∗(r)
[
Υi

h(ϕ
)
]−1¯̃qj∗(r)}

[
Υi

h(ϕ)
]− 1

2 ¯̃qj∗(r). (3.8)

For n ≤ 4, the extreme eigenvalues are analytically available by solving the characteristic

polynomial for Z̃(ϕ, r). For n > 4, generally this is not the case; we can use the hypergeometric

functions10 to get an analytical solution or, more conveniently, we can approximate it by using

well-established numerical methods for eigenvalues.

Given the Proposition 3.1, we can obtain the solution to the full problems (2.21) and (2.22)

as follows: compute the maximum and minimum eigenvalues (and the associated eigenvectors)

for all possible P (ϕ, r) matrices, i.e. for all possible combination of active constraints. The

endpoints of the FEVD are the largest and smallest eigenvalues, while the associated eigenvector

satisfying the inactive constraints is the optimizer. The next Theorem formalizes this result.

10See the survey in Erdélyi et al. (1953) and Daalhuis (2010).
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Theorem 3.1 Suppose that Assumptions A1-A4 hold and a single shock j∗ is sign-constrained.

Then

uij∗h(ϕ) = maxr(ϕ)uij∗h(ϕ, r) (3.9)

and

q̄j∗ = eignvct(uij∗h(ϕ),Z(ϕ)), (3.10)

where q̄j∗ ∈ Q(ϕ|F ,S), Z(ϕ) ≡ Z(ϕ, r∗), r∗(ϕ) = argmaxr(ϕ)uij∗h(ϕ, r). lij∗h(ϕ) and q
j∗

can be obtained analogously by minimizing lij∗h(ϕ, r).

Previous results are expressed in population values, e.g. ϕ. We now turn our attention to the

estimation. Let→p denote the standard convergence in probability; let̂represent the estimated

values; let P denote a data-generating process.

Assumption A5 (Simple eigenvalues) The algebraic multiplicity of the eigenvalues delivering

uij∗h(ϕ) and lij∗h(ϕ) is equal to 1.

The assumption above guarantees that uij∗h(ϕ) is a simple, i.e. unique, eigenvalue. The same

applies to lij∗h(ϕ). Finding non-simple eigenvalues is usually very uncommon. Let us stress

that we require the simplicity of the extreme eigenvalues only, without excluding the possibility

of multiplicities for the n−2 eigenvalues of each of all the other possible combinations of active

constraints.

Proposition 3.2 If Assumptions A1-A5 hold, a single shock j∗ is sign-constrained and ϕ̂ →p

ϕ(P ), then

uij∗h(ϕ̂) →p uij∗h(ϕ(P )). (3.11)

The same applies to lij∗h(ϕ̂).

The proof in the Appendix A relies on basic statistics as long as the reduced-form estimator is

consistent and T ≫ n. The latter is fairly uncontroversial in SVARs, so we did not explicit it as

a formal assumption. Should not this be the case, results from Principal Component Analysis

literature can be evoked to get consistency. It is also possible to show that, if Assumption A5

failed, Proposition 3.2 would still hold.11 However, that assumption simplifies the proof and is

needed for the differentiability result.

11We would like to thank Henrique Castro-Pires for pointing that out.
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3.2 Differentiability

This section presents the differentiability of the FEVD endpoints. It is a novel result in the

literature; it is interesting per se and instrumental to construct a delta-method confidence

interval. Also, a by-product of this finding is that the robust Bayesian approach in GK21 has

frequentist validity when applied to the FEVD. In order to derive the differentiability of FEVD

endpoints, we need one more condition.

Assumption A6 (Differentiability) Fj∗(ϕ) and Sj∗(ϕ) are differentiable at ϕ.

This is a very standard smoothness assumption we share with, among others, Gafarov et al.

(2018) and GK21. We are unaware of any identifying constraints that do not meet this condi-

tion.

Our differentiability result is based on the intuition of Magnus (1985): under uniqueness

of eigenvalues, the implicit function theorem states that there is a neighborhood of ϕ, where

uij∗h(ϕ) and lij∗h(ϕ) and the associated optimizers exist and are continuously differentiable.

On the other hand, in absence of simplicity, we cannot evoke the implicit function theorem.

This consideration, combined with the application of the chain rule, delivers the result in

Theorem 3.2.

Theorem 3.2 Suppose that the Assumptions A1-A6 hold and a single shock j∗ is sign-constrained.

Then uij∗h(ϕ) is differentiable, with

∂uij∗h(ϕ)

∂ϕ
= ¯̃q

′
j∗ ⊗ ¯̃q

′
j∗
∂vech(Z̃(ϕ))

∂ϕ
, (3.12)

where Z̃(ϕ) ≡ Z̃(ϕ, r∗).

Section 3.3 builds upon Theorem 3.2 to present a confidence interval for FEV Dij∗h. Also, it

leads to prove that the robust Bayesian approach in GK21 has frequentist validity when applied

to the FEVD.

Giacomini and Kitagawa (2021). Under some regularity conditions, frequentist validity of

the robust Bayesian toolkit in GK21 requires ISFEV D(ϕ) to be convex, continuous and differen-

tiable (at ϕ). Under the restrictions considered in this paper, it is well-known that ISFEV D(ϕ)

is convex as long as is non-empty (formally, see Giacomini et al. (2022a)). Continuity requires

mild and easily verifiable conditions on the reduced-form matrix of zero and sign restrictions

(Proposition B2 in the Appendix of GK21 and the consideration that, given ϕ, the set for

FEV Dij∗h is continuous whenever the set for rij∗h is continuous). We provide the missing

piece, i.e. differentiability, under which the robust credible region in GK21 is an asymptotically

valid confidence set for the true identified set. The next corollary formalizes the result. Let

→as and →d denote the almost sure convergence and convergence in distribution, respectively;

CIGK
α is the credible region with credibility α proposed in GK21.
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Corollary 3.1 Suppose that Assumptions A1-A6 hold,
∂uij∗h(ϕ)

∂ϕ and
∂lij∗h(ϕ)

∂ϕ are different

from zero, a single shock j∗ is sign-constrained, ϕ̂ →as ϕ(P ), and the posterior of ϕ and the

sampling distribution of ϕ̂ are
√
T -asymptotically normal with an identical covariance matrix

Ω:

√
T (ϕ(P )− ϕ̂)|y1, . . . ,yT →d N(0,Ω(P )) as T → ∞,

√
T (ϕ̂− ϕ(P ))|ϕ(P ) →d N(0,Ω(P )) as T → ∞.

Then CIGK
α is an asymptotically valid frequentist confidence set for ISFEV D(ϕ(P )) with exact

coverage,

limT→∞Pr(ISFEV D(ϕ(P )) ⊂ CIGK
α ) = α. (3.13)

Unlike Imbens and Manski (2004), Stoye (2009), Gafarov et al. (2018), Gafarov et al. (2016),

Granziera et al. (2018) and this paper, the frequentist coverage in the approach of GK21 is

for the true identified set rather than for the true value of the parameter, i.e. FEV Dij∗h.

This implies that CIGK
α is asymptotically wider than our proposal of confidence interval for

FEV Dij∗h. Also, Corollary 3.1 shows point-wise coverage for CIGK
α , while the next section

establishes uniform coverage for our confidence interval.

3.3 Inference

This section proposes a delta-method interval for FEV Dij∗h, showing that it has asymptotically

frequentist validity and Bayesian equivalence:

CIα ≡
[
lij∗h(ϕ̂OLS)− cασ̂lij∗h/

√
T , uij∗h(ϕ̂OLS) + cασ̂uij∗h/

√
T
]
, (3.14)

where ϕ̂OLS ≡ (b̂′OLS , vec(B̂OLS)
′, vech(Σ̂OLS)

′) is the OLS estimator of ϕ. In particular,

B̂OLS ≡
(

1
T

∑T
t=1 ytx

′
t

)(
1
T

∑T
t=1 xtx

′
t

)−1
, Σ̂OLS ≡ 1

T−np−1

∑T
t=1 ûtû

′
t, b̂OLS = ȳt − B̂OLSx̄t,

with ût ≡ yt − b̂OLS − B̂OLSxt, and ȳt and x̄t being the sample means. Our formula for the

standard errors is the following:

σ̂uij∗h =

[(
∂uij∗h(ϕ̂OLS)

∂ϕ̂OLS

)
Ω̂

(
∂uij∗h(ϕ̂OLS)

∂ϕ̂OLS

)′] 1
2

, (3.15)

16



where Ω is the variance-covariance matrix of ϕ12 and σ̂lij∗h is defined similarly. We propose

cα solving the following:

Φ

(
cα +

√
T ∆̂ij∗h

max{σ̂lij∗h, σ̂uij∗h}

)
− Φ (−cα) = 1− α, (3.17)

where Φ(•) is the standard normal cumulative distribution evaluated at • and ∆̂ij∗h = uij∗h(ϕ̂OLS)−
lij∗h(ϕ̂OLS) is the estimated length of the identified set.

In studying the asymptotic properties of the confidence interval (Section 3.3.1 and 3.3.2),

we rule out the case where the partial derivatives are zero. This corresponds to degenerate

zero-covariance Normal distribution, e.g. bounds of the set, where the coverage can be non-

optimal. This is common for any interval-based inference rather than being a specific feature

of our toolkit.

3.3.1 Frequentist Coverage

Frequentist coverage result requires the asymptotic normality of ϕ̂OLS and the consistency of

its variance-covariance matrix.

Assumption A7 (Asymptotic Normality) OLS estimators uniformly satisfy

√
T (ϕ̂OLS − ϕ(P )) →d N(0,Ω(P )), (3.18)

Ω̂ →p Ω(P ). (3.19)

In practice, we are proposing an adjusted (by the length of the set) delta-method interval

for a parameter bounded by extreme eigenvalues.13 Given the arguments in Imbens and Manski

(2004) and Stoye (2009), the identified set length adjustment is the key to show that, under some

conditions, CIα is uniformly consistent, i.e. limT→∞ inf infFEV Dij∗h(P )∈IS(ϕ(P ))Pr(FEV Dij∗h(P ) ∈
CIα) = 1− α.

We focus on the structural object (parameter) of interest, i.e. FEV Dij∗h, not its set. GK21

derive asymptotic point-wise coverage for the identified set rather than for the structural object.

12A formula for Ω̂ under non-serial correlation (but heteroskedasticity) of ut is

Ω̂ ≡ 1

T

T∑
t=1

[
vec(ûtx

′
t)

′, vech(ûtû
′
t − Σ̂)′

]′ [
vec(ûtx

′
t)

′, vech(ûtû
′
t − Σ̂)′

]
. (3.16)

The formula above can be adjusted to take into account serial correlation.
13Rao (1973) was the first one to present the delta-method for eigenvalues analysis. Further references include

Carter et al. (1986), who produced a conservative Scheffé-type interval; Carter et al. (1990) introduced the

delta-method for stationary points of a quadratic response surface; Peterson (1993) discussed the inference for

eigenvalues subject to constraints; Bisgaard and Ankenman (1996) introduced a 2-regression approach delivering

confidence intervals asymptotically equivalent to the delta-method inference proposed by Carter et al. (1990).
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As a result, their frequentist coverage is asymptotically more conservative for the FEVD than

our confidence interval. The Monte-Carlo exercise shows this seems to be the case in finite

samples as well. For set-identified impulse responses, Gafarov et al. (2018) generated delta-

method point-wise consistent confidence intervals. Users can take advantage of the relationship

between IRFs and FEVD, e.g. equation (2.8), and construct a plug-in estimator and confidence

interval for the FEVD from Gafarov et al. (2018). The Monte-Carlo simulation displays that

our toolkit outperforms this alternative.

The moment-inequality framework in Granziera et al. (2018) is uniformly consistent when

applied to confidence intervals of set-identified responses; the same applies to the projection

method in the unpublished manuscript of Gafarov et al. (2016).

The following theorem formalizes the uniform consistency of CIα:

Theorem 3.3 In a compact subset of Ξ, suppose that Assumptions A1-A7 hold and
∂uij∗h(ϕ̂OLS)

∂ϕ̂OLS

and
∂lij∗h(ϕ̂OLS)

∂ϕ̂OLS
are different from zero. We obtain

limT→∞ inf infFEV Dij∗h(P )∈IS(ϕ(P ))Pr(FEV Dij∗h(P ) ∈ CIα) = 1− α. (3.20)

The proof builds upon the uniform convergence in distribution of the delta-method under the

conditions in Kasy (2018) and the arguments in Imbens and Manski (2004) and Stoye (2009).

Our toolkit focuses on inference over single scalars. However, Inoue and Kilian (2022)

stressed that this approach can be invalid because it ignores the mutual dependence of the

structural object of interest (in this case, FEVD) across variables and horizons. Applying a

standard Bonferroni correction, e.g. Bisgaard and Ankenman (1996), would easily provide joint

inference.

Gafarov et al. (2018). We use the same argument to set-length adjust the delta-method

confidence interval for response functions rijh proposed by Gafarov et al. (2018) and show that

to be uniformly consistent:

CIrα ≡
[
lrij∗h(ϕ̂OLS)− crασ̂l

r
ij∗h/

√
T , urij∗h(ϕ̂OLS) + crασ̂u

r
ij∗h/

√
T
]
, (3.21)

where lrij∗h(ϕ̂OLS), urij∗h(ϕ̂OLS), σ̂l
r
ij∗h, and σ̂u

r
ij∗h are the bounds of rijh and the standard

errors as derived in Gafarov et al. (2018). While they consider a standard critical value, we

propose to take set-length into account:

Φ

(
crα +

√
T ∆̂r

ij∗h

max{σ̂r
lij∗h, σ̂

r
uij∗h}

)
− Φ (−crα) = 1− α, (3.22)

where ∆̂r
ij∗h is the estimated length of the identified set for the impulse response function rij∗h.

Under a standard critical value, the confidence interval is point-wise consistent. The next

corollary formalizes that the adjusted critical value delivers a uniformly consistent CIrα.
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Corollary 3.2 In a compact subset of Ξ, suppose that Assumptions A1, A2, A3, A4, A6, A7

hold and the derivatives of the endpoints of rij∗h are non-zero. We obtain

limT→∞ inf infrij∗h(P )∈ISr(ϕ(P ))Pr(rij∗h(P ) ∈ CIα) = 1− α, (3.23)

where ISr(ϕ(P )) is the identified set for rij∗h(P ).

3.3.2 Bayesian Interpretation

We now turn our attention to the Bayesian interpretation of the proposed confidence interval:

under some conditions over the prior distribution of the reduced-form VAR, the posterior

bounds of the FEVD are asymptotically centered at uij∗h(ϕ̂OLS) and lij∗h(ϕ̂OLS). Empirical

macroeconomists usually employ Bayesian methods, so we believe that a Bayesian reading of

our toolkit can be useful to practitioners.

Let P ∗
θ denote a prior distribution for the structural parameters θ. It is well-established

that P ∗
θ ≡ P ∗

ϕP
∗
Q|ϕ, where P ∗

ϕ and P ∗
Q|ϕ are the prior specification for ϕ and Q|ϕ, respectively.

P(P ∗
ϕ) represents the class of prior distributions such that ϕ∗ ∼ P ∗

ϕ.

We assume that P ∗
ϕ and the data-generating process P satisfy the Bernstein-von Mises

Theorem in probability (Ghosal et al., 1995).

Assumption A8 (Bernstein-von Mises Theorem)

supBO∈BO(Rd)

{
P ∗
ϕ

(√
T (ϕ∗ − ϕ̂OLS) ∈ BO|y1, . . . ,yT

)
− P(ξ(P ) ∈ BO)

}
→p 0,

(3.24)

where ξ(P ) ∼ N(0,Ω(P )) and BO(Rd) is the set of all Borel measurable sets in Rd.

This assumption is fairly unrestrictive: in a VAR setting, if the reduced-form errors are i.i.d.

Gaussian and P ∗
ϕ is continuous at ϕ, Assumption A8 is met.14 For example, researchers often

use a Normal-Inverse Wishart prior on ϕ with Gaussian i.i.d. errors. While we fully recognize

that non-Gaussian SVAR is an interesting literature, this is employed for achieving point-

identification.

The next Theorem formally establishes the asymptotic equivalence between our frequentist

setting and a Bayesian framework:

Theorem 3.4 Suppose that Assumptions A1-A8 hold. Then

supBO∈BO(Rd)

{
P ∗
ϕ

(
√
T

([
lij∗h(ϕ

∗)

uij∗h(ϕ
∗)

]
−

[
lij∗h(ϕ̂OLS)

uij∗h(ϕ̂OLS)

])
∈ BO|y1, . . . ,yT

)
−P(ξ̃(P ) ∈ BO)

}
→p 0,

(3.25)

where ξ̃(P ) ∼ N

(
0,

[
σ2
lij∗h(P ) 0

0 σ2
uij∗h(P )

])
.

14See Theorem 1 and 2 in Ghosal et al. (1995).
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3.3.3 Inference over the Identified Set

Note that the confidence interval (3.14) is not necessarily valid if the user is interested in

inference over the set. As a result, this section proposes an alternative confidence interval, which

is asymptotically valid for the set (but conservative for the FEVD). This naively corresponds

to consider the critical value from a standard Normal distribution, i.e. critical value without

any adjustment:

CI∗α ≡
[
lij∗h(ϕ̂OLS)− cασ̂lij∗h/

√
T , uij∗h(ϕ̂OLS) + c∗ασ̂uij∗h/

√
T
]
, (3.26)

where Φ (c∗α)− Φ (−c∗α) = 1− α. A simple Bonferroni argument shows that (i) the confidence

interval in (3.26) is asymptotically valid for the set, i.e. it has asymptotic coverage of at least

1− α, and (ii) is conservative for the parameter, i.e. wider than CIα.
15 We refer the technical

reader to the argument in Imbens and Manski (2004) and Stoye (2009) for the formal statement

of the result. The Monte-Carlo simulation puts some evidence that those features tend to hold

in finite samples as well.

4 Monte-Carlo Evidence

We conduct a Monte-Carlo exercise to illustrate the coverage of our delta-method interval in

finite samples. We draw ϕ directly from a multivariate normal distribution when assessing fre-

quentist coverage, which has the advantage of directly enforcing Assumption A7. The moments

of the distribution are set at their estimated values from the empirical application; T is set to

be 156 to mirror the number of periods (quarters) in the application. For the robust Bayesian

credibility, we use an uninformative Normal-Inverse Wishart prior for ϕ, and draw from the

posterior distribution. In both cases, we set (1− α) = 0.68, and compute 1,000 draws of ϕ̂.

For each draw of ϕ̂, the delta-method interval is constructed as detailed in equation (3.14).

Coverage is then assessed to be the proportion of these intervals which contain the estimated

bounds from the empirical application.

15Formally, CI∗α would be point-wise consistent.
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Figure 1: Monte-Carlo Exercise: Frequentist Coverage.

Frequentist coverage, reported in Figure 1, is shown to be correct. The exception is on

impact, where the coverage is shown to be much larger. This is because the estimated upper

bound is always 1 on impact when the largest eigenvalue is obtained from the case with no

binding restrictions. Likewise, the estimated lower bound is zero in such cases. As a result,

coverage at h = 0 is 1 if the unrestricted case is selected for all draws of ϕ̂. A comparison

with the coverage obtained without the adjustment to the critical value (see Figure C.5 in the

Appendix) shows that the set-length correction is the key to obtain the correct coverage.
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Figure 2: Monte-Carlo Exercise: Robust Bayesian Credibility.

In addition, we compute the robust Bayesian credibility of our delta-method interval based

on an uninformative Normal-Inverse Wishart prior. The former is shown to be larger than the

nominal level in all cases. Thus, Theorem 3.4, which states the asymptotic equivalence between

our method and a Bayesian approach, has some validity in finite samples as well.

5 Empirical Application

We illustrate our toolkit with an empirical application based on sign restrictions on the IRFs.

In particular, we identify a US credit supply shock by using the identification strategy proposed

by Mumtaz et al. (2018), based on the predictions of the DGSE model estimated by Gertler and

Karadi (2011).16 The variables included in the model, along with the identifying restrictions,

are listed in Table 1. We impose that a positive shock to credit spreads generates non-positive

16For a review of the literature on the use of sign restrictions for the identification of credit supply shocks, see

Gambetti and Musso (2017). For further details on the variables, refer to the Data Appendix.
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Variable Restriction Notation

Lending Rate Spread (st) ≥ 0 (e′
1Σ

−1
tr )q1 ≥ 0

Total Lending Growth (lt) ≤ 0 (e′
2Σ

−1
tr )q1 ≤ 0

Investment Growth (it)

Consumption Growth (ct)

GDP Growth (yt) ≤ 0 (e′
5Σ

−1
tr )q1 ≤ 0

CPI Inflation (πt) ≤ 0 (e′
6Σ

−1
tr )q1 ≤ 0

Three-Month Treasury Bill Rate (rt) ≤ 0 (e′
7Σ

−1
tr )q1 ≤ 0

Financial Conditions Index (nfcit)

Economic Uncertainty (ut)

Table 1: Set-Identification of a Credit Supply Shock

responses for total lending growth, GDP growth, CPI inflation, and 3-month Treasury yields on

impact. On the contrary, the lending rate spread is assumed to react non-negatively. In line with

Mumtaz et al. (2018), our sample covers the period 1973Q1-2012Q4. This identification scheme

yields 32 different possible combinations of binding restrictions. Using these to derive Z(ϕ, r)

never results in an empty set when taking the eigen-decomposition, satisfying Assumption A3.

Additionally, the matrices P (ϕ, r) are found to always be full rank, implying that the binding

restrictions are always linearly independent at ϕ. As a result, Assumption A4 also holds.

Figures 3 and 4 compare our approach with the standard Bayesian method, i.e. uniform

prior on the rotation matrices Q.17 Overall, under our tooklit the estimated intervals are quite

large and range from 0 to 1 on impact. While the lower bounds remain close to zero for all

horizons, the upper bounds tend to decrease over time. After four years, a credit supply shock

explains between 0% and 50% of the FEVD of real variables, while their contribution to the

FEVD of financial variables is in general larger. On the other hand, as stressed by Baumeister

and Hamilton (2015), the use of a uniform prior on Q does not imply that its elements are

uniformly distributed over the identified set. The likelihood does not in fact depend on Q

and this prior is thus not updated by the data. Although uniform, it might be informative for

objects of interest as FEVD, even asymptotically. Unsurprisingly, our intervals are significantly

larger. Put it another way, the gap between the confidence sets of the two approaches in Figure

4 quantifies the sensitivity of the standard Bayesian inference to the choice of unrevisable prior.

We therefore conclude that, under the standard Bayesian approach, the estimation of the FEVD

is mostly driven by the unrevisable prior on Q rather than identifying constraints.

17For the reduced-form parameters, Jeffreys (flat) priors are used.
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Figure 3: Estimated Bounds vs. Mean Under Uniform Prior on Q.

Figure 4: 95% Delta-Method Confidence Interval vs 95% Highest Posterior Density Region

Under Uniform Prior on Q.

Once a robust framework is employed, the large identification uncertainty implied by these

restrictions is confirmed by the identified sets for the IRFs, reported in Appendix C. In Table 2,

we present the precise estimates of the objects plotted in Figure 3 and 4, for selected horizons.

In particular, the left panel shows the estimated bounds, while the right panel shows the 95%

delta-method interval.
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Estimated Bounds Delta-Method 95% CI

h = 0 h = 4 h = 16 h = 0 h = 4 h = 16

st [0.00,1.00] [0.00,0.82] [0.00,0.57] [0.00,1.00] [0.00,0.85] [0.00,0.62]

lt [0.00,1.00] [0.00,0.82] [0.00,0.80] [0.00,1.00] [0.00,0.85] [0.00,0.83]

it [0.00,1.00] [0.00,0.47] [0.00,0.41] [0.00,1.00] [0.00,0.49] [0.00,0.43]

ct [0.00,1.00] [0.00,0.57] [0.00,0.49] [0.00,1.00] [0.00,0.60] [0.00,0.52]

yt [0.00,1.00] [0.00,0.62] [0.00,0.52] [0.00,1.00] [0.00,0.64] [0.00,0.55]

πt [0.00,1.00] [0.00,0.75] [0.00,0.73] [0.00,1.00] [0.00,0.78] [0.00,0.77]

rt [0.00,1.00] [0.00,0.93] [0.00,0.86] [0.00,1.00] [0.00,0.94] [0.00,0.89]

nfcit [0.00,0.98] [0.00,0.74] [0.00,0.62] [0.00,0.99] [0.00,0.76] [0.00,0.67]

ut [0.00,1.00] [0.00,0.86] [0.00,0.71] [0.00,1.00] [0.00,0.88] [0.00,0.76]

Table 2: Estimated Bounds and Delta-Method 95% Confidence Interval.

In the Appendix, we compare our framework with the robust Bayesian approach in GK21.

The results get more similar as we increase the number of draws of Q for the framework in

GK21. This is expected as our toolkit has an asymptotic Bayesian interpretation. However, in

order to reduce the high computational costs of the procedure in GK21, in practice researchers

tend to limit the number of draws, introducing some bias. Constructing the bounds using the

delta-method approach outlined in this paper takes 35s, in comparison to 9, 074s for the GK21

algorithm with 10, 000 draws for the rotation matrix, and 848s for 1, 000 draws.18

6 Conclusion

This paper provides a toolkit for estimation and inference of the FEVD for set-identified SVARs,

while the literature mostly focuses on IRFs. It overcomes the well-known problem of having a

prior distribution that cannot be updated in the standard Bayesian approach. We derive the

bounds as the extreme eigenvalues of a symmetric reduced-form matrix coming from quadratic

programming. We prove the differentiability of the endpoints and construct a delta-method

confidence interval adjusted by the length of the identified set. This is uniformly consistent in

level, recovers asymptotic Bayesian credibility and is less conservative than the robust Bayesian

method in GK21. We also provide conditions under which a similar adjustment can be applied

to the IRFs. In finite samples, a Monte-Carlo exercise demonstrates that our approach has

better coverage for the FEVD than alternatives based on plugging-in estimators from the

18We implement it by using 1, 000 draws from the reduced-form posterior. Computational times are measured

by running Matlab R2023b on a standard quad-core laptop @2.40GHz IntelCore i5. Also, GK21 provide two

algorithms for their approach; we rely on the quicker of the two, so it provides a fairer comparison.
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estimated IRFs. An application based on the identification of credit supply shocks illustrates

out toolkit and its computational convenience with respect to alternative robust frameworks.
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Appendix to: “Estimation and Inference of the Forecast Error

Variance Decomposition for set-identified SVARs”

The Appendix contains omitted proofs (Appendix A), data description of the empirical appli-

cation (Appendix B), additional simulation results (Appendix C) and further findings from the

empirical application (Appendix D).

A Omitted Proofs

Proof of Lemma 2.1.

Conditions of Proposition 2.1 are equivalent to the assumptions of Proposition B1, (ii) in the

Appendix of GK21. In turn, this implies that restrictions on shocks 1, . . . , j∗−1, j∗+1, . . . , n−1

leave the set of rij∗h unchanged for i = 1, . . . , n and h = 0, . . . (Corollary B2 in the Appendix

of GK21). Since FEV Dij∗h is a continuous function of q∗j , its set is unaffected by constraints

on shocks 1, . . . , j∗ − 1, j∗ + 1, . . . , n− 1.

Proof of Proposition 3.1.

This proof builds upon Faust (1998) and Rao (1964). While Uhlig (2004) provides a solution

to a quadratic unconstrained problem, this proof can be seen as a generalization to a quadratic

constrained problem.

The maximization problem is provided by (3.2). r(ϕ) is of full rank by Assumption A4; as

a result, there are between 0 and n− 1 active constraints (0 ≤ m ≤ n− 1) at a maximum.

By employing the Karush-Kuhn-Tucker theory, we obtain the following first order conditions

(FOCs):

Υi
h(ϕ)q̄j∗(r)− πq̄j∗(r)− r(ϕ)′µ = 0 (A.1)

r(ϕ)q̄j∗(r) = 0 (A.2)

q̄′j∗(r)q̄j∗(r) = 1, (A.3)

where π and µ are positive Lagrange multipliers. We are going to show that uij∗h(ϕ, r) and

q̄j∗(r) are the maximum eigenvalue and the associated eigenvector of the matrix Z(ϕ, r) =

[In − P (ϕ, r)]Υi
h(ϕ), where P (ϕ, r) = r(ϕ)′ [r(ϕ)r(ϕ)′]−1 r(ϕ). Pre-multiplying the FOCs

by In − P (ϕ, r) yields

[In − P (ϕ, r)]Υi
h(ϕ)q̄j∗(r)− πq̄j∗(r) = 0. (A.4)

This is satisfied if and only if q̄j∗(r) is an eigenvector of [In − P (ϕ, r)]Υi
h(ϕ). We need to show

that q̄j∗(r) is the eigenvector associated with the largest eigenvalue. Rao (1964) (Section 2, part

iii) observes that the eigenvalues of [In − P (ϕ, r)]Υi
h(ϕ) are equivalent to the eigenvalues of

Z̃(ϕ, r) = Υi
h(ϕ)

1
2 {In−r(ϕ)′ [r(ϕ)r(ϕ)′]−1 r(ϕ)}Υi

h(ϕ)
1
2

′
. This provides some computational
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gains, since symmetric eigenvalue problems are well-understood. Also, Rao (1964) derives the

following relationship between the eigenvector of Z(ϕ, r) (among others, q̄j∗(r)) and Z̃(ϕ, r)

(say ¯̃qj∗(r)):

q̄j∗(r) = {¯̃q′j∗(r)
[
Υi

h(ϕ
]−1 ¯̃qj∗(r)}

[
Υi

h(ϕ)
]− 1

2 ¯̃qj∗(r). (A.5)

This applies to any eigenvector of Z(ϕ, r) and Z̃(ϕ, r).

Note thatΥi
h(ϕ)

1
2 {In−r(ϕ)′ [r(ϕ)r(ϕ)′]−1 r(ϕ)}Υi

h(ϕ)
1
2

′
is positive semidefinite, since [In − P (ϕ, r)]

is idempotent and
[
Υi

h(ϕ)
1
2

]
is full rank. [In − P (ϕ, r)]Υi

h(ϕ) is therefore positive semi-

definite and the eigenvectors can be selected to be orthogonal. Let us prove the result by

contradiction and assume that q̄j∗(r) is not the eigenvecor associated with the largest eigen-

value:

q̄j∗(r) = ωq1j∗(r) +
√
(1− ω2)q̃j∗(r), (A.6)

where q1j∗(r) and q̃j∗(r) satisfy the FOCs, are orthogonal and q1j∗(r) is associated to the

largest eigenvalue. Let us parametrize q̄j∗(r) as follows:

q̄j∗(r, δ) = (1 + δ)ωq1j∗(r) +
√

(1− (1 + δ)2ω2)q̃j∗(r), (A.7)

which is q̄j∗(r) for δ = 0 and satisfies the active constraints for small δ. The eigenvectors are

orthogonal, so the value of the criterion function can expressed as

q̄′j∗(r, δ)Υ
i
h(ϕ)q̄j∗(r, δ) = (1+δ)2ω2q′1j∗(r)Υ

i
h(ϕ)q1j∗(r)+(1−(1+δ)2ω2)q̃′j∗(r)Υ

i
h(ϕ)q̃j∗(r).

(A.8)

The first derivative of the right hand side of the equation above with respect to δ is 2(1 +

δ)ω2
[
q′1j∗(r)Υ

i
h(ϕ)q1j∗(r)− q̃′j∗(r)Υ

i
h(ϕ)q̃j∗(r)

]
. It is positive for small δ because q′1j∗(r)Υ

i
h(ϕ)q1j∗(r)

maximizes the objective function. Let us conclude the proof: i) since all the constraints holding

with equality at q̄j∗(r, 0) are also satisfied (with equality) for small δ; ii) since q̄j∗(r, 0) satisfies

the inactive constraints by definition ⇒ by continuity there must be some small δ > 0 such

that the restrictions are satisfied at q̄j∗(r, δ). We can obtain the minimum analogously.

Proof of Theorem 3.1.

The maximization problem is provided by (2.22). First, we need to introduce an auxiliary

function ũij∗h(ϕ, r):

ũij∗h(ϕ, r) = uij∗h(ϕ, r)− c{1− 1
[
S̃j∗(ϕ)qj∗ ≥ 0

]
}, (A.9)

with c > 1 and where 1(•) denotes the indicator function. S̃j∗(ϕ)qj∗ ≥ 0 is the set of inactive

constraints, with S̃j∗(ϕ) being a (sj∗ − srj∗)× n matrix.

2



Given a set of active constraints r(ϕ), if the optimizer satisfies the inactive constraints

characterized by S̃j∗(ϕ), then 1
[
S̃j∗(ϕ)qj∗ ≥ 0

]
= 1 and ũij∗h(ϕ, r) = uij∗h(ϕ, r); otherwise,

1
[
S̃j∗(ϕ)qj∗ ≥ 0

]
= 0 and the auxiliary function is negative (recall that c > 1) and, as

such, cannot be considered an endpoint for the FEVD. In other words, we are making explicit

that, if some constraints are not satisfied, the FEVD cannot be defined. Proving the theorem

corresponds to show the following

uij∗h(ϕ) = maxr(ϕ)ũij∗h(ϕ, r). (A.10)

• CASE 1: consider any r(ϕ).

CASE 1.1 Suppose that the inactive constraints are not satisfied, i.e. ũij∗h(ϕ, r) < 0.

This implies that uij∗h(ϕ) > ũij∗h(ϕ, r).

CASE 1.2 Suppose that the active constraints are satisfied, i.e. 1
[
S̃j∗(ϕ)qj∗ ≥ 0

]
= 1.

As a result, uij∗h(ϕ) ≥ ũij∗h(ϕ, r). Case 1 therefore delivers

uij∗h(ϕ) ≥ maxr(ϕ)ũij∗h(ϕ, r). (A.11)

• CASE 2: consider r∗(ϕ) as the set of active constraints at the optimizer of the problem

(2.22). As such, inactive constraints are satisfied. Proof of Proposition 3.1 yields:

ũij∗h(ϕ, r
∗) = uij∗h(ϕ) ≤ maxr(ϕ)ũij∗h(ϕ, r). (A.12)

Equations (A.11) and (A.12) deliver the desired result.

Proof of Proposition 3.2.

If the reduced-form estimator is consistent, i.e ϕ̂ →p ϕ(P ), then we obtain

r∗(ϕ̂) →p r
∗(ϕ(P )) (A.13)

and

P (ϕ̂, r∗) →p P (ϕ(P ), r∗(P )). (A.14)

. This implies that

Z(ϕ̂, r∗) →p Z(ϕ(P ), r∗(P )). (A.15)

Since uij∗h(ϕ) = uij∗h(ϕ, r
∗), if uij∗h(ϕ) is simple and T ≫ n, it is suffice to recall basic

statistics to obtain uij∗h(ϕ̂) →p uij∗h(ϕ(P )). Proof for lij∗h(ϕ̂) →p lij∗h(ϕ(P )) is obtained

analogously.

Proof of Theorem 3.2.
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From the chain rule, we obtain:

∂uij∗h(ϕ)

∂ϕ
=

∂uij∗h(ϕ)

∂vech(Z̃(ϕ))

∂vech(Z̃(ϕ))

∂ϕ
. (A.16)

Recall that Z(ϕ) ≡ Z(ϕ, r∗) = [In − P (ϕ, r∗)]Υi
h(ϕ),

Z̃(ϕ) ≡ Z̃(ϕ, r∗) = Υi
h(ϕ)

1
2 [In − P (ϕ, r∗)]Υi

h(ϕ)
1
2

′
,

P (ϕ, r∗) = r∗(ϕ)′ [r∗(ϕ)r∗(ϕ)′]−1 r∗(ϕ) andΥi
h(ϕ) =

∑h
h̃=0

cih̃(ϕ)c′
ih̃
(ϕ)∑h

h̃=0
c′
ih̃
(ϕ)cih̃(ϕ)

; as a result, ∂vech(Z̃(ϕ))
∂ϕ

exists because of Assumption A6 (that makes r∗(ϕ) and In −P (ϕ, r∗) differentiable) and the

fact that cih̃(ϕ) and c′
ih̃
(ϕ) are differentiable with respect to ϕ.

We now need to show that uij∗h(ϕ) is differentiable with respect to Z̃(ϕ). Let λ and q

be a real-valued function and a vector function (respectively) defined for all Γ(ϕ) in some

neighborhood of N(Z̃(ϕ)). Consider the vector function g : Rn+1 ×Rn×n → Rn+1 defined as

follows

g(q, λ;Γ(ϕ)) =

[
(λIn − Γ(ϕ))q

q′q − 1

]
. (A.17)

Note that g is differentiable on Rn+1 ×Rn×n.
(
¯̃qj∗ , uij∗h(ϕ); Z̃(ϕ)

)
in Rn+1 ×Rn×n satisfies

the following conditions:

g(¯̃qj∗ , uij∗h(ϕ); Z̃(ϕ)) = 0 (A.18)

and

det

[
uij∗h(ϕ)In − Z̃(ϕ) ¯̃qj∗

2¯̃q
′
j∗ 0

]
̸= 0. (A.19)

The determinant above is non-singular if and only if the eigenvalue uij∗h(ϕ) is simple. The

implicit function theorem is therefore satisfied; there must exist a neighborhood N(Z̃(ϕ)) ∈
Rn×n of Z̃(ϕ), a unique real-valued function λ : N(Z̃(ϕ)) → R, and vector function (defined

up to a sign) q : N(Z̃(ϕ)) → Rn, such that

• λ and q are differentiable on N(Z̃(ϕ)),

• λ(Z̃(ϕ)) = uij∗h(ϕ), q(Z̃(ϕ)) = ¯̃qj∗ ,

• Γ(ϕ)q = λq, q′q = 1 for every Γ(ϕ) ∈ N(Z̃(ϕ)).

This completes the proof about the differentiability of
∂uij∗h(ϕ)

∂ϕ . We now derive an explicit

equation for
∂uij∗h(ϕ)

∂ϕ . We start from Γ(ϕ)q = λq:

(dΓ(ϕ))¯̃qj∗ + Z̃(ϕ)(dq) = (dλ)¯̃qj∗ + uij∗h(ϕ)(dq), (A.20)

4



with dq and dλ being the differentials defined at Z̃(ϕ). Let us pre-multiply the equation above

by ¯̃q
′
j∗ :

¯̃q
′
j∗(dΓ(ϕ))¯̃qj∗ + ¯̃q

′
j∗Z̃(ϕ)(d¯̃qj∗) = (dλ)¯̃q

′
j∗
¯̃qj∗ + uij∗h(ϕ)¯̃q

′
j∗(dq). (A.21)

Recall that Z̃(ϕ) is symmetric, i.e. ¯̃q
′
j∗Z̃(ϕ) = uij∗h(ϕ)¯̃q

′
j∗ , and ¯̃q

′
j∗
¯̃qj∗ = 1:

(dλ) = ¯̃q
′
j∗(dΓ(ϕ))¯̃qj∗ . (A.22)

The equation above can be written as

(dλ) = (¯̃q
′
j∗ ⊗ ¯̃q

′
j∗)vech(dΓ(ϕ)). (A.23)

Recalling that dλ is evaluated at Z̃(ϕ), λ(Z̃(ϕ)) = uij∗h(ϕ) and q(Z̃(ϕ)) = ¯̃qj∗ yields

(duij∗h(ϕ)) = (¯̃q
′
j∗ ⊗ ¯̃q

′
j∗)vech(dZ̃(ϕ)). (A.24)

Thus, we obtain

∂uij∗h(ϕ)

∂vech(Z̃(ϕ))
= ¯̃q

′
j∗ ⊗ ¯̃q

′
j∗ . (A.25)

Combining the equation above with (A.16) delivers

∂uij∗h(ϕ)

∂ϕ
= ¯̃q

′
j∗ ⊗ ¯̃q

′
j∗
∂vech(Z̃(ϕ))

∂ϕ
. (A.26)

Proof of Corollary 3.1.

Note that ISFEV D(ϕ) is closed and bounded by definition. Thus, Assumption 3 in GK21

is met. Conditions in the corollary make sure that Assumption 5 in GK21 is satisfied. Thus,

we can apply Proposition 2 in GK21 to ISFEV D(ϕ).

Proof of Theorem 3.3.

We introduce the following notation. P identifies a data-generating process, e.g. ∆(P ) =

uij∗h(ϕ(P ))− lij∗h(ϕ(P )), FEV Dij∗h(P ). For ease of notation, we suppress P from estimators

•̂. aT indicates a sequence.

This proof shows point-wise limits; however, they imply uniformity because they are taken

over sequences. Specifically, they apply along least favorable sequences. Proof presents two

arguments: one for the case that ∆(P ) is “small” and one for the case that it is “large” in

a sense that will be delimited. Any sequence P can be decomposed into one “large” and one

“small” subsequence.

Let ∆(P ) ≤ aT . Note the following.
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(i) Given Assumption A7, the delta-method delivers a Normal distribution for uij∗h(ϕ̂OLS)

and lij∗h(ϕ̂OLS):

√
T

[
lij∗h(ϕ̂OLS)

uij∗h(ϕ̂OLS)

]
→d N

([
lij∗h(ϕ(P ))

uij∗h(ϕ(P ))

]
,

[
σ2
lij∗h(P ) 0

0 σ2
uij∗h(P )

])
, (A.27)

where we recall that lij∗h(ϕ̂OLS) and lij∗h(ϕ̂OLS) are independent eigenvalues because they

come from a symmetric matrix. The convergence in distribution is uniform (formally, see

Theorem 3 in Kasy (2018)).

(ii) For any P , σ2
lij∗h(P ) and σ2

uij∗h(P ) are positive (recall the non-zero condition) and finite

and, by definition, uij∗h(ϕ(P ))− lij∗h(ϕ(P )) < ∞.

(iii) Since uij∗h(ϕ̂OLS) and lij∗h(ϕ̂OLS) are the extreme eigenvalues from a real symmetric

matrix, they can be ordered such that uij∗h(ϕ̂OLS) ≥ lij∗h(ϕ̂OLS) for all P .

We therefore obtain
√
T (∆̂−∆(P )) →p 0 for all P by Lemma 3 in Stoye (2009). As a result,

we get

√
T
(
uij∗h(ϕ̂OLS)− uij∗h(ϕ(P ))

)
=

√
T
(
lij∗h(ϕ̂OLS) + ∆̂− lij∗h(ϕ(P ))−∆(P )

)
(A.28)

→p

√
T
(
lij∗h(ϕ̂OLS)− lij∗h(ϕ(P ))

)
. (A.29)

Relationship above in combination with (i) and (ii) yields σlij∗h(P ) = σuij∗h(P ), implying that

σ̂uij∗h − σ̂lij∗h →p 0. Employing Lemma 3 in Stoye (2009) delivers

Φ

(
cα +

√
T

∆̂

max{σ̂uij∗h, σ̂lij∗h}

)
→p Φ

(
cα +

√
T
∆(P )

σ̂lij∗h

)
. (A.30)

We obtain uniform consistency by invoking the same argument as in the proof of Lemma 2 in

Stoye (2009).

Let ∆(P ) > aT . This leads to
√
T∆(P ) → ∞; in turn, this yields

lim supT→∞
√
T (FEV Dij∗h(P )− lij∗h(ϕ(P ))) = ∞

and lim supT→∞
√
T (uij∗h(ϕ(P ))− FEV Dij∗h(P )) = ∞. Further steps get us to

Pr(FEV Dij∗h(P ) ∈ CI(α)) (A.31)

= Pr{−cασ̂lij∗h ≤
√
T [FEV Dij∗h(P )− lij∗h(ϕ(P ))] +

√
T [lij∗h(ϕ(P ))− lij∗h(ϕ̂OLS)] ≤

√
T ∆̂ + cασ̂uij∗h}

(A.32)

= Pr{−cασ̂lij∗h ≤
√
T [FEV Dij∗h(P )− lij∗h(ϕ(P ))] +

√
T [lij∗h(ϕ(P ))− lij∗h(ϕ̂OLS)]}

(A.33)

− Pr{
√
T [FEV Dij∗h(P )− lij∗h(ϕ(P ))] +

√
T [lij∗h(ϕ(P ))− lij∗h(ϕ̂OLS)] >

√
T ∆̂ + cασ̂uij∗h}.

(A.34)
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Suppose that lim supT→∞
√
T (FEV Dij∗h − lij∗h(ϕ(P ))) < ∞. Given the consistency of ∆̂,

divergence of
√
T∆(P ) implies divergence (in probability) of

√
T ∆̂. As a result,

Pr{
√
T [FEV Dij∗h(P )− lij∗h(ϕ(P ))] +

√
T [lij∗h(ϕ(P ))− lij∗h(ϕ̂OLS)] >

√
T ∆̂ + cασ̂uij∗h} ≤

(A.35)

Pr{
√
T [lij∗h(ϕ(P ))− lij∗h(ϕ̂OLS)] >

√
T ∆̂−

√
T [FEV Dij∗h(P )− lij∗h(ϕ(P ))]} → 0,

(A.36)

where cασ̂uij∗h ≥ 0 by construction and
√
T [lij∗h(ϕ(P )) − lij∗h(ϕ̂OLS)] converges by previous

results in this paper. We therefore derive the following

limT→∞Pr(FEV Dij∗h(P ) ∈ CI(α)) (A.37)

= limT→∞Pr{−cασ̂lij∗h ≤
√
T [FEV Dij∗h(P )− lij∗h(ϕ(P ))] +

√
T [lij∗h(ϕ(P ))− lij∗h(ϕ̂OLS)]}

(A.38)

≥ limT→∞Pr{−cασ̂lij∗h ≤
√
T [lij∗h(ϕ(P ))− lij∗h(ϕ̂OLS)]} = 1− Φ(cα) ≥ 1− α. (A.39)

Note that the first inequality comes from
√
T (FEV Dij∗h− lij∗h(ϕ(P ))) ≥ 0; the last inequality

relies on the definition of cα and convergence of σ̂lij∗h and
√
T

lij∗h(ϕ(P ))−lij∗h(ϕ̂OLS)

σlij∗h(P ) . For any

subsequence of P where
√
T (FEV Dij∗h − uij∗h(ϕ(P ))) does not diverge, the same argument

applies. If both diverge, coverage probability converges to 1. To see that we can obtain a

coverage probability of 1− α, consider ∆(P ) = 0.

Proof of Corollary 3.2.

For notation, see the previous theorem. Here we show that CIrα satisfies the conditions (i)

to (iii) in the proof of Theorem 3.3; the result follows.

Let ∆(P ) ≤ aT . Note the following.

(i) Given Assumption A7, the delta-method delivers a Normal distribution for urij∗h(ϕ̂OLS)

and lrij∗h(ϕ̂OLS)

√
T

[
lrij∗h(ϕ̂OLS)

urij∗h(ϕ̂OLS)

]
→d N (A.40)

centered at

[
lrij∗h(ϕ(P ))

urij∗h(ϕ(P ))

]
. The convergence in distribution is uniform (formally, see

Theorem 3 in Kasy (2018)).

(ii) For any P , σr2
lij∗h(P ) and σr2

uij∗h(P ) are positive (recall the non-zero condition) and fi-

nite and urij∗h(ϕ(P )) − lrij∗h(ϕ(P )) < ∞. The latter comes from the fact that |rij∗h| ≤
||cih(ϕ)|| < ∞ for any i ∈ 1, . . . , n, j∗ ∈ 1, . . . , n and h = 0, 1, . . . , where ||cih(ϕ)||
is bounded to the restriction on ϕ such that the reduced-form VAR is invertible into

VMA(∞).
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(iii) Since urij∗h(ϕ̂OLS) and lrij∗h(ϕ̂OLS) are the bounds, they can be ordered such that urij∗h(ϕ̂OLS) ≥
lrij∗h(ϕ̂OLS) for all P .

The argument in Theorem 3.3 delivers the result.

Proof of Theorem 3.4.

This comes from applying the delta-method to the posterior distribution of ϕ subject to

the class of priors ϕ∗ ∼ P ∗
ϕ in Assumption A8. The posterior distribution for ϕ∗ is

√
T (ϕ∗|y1, . . . ,yT ) →d N(ϕ̂OLS ,Ω(P )). (A.41)

We apply the delta-method to the distribution above:

√
T

[
lij∗h(ϕ̂

∗)

uij∗h(ϕ̂
∗)

] ∣∣∣∣y1, . . . ,yT →d N

([
lij∗h(ϕ̂OLS)

uij∗h(ϕ̂OLS)

]
,

[
σ2
lij∗h(P ) 0

0 σ2
uij∗h(P )

])
. (A.42)

Applying the result above to the class of priors ϕ∗ ∼ P ∗
ϕ disciplined by Assumption A8 (and

recalling the definition of a Borel set) yields

supBO∈BO(Rd)

{
P ∗
ϕ

(
√
T

([
lij∗h(ϕ

∗)

uij∗h(ϕ
∗)

]
−

[
lij∗h(ϕ̂OLS)

uij∗h(ϕ̂OLS)

])
∈ BO|y1, . . . ,yT

)
−P(ξ̃(P ) ∈ BO)

}
→p 0,

(A.43)

where ξ̃(P ) ∼ N

(
0,

[
σ2
lij∗h(P ) 0

0 σ2
uij∗h(P )

])
.
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B Data Appendix

Our data come from Mumtaz et al.’s (2018) replication package, available on Haroon Mumtaz’s

website. Below is a summary of the variables we employ in the empirical application, including

FRED mnemonics in brackets where available.

• Total Lending Growth: growth rate of loans to nonfinancial private sector, computed

as the sum of nominal outstanding amounts of loans to households and loans to nonfi-

nancial corporations. For further details about the construction of the series, please refer

to Mumtaz et al. (2018).

• Lending Rate Spread: difference between composite lending rate and Three-Month

Treasury Bill Rate. The composite lending rate is calculated as a weighted average of

interest rate charged on loans to nonfinancial corporations and households. For further

details about the construction of the series, please refer to Mumtaz et al. (2018).

• Investment Growth: growth rate of Real Private Investment (GDPIC96).

• Consumption Growth: growth rate of Real Consumption Expenditure (PCECC96).

• GDP Growth: growth rate of Real GDP (GDPC96).

• CPI Inflation: growth rate of CPI (CPIAUCSL).

• Three-Month Treasury Bill Rate (TB3MS).

• Financial Conditions Index: Chicago Fed National Financial Conditions Index (NFCI).

• Economic Uncertainty: index of economic uncertainty derived by Jurado et al. (2015).
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C Further Simulation Results

Figure C.5: Monte-Carlo Exercise: Frequentist Coverage. Comparison between coverage with and

without the set-length correction to the critical value

.
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D Empirical Appendix

Figures D.6 to D.9 provide a comparison with the robust Bayesian approach in GK21. Un-

surprisingly, the differences are mitigated by increasing the number of draws of the rotation

matrix. This comes at further computational costs for the framework in GK21.

Figure D.6: Estimated Bounds vs Mean Estimated Bounds in GK21 (1, 000 Draws of Q)

Figure D.7: Estimated Bounds vs Mean Estimated Bounds in GK21 (10, 000 Draws of Q)
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Figure D.8: 95% Delta-Method Confidence Interval vs GK21

95% Robust Credible Region (1, 000 Draws of Q)

Figure D.9: 95% Delta-Method Confidence Interval vs GK21

95% Robust Credible Region (10, 000 Draws of Q)
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For completeness, Figure D.10 displays the dynamics of the IRFs by using the delta-method

in Gafarov et al. (2018) and the classical Bayesian approach.

Figure D.10: 95% Delta-Method Confidence Interval vs 95% Highest Posterior Density Region

Under Uniform Prior on Q.
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