Interim Information and Seller's Revenue in Standard Auctions

FEDERICA CARANNANTE

Marco Pagnozzi

ELIA SARTORI

Princeton University

Università di Napoli Federico II

Università di Napoli Federico II

EEA - ESEM 2024 — Rotterdam

August 28, 2024

- Auctions with n symmetric IPV $\sim F[0,1]$ bidders + efficient equilibrium
- Revenue Equivalence Theorem (RET): All auction formats are (ex-ante) equivalent

- Auctions with n symmetric IPV $\sim F[0,1]$ bidders + efficient equilibrium
- Revenue Equivalence Theorem (RET): All auction formats are (ex-ante) equivalent
- $\Pi^a: [0,1]^n \to \mathbb{R}$. Seller's revenue in the efficient equilibrium of a as function of bidders' values v

 $\mathbb{E}_{\boldsymbol{v}}\left[\Pi^{a}\left(\boldsymbol{v}\right)\right]=\bar{\Pi}$

- Auctions with n symmetric IPV $\sim F[0,1]$ bidders + efficient equilibrium
- Revenue Equivalence Theorem (RET): All auction formats are (ex-ante) equivalent
- $\Pi^a: [0,1]^n \to \mathbb{R}$. Seller's revenue in the efficient equilibrium of a as function of bidders' values v

 $\mathbb{E}_{\boldsymbol{v}}\left[\Pi^{a}\left(\boldsymbol{v}\right)\right]=\bar{\Pi}$

• $\Pi^a: [0,1] \to \mathbb{R}$. Interim revenue

$$\Pi^{a}\left(v\right) \coloneqq \mathbb{E}_{\boldsymbol{v}|v}\left[\Pi^{a}\left(\boldsymbol{v}\right)\right]$$

Expected seller's revenue in a, given that one bidder has value v

- Auctions with n symmetric IPV $\sim F[0,1]$ bidders + efficient equilibrium
- Revenue Equivalence Theorem (RET): All auction formats are (ex-ante) equivalent
- $\Pi^a: [0,1]^n \to \mathbb{R}$. Seller's revenue in the efficient equilibrium of a as function of bidders' values v

 $\mathbb{E}_{\boldsymbol{v}}\left[\Pi^{a}\left(\boldsymbol{v}\right)\right]=\bar{\Pi}$

• $\Pi^a: [0,1] \to \mathbb{R}$. Interim revenue

$$\Pi^{a}\left(v\right) \coloneqq \mathbb{E}_{\boldsymbol{v}|v}\left[\Pi^{a}\left(\boldsymbol{v}\right)\right]$$

Expected seller's revenue in a, given that one bidder has value v

How does the Interim Revenue depend jointly on a and v?

Statistical interpretation: Exploration of the properties of ex-ante equivalent formats

- Bidders play the symmetric efficient equilibrium in a, a'
- Econometrician learns one bidder's value v and forecasts revenues in a, a'
 - What makes a better than a' when a bidder is v (and worse when v')?
 - Understand differences that average out ex-ante

- Endogenous: Repeated auctions (e.g. procurement, online-ad auctions)
- *Exogenous*: Rating based on purchasing history
- Manipulation *of* auction format vs. *within* format (credible auctions, shill bidding...)
- Unsophisticated bidders: Do not learn on competitors from the auction format

Statistical interpretation: Exploration of the properties of ex-ante equivalent formats

- Bidders play the symmetric efficient equilibrium in *a*, *a'*
- Econometrician learns one bidder's value v and forecasts revenues in a, a'
 - What makes a better than a' when a bidder is v (and worse when v')?
 - Understand differences that average out ex-ante

- Endogenous: Repeated auctions (e.g. procurement, online-ad auctions)
- *Exogenous*: Rating based on purchasing history
- Manipulation of auction format vs. within format (credible auctions, shill bidding...)
- Unsophisticated bidders: Do not learn on competitors from the auction format

Statistical interpretation: Exploration of the properties of ex-ante equivalent formats

- Bidders play the symmetric efficient equilibrium in *a*, *a'*
- Econometrician learns one bidder's value v and forecasts revenues in a, a'
 - What makes a better than a' when a bidder is v (and worse when v')?
 - Understand differences that average out ex-ante

- Endogenous: Repeated auctions (e.g. procurement, online-ad auctions)
- Exogenous: Rating based on purchasing history
- Manipulation of auction format vs. within format (credible auctions, shill bidding...)
- Unsophisticated bidders: Do not learn on competitors from the auction format

Statistical interpretation: Exploration of the properties of ex-ante equivalent formats

- Bidders play the symmetric efficient equilibrium in *a*, *a'*
- Econometrician learns one bidder's value v and forecasts revenues in a, a'
 - What makes a better than a' when a bidder is v (and worse when v')?
 - Understand differences that average out ex-ante

- Endogenous: Repeated auctions (e.g. procurement, online-ad auctions)
- *Exogenous*: Rating based on purchasing history
- Manipulation of auction format vs. within format (credible auctions, shill bidding...)
- Unsophisticated bidders: Do not learn on competitor from the auction format

Statistical interpretation: Exploration of the properties of ex-ante equivalent formats

- Bidders play the symmetric efficient equilibrium in *a*, *a'*
- Econometrician learns one bidder's value v and forecasts revenues in a, a'
 - What makes a better than a' when a bidder is v (and worse when v')?
 - Understand differences that average out ex-ante
- Application: Informed seller chooses format based on Interim Revenue
 - Endogenous: Repeated auctions (e.g. procurement, online-ad auctions)
 - *Exogenous*: Rating based on purchasing history
 - Manipulation *of* auction format vs. *within* format (credible auctions, shill bidding...)
 - Unsophisticated bidders: Do not learn on competitor from the auction format

Preview of Results

FPA vs. SPA

- Single crossing
- FPA better for v low, worse for v high

Standard auctions: Who-pays-what specification (in the space of order statistics)

- $a \succ_v a' \Leftrightarrow A$ bidder's transfer is higher in a than a' when **a competitor** is v
- FPA *best* for v low, *worst* for v high
 - v low: make bidders pay **their own** bid, and **highest** bidder pay
 - v high: make bidders pay others' bid, and lowest bidder pay
 - Unbounded interim revenue if the highest bidder does not pay

Preview of Results

FPA vs. SPA

- Single crossing
- FPA better for v low, worse for v high

Standard auctions: Who-pays-what specification (in the space of order statistics)

- $a \succ_v a' \Leftrightarrow A$ bidder's transfer is higher in a than a' when **a competitor** is v
- FPA *best* for v low, *worst* for v high
 - v low: make bidders pay **their own** bid, and **highest** bidder pay
 - v high: make bidders pay others' bid, and lowest bidder pay
 - Unbounded interim revenue if the highest bidder does not pay

Preview of Results

FPA vs. SPA

- Single crossing
- FPA better for v low, worse for v high

Standard auctions: Who-pays-what specification (in the space of order statistics)

- $a \succ_v a' \Leftrightarrow A$ bidder's transfer is higher in a than a' when **a competitor** is v
- FPA *best* for v low, *worst* for v high
 - -v low: make bidders pay *their own* bid, and *highest* bidder pay
 - -v high: make bidders pay *others*' bid, and *lowest* bidder pay
 - Unbounded interim revenue if the highest bidder does not pay

Outline

- FPA vs SPA
 - Example: 2 bidders, uniform distribution
 - Single crossing
- Standard Auctions
 - Winner Pay Auctions
 - Pay-as-bid Auctions
 - $-\,$ FPA best at v=0 and worst at $v\approx 1\,$

$$b^F(x) = \frac{x}{2}, \qquad \qquad b^S(x) = x$$

$$b^{F}(x) = \frac{x}{2},$$
 $b^{S}(x) = x$

	v wins	v loses
FPA	$b^F(v)$	

$$b^{F}(x) = \frac{x}{2},$$
 $b^{S}(x) = x$

$$b^{F}(x) = \frac{x}{2},$$
 $b^{S}(x) = x$

• One bidder has value v,

• IRFs: Weight events by their likelihood

$$\begin{split} \Pi^{a}\left(v\right) &= \mathbb{P}\left(v \text{ wins}\right) \cdot \mathbb{E}\left[\Pi^{a} | v \text{ wins}\right] \\ &+ \mathbb{P}\left(v \text{ loses}\right) \cdot \mathbb{E}\left[\Pi^{a} | v \text{ loses}\right] \end{split}$$

$$b^{F}(x) = \frac{x}{2},$$
 $b^{S}(x) = x$

• One bidder has value v,

v

• IRFs: Weight events by their likelihood

$$\begin{split} \Pi^{a}\left(v\right) &= \mathbb{P}\left(v \text{ wins}\right) \cdot \mathbb{E}\left[\Pi^{a} | v \text{ wins}\right] \\ &+ \mathbb{P}\left(v \text{ loses}\right) \cdot \mathbb{E}\left[\Pi^{a} | v \text{ loses}\right] \end{split}$$

- At v = 0, $\Pi^S = 0$ and $\Pi^F > 0$
 - -v loses for sure...
 - $-\,$ and sets the price in SPA

- At v = 0, $\Pi^S = 0$ and $\Pi^F > 0$
 - -v loses for sure...
 - $-\,$ and sets the price in SPA
- At v = 1, $\Pi^S = \Pi^F$
 - -v wins for sure
 - \Rightarrow same expected payment

- At v = 0, $\Pi^S = 0$ and $\Pi^F > 0$
 - -v loses for sure...
 - $-\,$ and sets the price in SPA
- At v = 1, $\Pi^S = \Pi^F$
 - -v wins for sure
 - \Rightarrow same expected payment
- Crossing at

$$v = 1$$
 (v never loses)
 $v = \frac{1}{3}$ (Same rev. even if v loses)

$$\Pi^{S}(v) > \Pi^{F}(v) \iff v > \frac{1}{3}$$

- At v = 0, $\Pi^S = 0$ and $\Pi^F > 0$
 - -v loses for sure...
 - $-\,$ and sets the price in SPA
- At v = 1, $\Pi^S = \Pi^F$
 - -v wins for sure
 - \Rightarrow same expected payment
- Crossing at
 - v = 1 (v never loses) $v = \frac{1}{3}$ (Same rev. even if v loses)

$$\Pi^{S}(v) > \Pi^{F}(v) \iff v > \frac{1}{3}$$

• $\mathbb{E}_{v}\left[\Pi^{S}\left(v
ight)
ight]=\mathbb{E}_{v}\left[\Pi^{F}\left(v
ight)
ight]$ (RET+LIE)

FPA vs. SPA: Single Crossing

- n bidders, valuation $\sim F$
- Virtual value ψ
- Proposition: If ψ (v) = b^F (v) has unique solution, then there is a unique ṽ s.t.

$$-\Pi^{F}(v) > \Pi^{S}(v) \text{ if } v < \widetilde{v}$$
$$-\Pi^{S}(v) > \Pi^{F}(v) \text{ if } v > \widetilde{v}$$

- $\Pi^{F}(v) \Pi^{S}(v)$ is
 - maximized at v = 0
 - minimized at $b^{F}\left(\hat{v}\right) = \psi\left(\hat{v}\right)$

Outline

- FPA vs SPA
 - Example: 2 bidders, uniform distribution
 - Single crossing

Standard Auctions

- Winner Pay Auctions
- Pay-as-bid Auctions
- $-\,$ FPA best at v=0 and worst at $v\approx 1\,$

- Each bidder submits a bid (non-negative number)
- Bids are ranked and object assigned to highest bid
- Efficiency = Monotonicity of bids

- Each bidder submits a bid (non-negative number)
- Bids are ranked and object assigned to highest bid
- Efficiency = Monotonicity of bids

Def: A standard auction *a* is characterized by: *i*) A non-empty set $\mathcal{P}_a \subseteq [n]$ *ii*) A function $T_a : \mathcal{P}_a \to [n]$ such that $T_a(j) \ge j$ for all $j \in \mathcal{P}_a$ \mathcal{P}_{a} T_a 2 kknn

- Each bidder submits a bid (non-negative number)
- Bids are ranked and object assigned to highest bid
- Efficiency = Monotonicity of bids

Def: A standard auction *a* is characterized by: *i*) A **non-empty set** $\mathcal{P}_a \subseteq [n]$ *ii*) A function $T_a : \mathcal{P}_a \to [n]$ such that $T_a(j) \ge j$ for all $j \in \mathcal{P}_a$

• Who pays? \mathcal{P}_a specifies the order statistics that pay

- Each bidder submits a bid (non-negative number)
- Bids are ranked and object assigned to highest bid
- Efficiency = Monotonicity of bids

Def: A standard auction *a* is characterized by: *i*) A non-empty set $\mathcal{P}_a \subseteq [n]$ *ii*) A function $T_a : \mathcal{P}_a \to [n]$ such that $T_a(j) \ge j$ for all $j \in \mathcal{P}_a$

- Who pays? \mathcal{P}_a specifies the order statistics that pay
- What do they pay? *T_a* associates to each payer the the order statistic of the bid that he pays
 - Constraint: A bidder cannot pay a bid higher than his own

 T_a

 \mathcal{P}_{a}

Standard Auctions: Examples

- Equilibrium transfer vector $\tilde{t}^{a}(\boldsymbol{v}):[0,1]^{n} \to \mathbb{R}^{n}$
 - Associates a valuation vector v to a vector of transfers made by each bidder
 - Depends on the auction format and equilibrium bidding

- Equilibrium transfer vector $\tilde{t}^{a}(\boldsymbol{v}): [0,1]^{n} \to \mathbb{R}^{n}$
 - Associates a valuation vector v to a vector of transfers made by each bidder
 - Depends on the auction format and equilibrium bidding
- Bid fct

• Example: 2 bidders, uniform

$$\tilde{t}^{SPA} \left(\begin{bmatrix} 0.2\\ \\ 0.6 \end{bmatrix} \right) = \begin{bmatrix} 0\\ \\ b^S(0.2) \end{bmatrix} = \begin{bmatrix} 0\\ \\ 0.2 \end{bmatrix}$$

- Equilibrium transfer vector $\tilde{t}^{a}\left(\boldsymbol{v}\right):\left[0,1\right]^{n}\rightarrow\mathbb{R}^{n}$
 - Associates a valuation vector v to a vector of transfers made by each bidder
 - Depends on the auction format and equilibrium bidding
- ▶ Bid fct

• Example: 2 bidders, uniform

$$\tilde{t}^{SPA} \left(\begin{bmatrix} 0.2\\ 0.6 \end{bmatrix} \right) = \begin{bmatrix} 0\\ b^S(0.2) \end{bmatrix} = \begin{bmatrix} 0\\ 0.2 \end{bmatrix}$$
$$\tilde{t}^{FPA} \left(\begin{bmatrix} 0.2\\ 0.6 \end{bmatrix} \right) = \begin{bmatrix} 0\\ b^F(0.6) \end{bmatrix} = \begin{bmatrix} 0\\ 0.3 \end{bmatrix}$$

- Equilibrium transfer vector $\tilde{t}^{a}\left(\boldsymbol{v}\right):\left[0,1\right]^{n}\rightarrow\mathbb{R}^{n}$
 - Associates a valuation vector v to a vector of transfers made by each bidder
 - Depends on the auction format and equilibrium bidding
- Bid fct

• Example: 2 bidders, uniform

$$\tilde{t}^{SPA} \left(\begin{bmatrix} 0.2\\ 0.6 \end{bmatrix} \right) = \begin{bmatrix} 0\\ b^S(0.2) \end{bmatrix} = \begin{bmatrix} 0\\ 0.2 \end{bmatrix}$$
$$\tilde{t}^{FPA} \left(\begin{bmatrix} 0.2\\ 0.6 \end{bmatrix} \right) = \begin{bmatrix} 0\\ b^F(0.6) \end{bmatrix} = \begin{bmatrix} 0\\ 0.3 \end{bmatrix}$$
$$\tilde{t}^{APA} \left(\begin{bmatrix} 0.2\\ 0.6 \end{bmatrix} \right) = \begin{bmatrix} b^A(0.2)\\ b^A(0.6) \end{bmatrix} = \begin{bmatrix} 0.02\\ 0.18 \end{bmatrix}$$

- Equilibrium transfer vector $\tilde{t}^{a}(\boldsymbol{v}): [0,1]^{n} \to \mathbb{R}^{n}$
 - Associates a valuation vector v to a vector of transfers made by each bidder
 - Depends on the auction format and equilibrium bidding
- ▶ Bid fct

• By construction,

$$\Pi^{a}\left(\boldsymbol{v}\right)=\sum_{i=1}^{n}\tilde{t}_{i}^{a}\left(\boldsymbol{v}\right)$$

 $\Pi^{a}(v) = \mathbb{E}_{\boldsymbol{v}|v}\left[\Pi^{a}(\boldsymbol{v})\right]$

- Equilibrium transfer vector $\tilde{t}^{a}(\boldsymbol{v}): [0,1]^{n} \to \mathbb{R}^{n}$
 - Associates a valuation vector v to a vector of transfers made by each bidder
 - Depends on the auction format and equilibrium bidding
- By construction,

$$\Pi^{a}\left(oldsymbol{v}
ight)=\sum_{i=1}^{n} ilde{t}_{i}^{a}\left(oldsymbol{v}
ight)$$

$$\Pi^{a}\left(v\right) = \mathbb{E}_{\boldsymbol{v}|v}\left[\Pi^{a}\left(\boldsymbol{v}\right)\right] = \mathbb{E}_{\boldsymbol{v}|v}\left[\tilde{t}_{1}^{a}\left(\boldsymbol{v}\right)\right] + \left(n-1\right)\mathbb{E}_{\boldsymbol{v}|v}\left[\tilde{t}_{i\neq1}^{a}\left(\boldsymbol{v}\right)\right]$$

- Equilibrium transfer vector $\tilde{t}^a(\boldsymbol{v}): [0,1]^n \to \mathbb{R}^n$
 - Associates a valuation vector v to a vector of transfers made by each bidder
 - Depends on the auction format and equilibrium bidding
- By construction,

$$\Pi^{a}\left(oldsymbol{v}
ight)=\sum_{i=1}^{n} ilde{t}_{i}^{a}\left(oldsymbol{v}
ight)$$

Bid fct

$$\Pi^{a}(v) = \mathbb{E}_{\boldsymbol{v}|v}\left[\Pi^{a}(\boldsymbol{v})\right] = \mathbb{E}_{\boldsymbol{v}|v}\left[\tilde{t}_{1}^{a}(\boldsymbol{v})\right] + (n-1)\mathbb{E}_{\boldsymbol{v}|v}\left[\tilde{t}_{i\neq1}^{a}(\boldsymbol{v})\right]$$

• $\mathbb{E}_{\boldsymbol{v}|\boldsymbol{v}}\left[\tilde{t}_{1}^{a}\left(\boldsymbol{v}\right)\right]$: What I expect to pay in auction *a* given *that my* value is *v* - Independent of *a* \Rightarrow RET pins down transfer of "known" bidder

- Equilibrium transfer vector $\tilde{t}^{a}\left(\boldsymbol{v}\right):\left[0,1\right]^{n}\rightarrow\mathbb{R}^{n}$
 - Associates a valuation vector v to a vector of transfers made by each bidder
 - Depends on the auction format and equilibrium bidding
- By construction,

$$\Pi^{a}\left(oldsymbol{v}
ight)=\sum_{i=1}^{n} ilde{t}_{i}^{a}\left(oldsymbol{v}
ight)$$

$$\Pi^{a}(v) = \mathbb{E}_{\boldsymbol{v}|v}\left[\Pi^{a}(\boldsymbol{v})\right] = \mathbb{E}_{\boldsymbol{v}|v}\left[\tilde{t}_{1}^{a}(\boldsymbol{v})\right] + (n-1)\mathbb{E}_{\boldsymbol{v}|v}\left[\tilde{t}_{i\neq1}^{a}(\boldsymbol{v})\right]$$

- $\mathbb{E}_{\boldsymbol{v}|v}\left[\tilde{t}_1^a\left(\boldsymbol{v}\right)\right]$: What I expect to pay in auction a given *that my* value is v- Independent of $a \Rightarrow \mathsf{RET}$ pins down transfer of "known" bidder
- $\mathbb{E}_{\boldsymbol{v}|\boldsymbol{v}}\left[\tilde{t}^{a}_{i\neq 1}\left(\boldsymbol{v}\right)\right]$: What I expect to pay auction *a* given that a *competitor value* is *v* Denote with $t^{a}(v)$, determines differences across IRFs

- Equilibrium transfer vector $\tilde{t}^{a}(\boldsymbol{v}): [0,1]^{n} \to \mathbb{R}^{n}$
 - Associates a valuation vector v to a vector of transfers made by each bidder
 - Depends on the auction format and equilibrium bidding
- By construction,

$$\Pi^{a}\left(oldsymbol{v}
ight)=\sum_{i=1}^{n} ilde{t}_{i}^{a}\left(oldsymbol{v}
ight)$$

$$\Pi^{a}(v) = \mathbb{E}_{\boldsymbol{v}|v} \left[\Pi^{a}(\boldsymbol{v})\right] = \mathbb{E}_{\boldsymbol{v}|v} \left[\tilde{t}_{1}^{a}(\boldsymbol{v})\right] + (n-1) \mathbb{E}_{\boldsymbol{v}|v} \left[\tilde{t}_{i\neq1}^{a}(\boldsymbol{v})\right]$$
$$= t(v) + (n-1) t^{a}(v)$$

- Equilibrium transfer vector $\tilde{t}^{a}(\boldsymbol{v}): [0,1]^{n} \to \mathbb{R}^{n}$
 - Associates a valuation vector v to a vector of transfers made by each bidder
 - Depends on the auction format and equilibrium bidding
- By construction,

$$\Pi^{a}\left(oldsymbol{v}
ight)=\sum_{i=1}^{n} ilde{t}_{i}^{a}\left(oldsymbol{v}
ight)$$

$$\Pi^{a}(v) = \mathbb{E}_{\boldsymbol{v}|v} \left[\Pi^{a}(\boldsymbol{v})\right] = \mathbb{E}_{\boldsymbol{v}|v} \left[\tilde{t}_{1}^{a}(\boldsymbol{v})\right] + (n-1) \mathbb{E}_{\boldsymbol{v}|v} \left[\tilde{t}_{i\neq1}^{a}(\boldsymbol{v})\right]$$
$$= t(v) + (n-1) t^{a}(v)$$

$$\begin{split} \Pi^{a}\left(v\right) > \Pi^{a'}\left(v\right) &\iff t^{a}\left(v\right) > t^{a'}\left(v\right) \\ & \mathbb{E}\left[t^{a}\left(v\right)\right] = \mathbb{E}\left[t\left(v\right)\right] \end{split}$$

 $\mathbb{E}\left[t^{a}\left(v\right)\right] = \mathbb{E}\left[t\left(v\right)\right]$

1. $t^{a}(v) = \mathbb{E}[t(v)]$

 $\mathbb{E}\left[t^{a}\left(v\right)\right] = \mathbb{E}\left[t\left(v\right)\right]$

2. $t^{a}(v) = t(v)$

 $\mathbb{E}\left[t^{a}\left(v\right)\right] = \mathbb{E}\left[t\left(v\right)\right]$

1. $t^{a}(v) = \mathbb{E}[t(v)] \rightarrow \text{Need own payment}$ *independent* of competitor value

2. $t^{a}(v) = t(v)$

 $\mathbb{E}\left[t^{a}\left(v\right)\right] = \mathbb{E}\left[t\left(v\right)\right]$

1. $t^{a}(v) = \mathbb{E}[t(v)] \rightarrow \text{Need own payment}$ independent of competitor value $\rightarrow \text{APA}$

2. $t^{a}(v) = t(v)$

 $\mathbb{E}\left[t^{a}\left(v\right)\right] = \mathbb{E}\left[t\left(v\right)\right]$

- 1. $t^{a}(v) = \mathbb{E}[t(v)] \rightarrow \text{Need own payment}$ independent of competitor value $\rightarrow \text{APA}$
- 2. $t^{a}(v) = t(v) \rightarrow \text{Need own payment}$ to be *the same* of competitor

 $\mathbb{E}\left[t^{a}\left(v\right)\right] = \mathbb{E}\left[t\left(v\right)\right]$

1. $t^{a}(v) = \mathbb{E}[t(v)] \rightarrow \text{Need own payment}$ independent of competitor value $\rightarrow \text{APA}$

2. $t^{a}(v) = t(v) \rightarrow \text{Need own payment}$ to be *the same* of competitor $\rightarrow \text{APL}$

 $\mathbb{E}\left[t^{a}\left(v\right)\right] = \mathbb{E}\left[t\left(v\right)\right]$

1. $t^{a}(v) = \mathbb{E}[t(v)] \rightarrow \text{Need own payment}$ independent of competitor value $\rightarrow \text{APA}$

2. $t^{a}(v) = t(v) \rightarrow \text{Need own payment}$ to be *the same* of competitor $\rightarrow \text{APL}$

 $\mathbb{E}\left[t^{a}\left(v\right)\right] = \mathbb{E}\left[t\left(v\right)\right]$

- 1. $t^{a}(v) = \mathbb{E}[t(v)] \rightarrow \text{Need own payment}$ independent of competitor value $\rightarrow \text{APA}$
- 2. $t^{a}(v) = t(v) \rightarrow \text{Need own payment}$ to be *the same* of competitor $\rightarrow \text{APL}$
- Non-always increasing (contrary to $\Pi^{a}\left(v
 ight)$)
 - Decreasing (FPA)

 $\mathbb{E}\left[t^{a}\left(v\right)\right] = \mathbb{E}\left[t\left(v\right)\right]$

- 1. $t^{a}(v) = \mathbb{E}[t(v)] \rightarrow \text{Need own payment}$ independent of competitor value $\rightarrow \text{APA}$
- 2. $t^{a}(v) = t(v) \rightarrow \text{Need own payment}$ to be *the same* of competitor $\rightarrow \text{APL}$
- Non-always increasing (contrary to $\Pi^{a}\left(v
 ight)$)
 - Decreasing (FPA)
 - Non-monotonic (SPA):

When $v \uparrow$ Transfer (cond. on winning) \uparrow , Winning Prob \downarrow

 $\mathbb{E}\left[t^{a}\left(v\right)\right] = \mathbb{E}\left[t\left(v\right)\right]$

- 1. $t^{a}(v) = \mathbb{E}[t(v)] \rightarrow \text{Need own payment}$ independent of competitor value $\rightarrow \text{APA}$
- 2. $t^{a}(v) = t(v) \rightarrow \text{Need own payment}$ to be *the same* of competitor $\rightarrow \text{APL}$
- Non-always increasing (contrary to $\Pi^{a}\left(v
 ight)$)
 - Decreasing (FPA)
 - Non-monotonic (SPA):

- APA - APL - FPA - SPA

- When $v \uparrow \tau$ Transfer (cond. on winning) \uparrow , Winning Prob \downarrow
- \Rightarrow Single (multiple) crossings among some formats

Outline

- FPA vs SPA
 - Example: 2 bidders, uniform distribution
 - Single crossing
- Standard Auctions
 - Winner Pay Auctions
 - Pay-as-bid Auctions
 - $-\,$ FPA best at v=0 and worst at $v\approx 1\,$

Winner-Pay Auction (WPA): $\mathcal{P}_a = \{1\}$

At v = 0, the seller's interim revenue in the FPA is higher than in any other WPA For $v \approx 1$, the seller's interim revenue in the FPA is lower than in any other WPA

Key Intuition

• v affects transfer conditional on paying in all kPA except in FPA (if pay, pay own bid) \Rightarrow bad if v = 0, good if $v \approx 1$

At v = 0, the seller's interim revenue in the FPA is higher than in any other WPA For $v \approx 1$, the seller's interim revenue in the FPA is lower than in any other WPA

 $t^{F}\left(0\right) > t^{k}\left(0\right)$

At v = 0, the seller's interim revenue in the FPA is higher than in any other WPA For $v \approx 1$, the seller's interim revenue in the FPA is lower than in any other WPA

$$t^{F}(0) > t^{k}(0) \iff \mathbb{E}_{x}\left[t^{F}(0,x)\right] > \mathbb{E}_{x}\left[t^{k}(0,x)\right]$$

 $t^{k}(0,x) \equiv \text{Expected transfer of a bidder } x \text{ given a competitor is } 0$

At v = 0, the seller's interim revenue in the FPA is higher than in any other WPA For $v \approx 1$, the seller's interim revenue in the FPA is lower than in any other WPA

$$t^{F}(0) > t^{k}(0) \iff \mathbb{E}_{x}\left[t^{F}(0,x)\right] > \mathbb{E}_{x}\left[t^{k}(0,x)\right]$$

 $t^{k}\left(0,x
ight)\equiv$ Expected transfer of a bidder x given a competitor is 0

$$t^{F}\left(0,x\right) > t^{k}\left(0,x\right)$$

At v = 0, the seller's interim revenue in the FPA is higher than in any other WPA For $v \approx 1$, the seller's interim revenue in the FPA is lower than in any other WPA

$$t^{F}(0) > t^{k}(0) \iff \mathbb{E}_{x}\left[t^{F}(0,x)\right] > \mathbb{E}_{x}\left[t^{k}(0,x)\right]$$

 $t^{k}(0,x) \equiv \text{Expected transfer of a bidder } x \text{ given a competitor is } 0$

$$t^{F}\left(0,x\right)>t^{k}\left(0,x\right)$$

$$\mathbb{P}\left(x\text{ wins}|0\right)b^{F}\left(x\right)$$

At v = 0, the seller's interim revenue in the FPA is higher than in any other WPA For $v \approx 1$, the seller's interim revenue in the FPA is lower than in any other WPA

$$t^{F}(0) > t^{k}(0) \iff \mathbb{E}_{x}\left[t^{F}(0,x)\right] > \mathbb{E}_{x}\left[t^{k}(0,x)\right]$$

 $t^{k}(0,x) \equiv \text{Expected transfer of a bidder } x \text{ given a competitor is } 0$

$$\begin{split} t^{F}\left(0,x\right) &> t^{k}\left(0,x\right)\\ \mathbb{P}\left(x \text{ wins}|0\right) b^{F}\left(x\right) &> \mathbb{P}\left(x \text{ wins}|0\right) \mathbb{E}\left[b^{k}\left(y\right)|y \text{ is } (k-1)^{\text{th}}; x \text{ wins}; 0\right] \end{split}$$

At v = 0, the seller's interim revenue in the FPA is higher than in any other WPA For $v \approx 1$, the seller's interim revenue in the FPA is lower than in any other WPA

$$t^{F}(0) > t^{k}(0) \iff \mathbb{E}_{x}\left[t^{F}(0,x)\right] > \mathbb{E}_{x}\left[t^{k}(0,x)\right]$$

 $t^{k}\left(0,x
ight)\equiv$ Expected transfer of a bidder x given a competitor is 0

$$\begin{split} t^{F}\left(0,x\right) &> t^{k}\left(0,x\right) \\ b^{F}\left(x\right) &> \mathbb{E}\left[b^{k}\left(y\right)|y \text{ is } (k-1)^{\text{th}};x \text{ wins};0\right] \end{split}$$

At v = 0, the seller's interim revenue in the FPA is higher than in any other WPA For $v \approx 1$, the seller's interim revenue in the FPA is lower than in any other WPA

$$t^{F}(0) > t^{k}(0) \iff \mathbb{E}_{x}\left[t^{F}(0,x)\right] > \mathbb{E}_{x}\left[t^{k}(0,x)\right]$$

 $t^{k}\left(0,x
ight)\equiv$ Expected transfer of a bidder x given a competitor is 0

$$\begin{split} t^{F}\left(0,x\right) &> t^{k}\left(0,x\right)\\ b^{F}\left(x\right) &> \mathbb{E}\left[b^{k}\left(y\right)|y \text{ is } (k-1)^{\text{th}};x \text{ wins};0\right]\\ \textbf{[RET]} \qquad ||\\ \mathbb{E}\left[b^{k}\left(y\right)|y \text{ is } (k-1)^{\text{th}};x \text{ wins}\right] &> \mathbb{E}\left[b^{k}\left(y\right)|y \text{ is } (k-1)^{\text{th}};x \text{ wins};0\right] \end{split}$$

At v = 0, the seller's interim revenue in the FPA is higher than in any other WPA For $v \approx 1$, the seller's interim revenue in the FPA is lower than in any other WPA

$$t^{F}(0) > t^{k}(0) \iff \mathbb{E}_{x}\left[t^{F}(0,x)\right] > \mathbb{E}_{x}\left[t^{k}(0,x)\right]$$

 $t^{k}\left(0,x
ight)\equiv$ Expected transfer of a bidder x given a competitor is 0

• Prove, $\forall x$

$$\begin{split} t^{F}\left(0,x\right) &> t^{k}\left(0,x\right)\\ b^{F}\left(x\right) &> \mathbb{E}\left[b^{k}\left(y\right)|y \text{ is } (k-1)^{\text{th}};x \text{ wins};0\right]\\ \textbf{[RET]} \qquad ||\\ \mathbb{E}\left[b^{k}\left(y\right)|y \text{ is } (k-1)^{\text{th}};x \text{ wins}\right] &> \mathbb{E}\left[b^{k}\left(y\right)|y \text{ is } (k-1)^{\text{th}};x \text{ wins};0\right] \end{split}$$

• A bidder at v = 0 depresses expectation (v > v | 0)
At v = 0, the seller's interim revenue in the FPA is higher than in any other WPA For $v \approx 1$, the seller's interim revenue in the FPA is lower than in any other WPA

At v = 0, the seller's interim revenue in the FPA is higher than in any other WPA For $v \approx 1$, the seller's interim revenue in the FPA is lower than in any other WPA

- For all k, $t^{k}(1) = 0$
 - Never win (\Rightarrow never pay) if a competitor has value 1
 - Remark: property of WPA, $t^{a}(1) = 0 \Leftrightarrow \mathcal{P}_{a} = \{1\}$

At v = 0, the seller's interim revenue in the FPA is higher than in any other WPA For $v \approx 1$, the seller's interim revenue in the FPA is lower than in any other WPA

- For all k, $t^{k}(1) = 0$
 - Never win (\Rightarrow never pay) if a competitor has value 1
 - Remark: property of WPA, $t^{a}(1) = 0 \Leftrightarrow \mathcal{P}_{a} = \{1\}$
- At $v \approx 1$, for k > j

$$t^{k}(v) - t^{j}(v) \propto b^{k}(v) - b^{j}(1)$$

• $b^{j}(v)$ is increasing in $j: b^{F} < b^{S} < ... < b^{n}$

► All WPA

At v = 0, the seller's interim revenue in the FPA is higher than in any other WPA For $v \approx 1$, the seller's interim revenue in the FPA is lower than in any other WPA

- For all k, $t^{k}(1) = 0$
 - Never win (\Rightarrow never pay) if a competitor has value 1
 - Remark: property of WPA, $t^{a}(1) = 0 \Leftrightarrow \mathcal{P}_{a} = \{1\}$
- At $v \approx 1$, for k > j $t^{k}(v) - t^{j}(v) \propto b^{k}(v) - b^{j}(1)$
- $b^{j}(v)$ is increasing in $j: b^{F} < b^{S} < ... < b^{n}$

- Similar result for APA vs APL
 - Pay your bid \Rightarrow Hedge the risk conditional on payer Good at v = 0 (FPA $\succ kPA$ & APA $\succ APL$) Bad at $v \approx 1$ (kPA $\succ FPA$ & APL $\succ APA$)

Outline

- FPA vs SPA
 - Example: 2 bidders, uniform distribution
 - Single crossing
- Standard Auctions
 - Winner Pay Auctions
 - Pay-as-bid Auctions
 - $-\,$ FPA best at v=0 and worst at $v\approx 1\,$

Pay-as-Bid-Auction (PBA): $T_a(i) = i, \forall i \in \mathcal{P}_a$

• PBA with set of payers \mathcal{P} : PB- \mathcal{P}

- PBA with set of payers \mathcal{P} : PB- \mathcal{P}
- Bid function (by RET)

$$b^{\mathsf{PB-P}}(x) = \frac{t(x)}{\mathbb{P}(x \in \mathcal{P})}$$

- PBA with set of payers \mathcal{P} : PB- \mathcal{P}
- Bid function (by RET)

$$b^{\mathsf{PB-P}}(x) = \frac{t(x)}{\mathbb{P}(x \in \mathcal{P})}$$

• Interim transfer of x is

$$t^{\mathsf{PB-P}}(x,v) = b^{\mathsf{PB-P}}(x) \mathbb{P}_{v}(x \in \mathcal{P}) = t(x) \frac{\mathbb{P}_{v}(x \in \mathcal{P})}{\mathbb{P}(x \in \mathcal{P})}$$

where $\mathbb{P}_{v}(x \in \mathcal{P})$ is the probability $x \in \mathcal{P}$ given a competitor is v

- PBA with set of payers \mathcal{P} : PB- \mathcal{P}
- Bid function (by RET)

$$b^{\mathsf{PB-P}}(x) = \frac{t(x)}{\mathbb{P}(x \in \mathcal{P})}$$

• Interim transfer of x is

$$t^{\mathsf{PB-P}}(x,v) = b^{\mathsf{PB-P}}(x) \mathbb{P}_{v}(x \in \mathcal{P}) = t(x) \frac{\mathbb{P}_{v}(x \in \mathcal{P})}{\mathbb{P}(x \in \mathcal{P})}$$

where $\mathbb{P}_{v}(x \in \mathcal{P})$ is the probability $x \in \mathcal{P}$ given a competitor is v

• Likelihood ratio: How the probability that *x* is a payer changes with the information that a competitor has value *v*

PB-{ \mathcal{P} }: Examples

$$t^{\mathsf{PB-P}}\left(v\right) = \mathbb{E}\left[t\left(x\right)\frac{\mathbb{P}_{v}\left(x\in\mathcal{P}\right)}{\mathbb{P}\left(x\in\mathcal{P}\right)}\right]$$

All-Pay Auction: PB-[n]

$$\frac{\mathbb{P}_{v}\left(x\in[n]\right)}{\mathbb{P}\left(x\in[n]\right)} = \frac{1}{1}$$

• Then,

$$t^{APA}\left(v\right) = \mathbb{E}\left[t\left(x\right)\right]$$

· Realized transfer independent of competitors' values

PB-{ \mathcal{P} }: Examples

$$t^{\mathsf{PB-P}}(v) = \mathbb{E}\left[t\left(x\right)\frac{\mathbb{P}_{v}\left(x\in\mathcal{P}\right)}{\mathbb{P}\left(x\in\mathcal{P}\right)}\right]$$

First-Price Auction: $PB-\{1\}$

$$\frac{\mathbb{P}_{v}\left(x \in \{1\}\right)}{\mathbb{P}\left(x \in \{1\}\right)} = \begin{cases} 0 & \text{if } x < v \\ \frac{F^{n-2}(x)}{F^{n-1}(x)} & \text{if } x > v \end{cases} = \frac{1}{F\left(x\right)} \mathbf{1}\left\{x > v\right\}$$

• Then,

$$t^{FPA}\left(v\right) = \int_{v}^{1} \frac{t\left(x\right)}{F\left(x\right)} \mathrm{d}F\left(x\right)$$

PB-{ \mathcal{P} }: Examples

$$t^{\mathsf{PB-P}}(v) = \mathbb{E}\left[t\left(x\right)\frac{\mathbb{P}_{v}\left(x\in\mathcal{P}\right)}{\mathbb{P}\left(x\in\mathcal{P}\right)}\right]$$

Last Pay Auction: PB- $\{n\}$

$$\frac{\mathbb{P}_{v}\left(x \in \{n\}\right)}{\mathbb{P}\left(x \in \{n\}\right)} = \begin{cases} \frac{(1-F(x))^{n-2}}{(1-F(x))^{n-1}} & \text{if } x < v\\ 0 & \text{if } x > v \end{cases} = \frac{1}{1-F\left(x\right)} \mathbf{1}\left\{x < v\right\}$$

• Then,

$$t^{LPA}\left(v\right) = \int_{0}^{v} \frac{t\left(x\right)}{1 - F\left(x\right)} \mathsf{d}F\left(x\right)$$

- Increasing and unbounded
 - Unbounded bid (necessary whenever $1 \notin \mathcal{P}$)

$$b^{LPA}(x) = \frac{t(x)}{(1 - F(x))^{n-1}}$$

Ranking of IRF among PBA

Given v, finding the interim optimal PBA = Solving:

$$\overline{\mathsf{PB}}\left(\boldsymbol{v}\right) = \max_{\boldsymbol{\mathcal{P}}\subseteq[n]} \mathbb{E}\left[t\left(x\right)\frac{\mathbb{P}_{\boldsymbol{v}}\left(x\in\boldsymbol{\mathcal{P}}\right)}{\mathbb{P}\left(x\in\boldsymbol{\mathcal{P}}\right)}\right]$$

Ranking of IRF among PBA

Given v, finding the interim optimal PBA = Solving:

$$\overline{\mathsf{PB}}\left(\boldsymbol{v}\right) = \max_{\boldsymbol{\mathcal{P}} \subseteq [n]} \mathbb{E}\left[t\left(x\right) \frac{\mathbb{P}_{\boldsymbol{v}}\left(x \in \boldsymbol{\mathcal{P}}\right)}{\mathbb{P}\left(x \in \boldsymbol{\mathcal{P}}\right)}\right]$$

Prop: For any $\mathcal{P} \subseteq [n]$

- $\Pi^{\mathsf{PB}-\{1\}}(0) > \Pi^{\mathsf{PB}-\mathcal{P}}(0) > \Pi^{\mathsf{PB}-\{n\}}(0)$
- $\Pi^{\mathsf{PB}-\{n\}}(v) > \Pi^{\mathsf{PB}-\mathcal{P}}(v) > \Pi^{\mathsf{PB}-\{1\}}(v)$ for $v \approx 1$

Ranking of IRF among PBA

Given v, finding the interim optimal PBA = Solving:

$$\overline{\mathsf{PB}}\left(v\right) = \max_{\mathcal{P}\subseteq[n]} \mathbb{E}\left[t\left(x\right)\frac{\mathbb{P}_{v}\left(x\in\mathcal{P}\right)}{\mathbb{P}\left(x\in\mathcal{P}\right)}\right]$$

Prop: For any $\mathcal{P} \subseteq [n]$

- $\Pi^{\mathsf{PB-}\{1\}}(0) > \Pi^{\mathsf{PB-}\mathcal{P}}(0) > \Pi^{\mathsf{PB-}\{n\}}(0)$ [FPA best among PBAs at 0]
- $\Pi^{\mathsf{PB}-\{n\}}(v) > \Pi^{\mathsf{PB}-\mathcal{P}}(v) > \Pi^{\mathsf{PB}-\{1\}}(v)$ for $v \approx 1$ [LPA best among PBAs at 1]

• At v = 0 special bidder is the minimum (n^{th} order stat) $\frac{\mathbb{P}_0 \left(x \in \{1\}\right)}{\mathbb{P} \left(x \in \{1\}\right)} > \frac{\mathbb{P}_0 \left(x \in \mathcal{P}\right)}{\mathbb{P} \left(x \in \mathcal{P}\right)} > \frac{\mathbb{P}_0 \left(x \in \{n\}\right)}{\mathbb{P} \left(x \in \{n\}\right)} \quad \forall x, \mathcal{P}$

- Likelihood that a generic bidder is any other order statistics increases
- Most significant increase for likelihood of being the maximum
- \Rightarrow Seller prefers to receive payments only from the first-order statistic
- At $v \approx 1$ argument is reversed

Prop:

- At v = 0, the FPA interim *dominates* all standard auctions
- At $v \rightarrow 1$, the FPA is interim dominated by all standard auctions
- Moreover,

 $1 \notin \{\mathcal{P}_a\} \iff \lim_{v \to 1} \Pi^a(v) = \infty$

- At v = 0, the FPA interim *dominates* all standard auctions
- At v → 1, the FPA is interim dominated by all standard auctions
- Moreover,

$$1 \notin \{\mathcal{P}_a\} \iff \lim_{v \to 1} \Pi^a(v) = \infty$$

- At v = 0, the FPA interim *dominates* all standard auctions
- At v → 1, the FPA is interim dominated by all standard auctions
- Moreover,

$$1 \notin \{\mathcal{P}_a\} \iff \lim_{v \to 1} \Pi^a(v) = \infty$$

- At v = 0, the FPA interim *dominates* all standard auctions
- At v → 1, the FPA is interim dominated by all standard auctions
- Moreover,

$$1 \notin \{\mathcal{P}_a\} \iff \lim_{v \to 1} \Pi^a(v) = \infty$$

- At v = 0, the FPA interim *dominates* all standard auctions
- At v → 1, the FPA is interim dominated by all standard auctions
- Moreover,

$$1 \notin \{\mathcal{P}_a\} \iff \lim_{v \to 1} \Pi^a(v) = \infty$$

- At v = 0, the FPA interim *dominates* all standard auctions
- At v → 1, the FPA is interim dominated by all standard auctions
- Moreover,

$$1 \notin \{\mathcal{P}_a\} \iff \lim_{v \to 1} \Pi^a(v) = \infty$$

- At v = 0, the FPA interim *dominates* all standard auctions
- At v → 1, the FPA is interim dominated by all standard auctions
- Moreover,

$$1 \notin \{\mathcal{P}_a\} \iff \lim_{v \to 1} \Pi^a(v) = \infty$$

Prop:

- At v = 0, the FPA interim *dominates* all standard auctions
- At v → 1, the FPA is interim dominated by all standard auctions
- Moreover,

 $1 \notin \{\mathcal{P}_a\} \iff \lim_{v \to 1} \Pi^a(v) = \infty$

• Then,

$$\mathsf{Im}\left(\Pi^{FPA}\right) \subset \mathsf{Im}\left(\Pi^{a}\right) \subseteq \mathsf{Im}\left(\Pi^{LPA}\right)$$

 \Rightarrow FPA less risky

Conclusion

- We analyze how the marginal contribution of a single bidder varies across formats
 - This contribution **is not** equal to t(v), but...
 - Depends on how presence of v impacts expected transfer from *other* bidders
 - * Driver of interim difference across formats
- Bidders play the efficient equilibrium of the format with symmetric competitors
 - Preliminary analysis: bidders' sophistication limits ability to exploit information

Savvy Bidders

- Bidders are aware that the seller knows v before choosing the auction format
 - The identity, but not the valuation, of the special bidder is known
- Let \mathcal{A} be the set of possible auction formats
- Seller chooses $\mathcal{E}:[0,1] \to \mathcal{A}, \mathcal{E}(v)$ is format chosen when special bidder is v

 $-\mathcal{E}(a)^{-1}$ is the set of values that induce $a \Rightarrow$ information about a competitor

- Bidders: Observe $a \Rightarrow play$ equm of asym. auction $\mathcal{E}(a)^{-1} \times [0,1]^{n-1}$
 - -v best responds to deviations (which he detects!)
- Seller: Observe $v \Rightarrow \mathsf{play} \ \mathcal{E}(v)$

Equilibrium Algorithm

- 1. Compute equilibrium of auction a with asymmetric bidders $V \times [0,1]^{n-1}$
 - Bids $b^a_{V,S}:V \to \mathbb{R}$ and $b^a_{V,N}:[0,1] \to \mathbb{R}$ that are mutual best responses
- 2. Extend the equilibrium to $\left[0,1\right]^n$
 - Compute for each $v \notin V$, the best response to n-1 bidders playing $b_V^{a,N}$
 - $\tilde{b}^a_{V,S}: [0,1] \to \mathbb{R}$ extends $b^a_{V,S}$ on $[0,1] \setminus V$

* Types of the special bidders for which the seller should not choose format a, play a best response to the equilibrium in auction a

3. Define interim revenue $\Pi_V^a(v) \coloneqq \mathbb{E}\left[\Pi_V^a | v_1 = v\right]$ (also defined for $v \notin V$)

Equilibrium Definition

Def: The function $\mathcal{E}(v)$ is a *savvy-bidder equilibrium* if: 1. $\Pi^{a}_{\Omega_{a}}$ is well-definite $\forall a \in \mathcal{A}$ (There exist bid functions as defined in Step 1 and 2)

2. For all
$$v \in [0,1]$$
 and $a \in \mathcal{A}$, $\Pi_{\mathcal{E}^{-1}(\mathcal{E}(v))}^{\mathcal{E}(v)}(v) \ge \Pi_{\mathcal{E}^{-1}(a)}^{a}(v)$

A Savvy Bidders Equilibrium

Prop: Suppose *F* is the uniform CDF and $A = \{FPA, SPA\}$. Then, for each *n*

$$\mathcal{E}\left(v\right) = \begin{cases} FPA & v = 0\\ SPA & v > 0 \end{cases}$$

constitutes a savvy-bidder equilibrium where

$$b_{0,N}^{F}\left(x\right) = \frac{n-2}{n-1}x, \quad \tilde{b}_{0,S}^{F}\left(x\right) = \max\left\{\frac{n-1}{n}x, \frac{n-2}{n-1}\right\}, \quad b_{(0,1],N}^{SPA}\left(x\right) = \tilde{b}_{(0,1],S}^{S}\left(x\right) = x$$

- With savvy-bidder the seller cannot exploit his information
- Others will adjust their bids leading to an unraveling process
 - \Rightarrow Choice of format where bids are unaffected by information about competitors
 - \Rightarrow Only the SPA is immune to manipulations

Reserve Price

- Seller sets reserve price *R* in both FPA and SPA
- **Proposition**: There is a unique $\tilde{v} > R$ such that
 - $-\ \Pi^{F}\left(v\right)>\Pi^{S}\left(v\right) \text{ if }v<\widetilde{v}$
 - $-\ \Pi^{S}\left(v\right)>\Pi^{F}\left(v\right) \text{ if }v>\widetilde{v}$
- $\Pi^{F}\left(v
 ight)-\Pi^{S}\left(v
 ight)$ is
 - maximized at any $v \leq R$
 - minimized at $b^{F}(\hat{v}, R) = \psi(\hat{v})$

FPA is best at 0

• Using $t^{FPA}(x,0) = \frac{t(x)}{F(x)}$ we obtain $t^{FPA}(x,0) > t^{a}(x,0) \Leftrightarrow$ $\sum_{j \in \mathcal{P}_{a}} \mathbb{P}_{\boldsymbol{v}|x} \left[v_{(j)} = x \right] \mathbb{E}_{\boldsymbol{v}} \left[b^{a} \left(v_{(T_{a}(j))} \left(\boldsymbol{v} \right) \right) | v_{(j)} = x \right] >$ $\sum_{j \in \mathcal{P}_{a}} \frac{n-j}{n-1} \mathbb{P}_{\boldsymbol{v}|x} \left[v_{(j)} = x \right] \mathbb{E}_{\boldsymbol{v}} \left[b^{a} \left(v_{(T_{a}(j))} \left(\boldsymbol{v} \right) \right) | v_{(j)} = x, \ v_{(n)} = 0 \right]$

that holds as

• $\frac{n-j}{n-1} < 1$ for all j > 1 (\approx want highest bidder to pay), and $\mathbb{E}_{\boldsymbol{v}} \left[b^a \left(v_{(k)} \left(\boldsymbol{v} \right) \right) | v_{(j)} = x \right] \ge \mathbb{E}_{\boldsymbol{v}} \left[b^a \left(v_{(k)} \left(\boldsymbol{v} \right) \right) | v_{(j)} = x, \ v_{(n)} = 0 \right]$

want payers to pay their bids

Bidding functions: 3 uniform bidders

• LPA:

$$b^{\mathsf{PB}-\{3\}} = \frac{t(v)}{\mathbb{P}_{\boldsymbol{v}|v}\left(v_{(3)}=v\right)} = \frac{2}{3} \frac{v^3}{(1-v)^2}$$

• APL:

$$\begin{split} b^{APA}\left(v\right) &= \frac{2}{3}v^{3} = \mathbb{E}_{\boldsymbol{v}|v}\left[b^{APL}\left(v_{(3)}\left(\boldsymbol{v}\right)\right)\right] \\ &= b^{APL}\left(v\right)\left(1-v\right)^{2} + \int_{0}^{v}b^{APL}\left(w\right)2\left(1-w\right)\,\mathrm{d}w \\ &\implies \frac{\mathrm{d}}{\mathrm{d}v}b^{APL}\left(v\right) = \frac{2v^{2}}{\left(1-v\right)^{2}} \\ &\implies b^{APL}\left(v\right) = \frac{2v\left(2-v\right)}{1-v} + 4\log\left(1-v\right) \end{split}$$

• $2 \rightarrow 3$ auction

$$b^{\mathsf{PB-}\{2\}}(v) v = \int_0^v b^{2,3}(w) \, \mathrm{d}w$$
$$\implies b^{2,3}(v) = \frac{v^2 (3-2v)}{3 (1-v)^2}$$

$\mathbb{E}\left[t^{a}\left(v\right)\right]$

Let

$$t^{a}\left(x,v\right)\coloneqq\mathbb{E}_{\boldsymbol{v}|x,v}\left[\tilde{t}_{1}^{a}\left(\boldsymbol{v}\right)\right]$$

be the expected transfer of a bidder with value x given a competitor has value v.

• By construction,

$$\mathbb{E}_{v}\left[t^{a}\left(x,v\right)\right] = t\left(x\right), \quad \mathbb{E}_{x}\left[t^{a}\left(x,v\right)\right] = t^{a}\left(v\right)$$

• Then

$$\mathbb{E}_{x}\left[t\left(x\right)\right] = \mathbb{E}_{x,v}\left[t^{a}\left(x,v\right)\right] = \mathbb{E}_{v}\left[t^{a}\left(v\right)\right]$$

Equilibrium Bidding

- Denote $F_{(j,m)}^v: [0,1] \to [0,1]$ the CDF of the j^{th} order statistic of m draws from F truncated at v
- Using the structure of the standard auction,

$$\begin{split} t\left(v\right) &= \sum_{j \in \mathcal{P}_{a}} \mathbb{P}_{\boldsymbol{v}|v}\left[v_{(j)} = v\right] \mathbb{E}_{\boldsymbol{v}}\left[b^{a}\left(v_{(T_{a}(j))}\left(\boldsymbol{v}\right)\right)|v_{(j)} = v\right] \\ &= \sum_{j \in \mathcal{P}_{a}} \mathbb{P}_{\boldsymbol{v}|v}\left[v_{(j)} = v\right] \int_{0}^{v} b^{a}\left(x\right) \mathsf{d}F_{(T_{a}(j)-j,n-j)}^{v}\left(x\right) \end{split}$$

where the unknown is the bidding function $b^a:[0,1]\to \mathbb{R}$

- -v pays only if he is in the set of payers \mathcal{P}_a , and
- conditional on being the j^{th} -order statistic he pays the $T_a(j)^{th}$ -highest bid
- If the above admits a monotone solution (with initial condition $b^a(0) = 0$), then such solution constitutes an equilibrium of the standard auction *a*

WPA: Ranking at the extrema

- Interim ranking between kPA and (k + 1)PA is a race between:
- 1. Collect bids of higher types (*k*PA better)
- 2. Higher bid functions ((k+1)PA better)

Back

Single Crossing: Sketch of Proof

• Still, only the event "v loses" matters
• Still, only the event "v loses" matters

$$\begin{split} \Delta\left(v\right) &\coloneqq \Pi^{F}\left(v\right) - \Pi^{S}\left(v\right) \\ &\propto \int_{v}^{1} \left[b^{F}\left(x,n\right) - \psi\left(x\right)\right] \mathrm{d}F^{n-1}\left(x\right) \end{split}$$

• Still, only the event "v loses" matters

$$\begin{split} \Delta\left(v\right) &\coloneqq \Pi^{F}\left(v\right) - \Pi^{S}\left(v\right) \\ &\propto \int_{v}^{1} \left[b^{F}\left(x,n\right) - \psi\left(x\right)\right] \mathrm{d}F^{n-1}\left(x\right) \end{split}$$

- 1. $\mathbb{E}_{v} [\Delta (v)] = 0$ 2. $\Delta (1) = 0, \quad \Delta (0) > 0$
- 3. Δ has a single minimum

• Still, only the event "v loses" matters

$$\begin{split} \Delta\left(v\right) &\coloneqq \Pi^{F}\left(v\right) - \Pi^{S}\left(v\right) \\ &\propto \int_{v}^{1} \left[b^{F}\left(x,n\right) - \psi\left(x\right)\right] \mathrm{d}F^{n-1}\left(x\right) \end{split}$$

- 1. $\mathbb{E}_{v} [\Delta(v)] = 0$ 2. $\Delta(1) = 0, \quad \Delta(0) > 0$
- 3. Δ has a single minimum

• Still, only the event "v loses" matters

$$\begin{split} \Delta\left(v\right) &\coloneqq \Pi^{F}\left(v\right) - \Pi^{S}\left(v\right) \\ &\propto \int_{v}^{1} \left[b^{F}\left(x,n\right) - \psi\left(x\right)\right] \mathrm{d}F^{n-1}\left(x\right) \end{split}$$

- 1. $\mathbb{E}_{v} [\Delta (v)] = 0$ (RET+LIE) 2. $\Delta (1) = 0$, $\Delta (0) > 0$
- 3. Δ has a single minimum

 \Rightarrow Unique crossing \tilde{v}

• Still, only the event "v loses" matters

$$\begin{split} \Delta\left(v\right) &\coloneqq \Pi^{F}\left(v\right) - \Pi^{S}\left(v\right) \\ &\propto \int_{v}^{1} \left[b^{F}\left(x,n\right) - \psi\left(x\right)\right] \mathrm{d}F^{n-1}\left(x\right) \end{split}$$

- 1. $\mathbb{E}_{v} [\Delta (v)] = 0$ (RET+LIE) 2. $\Delta (1) = 0$, $\Delta (0) > 0$
- 3. Δ has a single minimum
 - $\Delta'(v) = 0$ when
 - -v=0: maximum
 - $\ \psi \left(\hat{v} \right) = b^F \left(\hat{v} \right)$

If unique solution, then unique minimum

 \Rightarrow Unique crossing \tilde{v}

