Selling Correlated Information Products

Klajdi Hoxha

Stanford GSB

August 28, 2023

Running Example: Consulting Services

- Consulting company (e.g. McKinsey) offering consulting services
- Clients differ in type (e.g. scale) of investment
- Client's value/size of the project \equiv willingness to pay for consultants

• Trade-off:

- ▶ high value clients can downplay investment plan to avoid higher fees,
- might get hurt from imperfect information/expertise,
- if information spillovers are strong then lying could be profitable

Questions

- How should a provider price these services given information spillovers?
- What are some environments in which common **fee structures** observed in practice are optimal contracts?
 - value-based fees (e.g. consultants charging a % of estimated profits)
 - flat/hourly rates (e.g. course fees)

MODEL

Model

- A monopolist seller (consultant) and a buyer (firm)
- Firm is privately informed about type (project's characteristics) $heta \in \Theta$
 - θ distributed according to $F\in\Delta(\Theta)$
- Project specific state $\omega_{\theta} = G(\text{ood})$ or B(ad)

• E.g.
$$(\omega_{\theta_1}, \omega_{\theta_2}, \omega_{\theta_3}) = (B, B, G)$$
 for $\Theta = \{\theta_1, \theta_2, \theta_3\}$

- Let $\Omega = \{G,B\}^\Theta$ be the set of states
- Common prior $\mu \in \triangle(\Omega)$
- (Marginal) probability that project θ is good (abusing notation):

$$\mu_{\theta} \equiv \mathbb{P}_{\mu} \Big(\omega_{\theta} = G \Big)$$

Decision Making Under Uncertainty

- Firm takes action a_g (invest) or a_b (don't invest)
- Ex-post payoff from taking $a \in A = \{a_g, a_b\}$:

$$\begin{array}{c|c} u(a,\omega_{\theta}) & a_g & a_b \\ \hline G & u(\theta) & 0 \\ B & 0 & u(\theta) \end{array}$$

• Expected payoff under prior information:

$$\underline{U}(\theta) = \max_{a \in A} \{ \mu_{\theta}, (1 - \mu_{\theta}) \} u(\theta)$$
 (Outside Option)

Information Design

- Seller can provide additional information at zero marginal cost
- An information product (Blackwell experiment) $E = (S, \pi)$, consists of a (possibly uncountable) set of signals S and signal function

$$\pi:\Omega\to\Delta(S)$$

- Let $U(E,\theta)$ be expected payoff of θ from E
- Value (WTP) for information product E is given by

$$V(E,\theta) = U(E,\theta) - \underline{U}(\theta) (\geq 0)$$

Seller's Problem

- Seller posts a revenue maximizing menu of $\mathcal{M} = \{\mathcal{E}, t\}$
 - \mathcal{E} is a collection of experiments; tariff $t: \mathcal{E} \to \mathbb{R}_+$
- Seller **commits** ex-ante and state outcomes, actions and signal realizations are **not contractible**
- Simple Case 1: $correlation(\omega_{\theta}, \omega_{\theta'}) = 0 \Rightarrow$ first degree price discrimination
 - horizontal differentiation aspect of the model
- Simple Case 2: $correlation(\omega_{\theta}, \omega_{\theta'}) = 1 \Rightarrow$ standard **one** (information) good monopoly screening
 - vertical differentiation aspect of the model

Main Results

- Revelation Principle and Simple Menus
- Two Types (SKIP!)
- Continuum of Types

Revelation Principle

• By Revelation Principle, seller offers direct menu

$$\mathcal{M} = \{ E(\theta), t(\theta) \}_{\theta}$$

• Seller's problem:

$$\max_{\{E(\theta),t(\theta)\}} \int_{\theta \in \theta} t(\theta) dF(\theta)$$
(Obj)
$$V(E(\theta),\theta) - t(\theta) \ge V(E(\theta'),\theta) - t(\theta')$$
(IC _{θ,θ'})
$$V(E(\theta),\theta) - t(\theta) \ge 0$$
(IR _{θ})

Simple Menus

Proposition 1. Seller can restrict without loss of generality to any IC and IR *simple* direct menu such that

i. Customized $E(\theta) = (\pi_{\theta}, S)$: Signal function $\pi_{\theta} : \Omega_{\theta} \to S$

ii. Responsive
$$E(heta)=(\pi_ heta,\{s_g,s_b\})$$
: $a^*_{s_g, heta}=a_g$ and $a^*_{s_b, heta}=a_b$

Simple Menus

Proposition 1. Seller can restrict without loss of generality to any IC and IR *simple* direct menu such that

- i. Customized $E(\theta) = (\pi_{\theta}, S)$: Signal function $\pi_{\theta} : \Omega_{\theta} \to S$
- ii. Responsive $E(\theta) = (\pi_{\theta}, \{s_g, s_b\})$: $a^*_{s_g, \theta} = a_g$ and $a^*_{s_b, \theta} = a_b$
- $\bullet~ \mbox{Represent}~ E(\theta)$ as

$$\begin{array}{c|c|c} \Omega_{\theta} \backslash S & s_g & s_b \\ \hline G & \pi_{g,\theta} & 1 - \pi_{g,\theta} \\ B & 1 - \pi_{b,\theta} & \pi_{b,\theta} \end{array}$$

and impose (ii.) as additional constraint to seller's problem:

$$\underbrace{\mu_{\theta}\pi_{g,\theta} + (1 - \mu_{\theta})\pi_{b,\theta}}_{\text{Probability of success (quality)}} \ge \max\{\mu_{\theta}, 1 - \mu_{\theta}\}$$
(Rsp_{\theta})

Main Results

- Revelation Principle and Simple Menus
- Two Types (SKIP!)
- Continuum of Types

• Consider $\Theta = [0,\overline{\theta}]$ and non-decreasing $u(\cdot)$

(A1.) Markov Property(M)

• Consider $\Theta = [0,\overline{\theta}]$ and non-decreasing $u(\cdot)$

(A1.) Markov Property(M)

$$P(\boldsymbol{\omega}_{\boldsymbol{\theta}} \mid \boldsymbol{\omega}_{\boldsymbol{\theta}'}, \boldsymbol{\omega}_{\boldsymbol{\theta}''}) = P(\boldsymbol{\omega}_{\boldsymbol{\theta}} \mid \boldsymbol{\omega}_{\boldsymbol{\theta}'})$$

(A2.) Homogeneity(H)

Continuum of Types: Markov Chain

Lemma 1. If μ satisfies (A1) and (A2) \Rightarrow 2-state Markov Chain:

• Solve for steady state: $\mu_{\theta} = \mu \in (0, 1)$, where

 $\mu = \lambda_b/(\lambda_g + \lambda_b), \text{ and let } \mu \geq 1/2 \text{ w.l.o.g.}$

Continuum of Types: Full Surplus Extraction

• Suppose seller offers $\bar{E}(\theta)$ and sets price at highest WTP

$$\bar{t}(\theta) = V(\bar{E}(\theta), \theta)$$

= $u(\theta) - \max\{\mu_{\theta}, 1 - \mu_{\theta}\}u(\theta)$
= $(1 - \mu)u(\theta)$

• Necessary condition: Local downward deviations $\theta - \Delta$ are not profitable:

$$\underbrace{(1-\mu)\Big(u(\theta)-u(\theta-\Delta)\Big)}_{\bar{t}(\theta)-\bar{t}(\theta-\Delta) \text{ (Marginal gain)}} \quad (?) \quad \underbrace{(\mu P_{gb}(\Delta)+(1-\mu)P_{bg}(\Delta))\,u(\theta)}_{\text{(Marginal cost)}}$$

Continuum of Types: Full Surplus Extraction

 \bullet Suppose seller offers $\bar{E}(\theta)$ and sets price at highest WTP

$$\bar{t}(\theta) = V(\bar{E}(\theta), \theta)$$

= $u(\theta) - \max\{\mu_{\theta}, 1 - \mu_{\theta}\}u(\theta)$
= $(1 - \mu)u(\theta)$

• Necessary condition: Local downward deviations $\theta - \Delta$ are not profitable:

$$\underbrace{(1-\mu)\Big(u(\theta)-u(\theta-\Delta)\Big)}_{\bar{t}(\theta)-\bar{t}(\theta-\Delta) \text{ (Marginal gain)}} \leq \underbrace{(\mu P_{gb}(\Delta)+(1-\mu)P_{bg}(\Delta))u(\theta)}_{\text{(Marginal cost)}}$$

Continuum of Types: Full Surplus Extraction

Proposition 2. Seller extracts full surplus if and only if

$$(1-\mu)u'(\theta) \le (\mu\lambda_g + (1-\mu)\lambda_b)u(\theta), \quad \forall \theta \in \Theta.$$
 (C1)

• Writing
$$\lambda_b = \mu \lambda_g / (1 - \mu)$$
, re-arrange (C1):

$$u'(\theta) \le 2\lambda_b u(\theta), \quad \forall \theta \in \Theta$$

- Suppose (C1) doesn't hold
- Let $u(\cdot)$ be concave and suppose there exists $\theta_G \in (0,\overline{\theta})$ such that

$$u'(\theta_G) = 2\lambda_b u(\theta_G),$$

 $\blacktriangleright \ \ \, {\rm Note:}\ \, u'(\theta)>2\lambda_b u(\theta) \ \, {\rm for}\ \, \theta<\theta_G \ \, {\rm and}\ \, u'(\theta)<2\lambda_b u(\theta) \ \, {\rm for}\ \, \theta>\theta_G$

Continuum of Types: Optimal Menu (Graphs)

• Buyer's surplus $V(E^*(\theta),\theta) - t^*(\theta)$

• Distort only one signal: $\pi_{h\,\theta}^* = 1$

Continuum of Types: Optimal Menu (Graphs)

• Payments $t^*(\theta)$ vs. WTP $V(\bar{E}(\theta), \theta)$

Continuum of Types: Fee Structures in Practice

• As $\lambda_g, \lambda_b \to 0$ (correlation ≈ 1) \Rightarrow flat rate fees • As $\lambda_g, \lambda_b \to \infty$ (correlation ≈ 0)

\Rightarrow project-based fees

Conclusion

- Take aways:
 - imitation costs when buying information goods
 - unlike typical results in mechanism design, monopolist can extract full surplus or otherwise leave highest rents to 'middle' types

THANK YOU!

Appendix

Related Literature

- Design and Price of Information: Bergemann et al. (2018), Admati and Pfleiderer (1986, 1990), Babaioff et al. (2012), Liu et al. (2021), Eső and Szentes (2007), etc.
- Screening and Product Differentiation: Mussa and Rosen (1978), Maskin and Riley (1984), Perloff and Salop (1985), Spulber (1989), Rochet and Stole (2002), etc.
- Complex Environments: Jovanovic and Rob (1990), Callander (2008)

Related Literature

	Prior $\mu_{ heta}$	Utility	Correlation
Bergemann et al. (2018)	private	$u(\theta) = u(\theta')$	$\operatorname{corr}(\theta,\theta')=1$
this project	common	$u(\theta) \neq u(\theta')$	$\operatorname{corr}(\theta,\theta')\in[0,1]$

- Bergemann et al. (2018) considers a common state ω (as if corr $(\theta, \theta') = 1$), but types differ in private interim beliefs μ_{θ}
- This project considers many states (ω_{θ}) , but common prior beliefs, and different ex-post payoffs
- \Rightarrow Switch off screening over differences in prior beliefs

• Transition matrix function

$$P(\Delta) = \exp(Q\Delta) = \frac{1}{\lambda_g + \lambda_b} \begin{pmatrix} \lambda_b + \lambda_g e^{-\Delta(\lambda_g + \lambda_b)} & \lambda_g - \lambda_g e^{-\Delta(\lambda_g + \lambda_b)} \\ \lambda_b - \lambda_b e^{-\Delta(\lambda_g + \lambda_b)} & \lambda_g + \lambda_b e^{-\Delta(\lambda_g + \lambda_b)} \end{pmatrix}$$

satisfying forward equation $P'(\theta) = P(\theta)Q$ and backward equation $P'(\theta) = QP(\theta)$.

▲ Back