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Introduction
▶ Classical linear model with a single endogenous variable x and

instruments Z,

y = x𝛽 + u
x = Z𝜋 + v2

▶ Model is overidentified, kz > 1.
▶ 𝔼 (ziui) = 0.
▶ First-stage F-statistic, test for H0 : 𝜋 = 0, also valid test for weak

instruments, in terms of bias and/or Wald test size distortion of 2sls,
Liml and Fuller, when (u, v2|Z) homoskedastic (Stock and Yogo, 2005).
Rule of thumb, F > 10.

▶ Most (all?) packages produce robust F-statistics when estimating by 2sls
with robust standard errors (heteroskedasticity, serial correlation,
clustering).

▶ While still test for H0 : 𝜋 = 0, robust F does not convey weak instrument
information for 2sls.

▶ Isaiah Andrews (2018) famously finds a design where mean Fr = 100, 000
and the 2sls confidence set has a 15% size distortion.
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Introduction
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Introduction

▶ Montiel-Olea and Pflueger (2013) Effective F-statistic is test for weak
instruments related to Nagar bias of 2sls, valid under general forms of
nonhomoskedasticity.

▶ Andrews, Stock and Sun (2019) recommend “that researchers judge
instrument strength based on the effective F-statistic of Montiel Olea and
Pflueger ”.

▶ This paper: shows that MOP method applies to class of linear GMM
estimators, with associated class of generalized effective F-statistics.

▶ It follows that the robust F-statistic is a test for weak instruments related
to the Nagar bias of a GMM estimator.

▶ I call this the GMMf estimator, as the weight matrix is based on the
first-stage residuals.

▶ So when Fr is large, this estimator performs well, as in the Andrews
(2018) example.
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Model and Assumptions
The general model specification is given by

y = x𝛽 + u = Z𝜋y + v1

x = Z𝜋 + v2

𝜋y = 𝜋𝛽, v1 = u + 𝛽v2.

Weak instrument asymptotics: 𝜋 = 𝜋n = c√
n .

Further, as n → ∞,
1
n

Z′Z
p
→ Qzz

1
n [v1 v2]′ [v1 v2]

p
→ 𝛴v =

[
𝜎2

1 𝜎12
𝜎12 𝜎2

2

]
1√
n

(
Z′v1
Z′v2

)
d→ 𝒩

(
0,W =

[
W1 W12
W′

12 W2

] )
Ŵ

p
→ W.

For example,

Ŵ2 =
1
n

n∑
i=1

v̂2
2iziz′i .
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2sls and F-Statistics

The 2sls estimator is
𝛽̂2sls =

x′Pzy
x′Pzx

,

Pz = Z (Z′Z)−1 Z′.

Standard F-statistic is
F̂ =

x′Pzx
kz 𝜎̂2

2
.

The Effective F-statistic is given by,

F̂eff =
x′Pzx

tr
((

1
n Z′Z

)−1/2
Ŵ2

(
1
n Z′Z

)−1/2
) =

x′Pzx

tr
(
Ŵ2

(
1
n Z′Z

)−1
) ,

and the robust F is

F̂r =
x′ZŴ−1

2 Z′x
nkz

.
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Generalized Effective F-statistic

▶ Montiel Olea and Pflueger (2013) show that the effective F-statistic is a
test for weak instruments in terms of Nagar bias of 2sls estimator as a
proportion of a benchmark, worst-case bias.

▶ I show that the their approach applies to the class of one-step linear
GMM estimators

𝛽̂Ωn =
x′ZΩnZ′y
x′ZΩnZ′x

,

with Ωn
p
→ Ω, with the generalized effective F-statistic given by

F̂geff (Ωn) =
x′ZΩnZ′x

ntr
(
Ω

1/2
n Ŵ2Ω

1/2
n

) =
x′ZΩnZ′x

ntr
(
Ŵ2Ωn

) .
For 2sls, Ωn =

(
1
n Z′Z

)−1
and so F̂geff

((
1
n Z′Z

)−1
)
= F̂eff.
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Generalized Effective F-statistic

▶ Let Ωn = Ŵ−1
2 , then

𝛽̂Ŵ−1
2

= 𝛽̂gmmf =
x′ZŴ−1

2 Z′y

x′ZŴ−1
2 Z′x

,

and then

F̂geff
(
Ŵ−1

2

)
=

x′ZŴ−1
2 Z′x

nkz
= F̂r.

▶ So the robust F-statistic can be used as a test for weak instruments in
relation to the Nagar bias of the GMMf estimator.

▶ “Canonical” relationship, expressions and limiting distribution simplify.
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Steps, General
1. Let ŴΩn =

(
I2 ⊗ Ω

1/2
n

)
Ŵ

(
I2 ⊗ Ω

1/2
n

)
. Obtain

B
(
ŴΩn

)
= sup

𝛽∈ℝ,cΩ,0∈𝒮kz−1

©­­«
���n (

𝛽, cΩ,0 , ŴΩn

)���
BM

(
𝛽, ŴΩn

) ª®®¬
by a numerical maximization routine.

2. Compute dΩn𝜏 = B
(
ŴΩn

)
/𝜏 and the effective degrees of freedom

k̂geff (Ωn) =

[
tr

(
ŴΩn ,2

)]2 (
1 + 2dΩn ,𝜏

)
tr

(
Ŵ′

Ωn ,2ŴΩn ,2
)
+ 2dΩn ,𝜏tr

(
ŴΩn ,2

)
𝜆max

(
ŴΩn ,2

) ,
and compute the critical value cv

(
𝛼, ŴΩn ,2 , dΩn ,𝜏

)
for a user specified

threshold value 𝜏 as the upper 𝛼 quantile of
𝜒2

k̂geff(Ωn)

(
dΩn ,𝜏k̂geff (Ωn)

)
/̂kgeff (Ωn)

3. Reject the null of weak instruments, that the proportion of the Nagar bias
of 𝛽̂Ωn relative to the benchmark bias is larger than 𝜏, for at least some
value of 𝛽 and some direction cΩ,0, if F̂geff (Ωn) > cv

(
𝛼, ŴΩn ,2 , dΩn ,𝜏

)
.
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Steps, Robust F and GMMf

1. Obtain

Bgmmf
(
ŴΩn

)
= sup

𝛽∈ℝ,cΩ,0∈𝒮kz−1

©­­­­«
���tr (

ŴΩn ,12
)
− 2c′

Ω,0ŴΩn ,12cΩ,0 − (kz − 2) 𝛽
���√

kz
(
tr

(
ŴΩn ,1

)
− 2𝛽tr

(
ŴΩn ,12

)
+ kz𝛽2

) ª®®®®¬
by a numerical maximization routine, where
ŴΩn =

(
I2 ⊗ Ŵ−1/2

2

)
Ŵ

(
I2 ⊗ Ŵ−1/2

2

)
. Note ŴΩn ,2 = Ikz .

2. Reject the null of weak instruments if F̂r > cv
(
𝛼, ŴΩn ,2 , dΩn ,𝜏

)
, where

dΩn ,𝜏 = Bgmmf
(
ŴΩn

)
/𝜏 and where cv

(
𝛼, ŴΩn ,2 , dΩn ,𝜏

)
is the upper 𝛼

quantile of 𝜒2
kz

(
kzdΩn ,𝜏

)
/kz.
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Harmonizing the Benchmark Bias

The probability limit of the worst-case weak-instrument OLS (absolute) bias
is given by

𝛽̂LS − 𝛽 =
x′u
x′x

=
c′Z′u/

√
n + v′2u

c′Z′Zc/n + 2c′Z′v2/
√

n + v′2v2

p
→

𝜎uv2

(
𝛽,Σv

)
𝜎2

2
= 𝜌uv2

𝜎u
(
𝛽,Σv

)
𝜎2

⩽
𝜎u

(
𝛽,Σv

)
𝜎2

=

√√
𝜎2

1 − 2𝛽𝜎12 + 𝛽2𝜎2
2

𝜎2
2

= BMLS
(
𝛽,Σv

)
.

This is an appropriate benchmark bias for the class of linear GMM estimators
considered as it can be seen to be the worst-case benchmark bias under
homoskedasticity. Similar in spirit to the Stock-Yogo relative bias results.
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Grouped-Data IV Model

The implication is that if F̂r ≫ F̂eff the GMMf estimator will be better behaved
than the 2sls estimator in terms of bias.

This is the case with the Andrews (2018) example, which is a grouped-data
IV specification:

yi = xi𝛽 + ui
xi = z′i𝜋 + v2,i ,

for i = 1, ..., n, where the G-vector zi ∈ {e1 , ..., eG}, with eg an G-vector with
gth entry equal to 1 and zeros everywhere else, for g = 1, . . . ,G.

Flexibility by group:(
ui

v2,i

)
∼

(
0,Σg =

[
𝜎2

u,g 𝜎uv2 ,g
𝜎uv2 ,g 𝜎2

v2 ,g

] )
.
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Grouped-Data IV Model
The group-specific IV estimators for 𝛽 are given by

𝛽̂g =
yg

xg
.

The group-specific F-statistics are

F̂g =
ngx2

g

𝜎̂2
v2 ,g

.

A large value of F̂g indicates that 𝛽̂g is well behaved.

𝛽̂2sls is a weighted average of the 𝛽̂g,

𝛽̂2sls =
G∑

g=1
w2sls,g𝛽̂g ,

w2sls,g =
ngx2

g∑G
l=1 nlx2

l
=

𝜎̂2
v2 ,gF̂g∑G

l=1 𝜎̂
2
v2 ,l

F̂l
,

so when 𝜎̂2
v,g is relatively small, an informative group may be given a small

weight.
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Grouped-Data IV Model

The non-robust F-statistic is given by

F̂ =
1
G

G∑
g=1

𝜎̂2
v2 ,g(∑G

l=1
nl
n 𝜎̂2

v2 ,l

) F̂g.

The Effective F-statistic is given by

F̂eff =

G∑
g=1

𝜎̂2
v2 ,g(∑G

l=1 𝜎̂
2
v2 ,l

) F̂g ,

and so F̂eff = F̂ if ng = n/G for g = 1, . . . ,G, (which is the case in expectation
below).

The robust F-statistic is given by

F̂r =
1
G

G∑
g=1

F̂g.

14



Grouped-Data IV Model
With equal group sizes and first-stage homoskedasticity, 𝜎2

v,g = 𝜎2
v for

g = 1, . . . ,G, we have that

F̂ = F̂eff ≈ 1
G

G∑
g=1

F̂g

and

w2sls,g ≈
F̂g

GF̂
.

For the GMMf estimator and the robust F-statistic we have that, independent
of the values of the variances,

F̂r =
1
G

G∑
g=1

F̂g

and

𝛽̂gmmf =
G∑

g=1
wgmmf ,g𝛽̂g; wgmmf ,g =

F̂g

GF̂r
.
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Grouped Data IV Model

Andrews (2018) design, G = 10, 𝛽 = 0, n = 10, 000, group sizes 1000 in
expectation.

Table 1: Estimation results

F̂ F̂eff F̂r 𝛽̂ols 𝛽̂2sls 𝛽̂gmmf Wald2sls Waldgmmf
ME 1.411 1.411 80.23 -0.608 -0.424 -0.001 0.534 0.049[

17.09, 0
17.09, 0

] [
12.22, 1
13.45, 1

]
(0.011) (0.257) (0.563)

HE 0.993 0.993 80.12 0.747 0.742 0.007 0.999 0.065[
17.12, 0
17.12, 0

] [
12.31, 1
12.26, 0

]
(0.001) (0.057) (0.029)

Notes: 𝛽 = 0. Means and (st.dev.), [mean of critical values, rej.freq., 𝛼 = 0.05, 𝜏 = 0.10, LS
benchmark in second row], of 10, 000 replications. Rej.freq. of robust Wald tests at 5% level.
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Grouped Data IV Model

Table 2: Group information and estimator weights, ME

s 1 2 3 4 5 6 7 8 9 10
𝜋g 0.058 -0.023 0.049 0.015 0.022 0.008 -0.017 0.011 -0.036 -0.040
𝜎2

v,g 0.004 2.789 4.264 0.779 0.395 7.026 1.226 0.308 1.709 6.099

𝜇2
n,g 785.7 0.184 0.556 0.284 1.190 0.009 0.236 0.387 0.770 0.266

F̂g 789.5 1.170 1.564 1.279 2.225 0.997 1.203 1.372 1.798 1.246

w2sls,g 0.126 0.098 0.178 0.035 0.031 0.180 0.049 0.015 0.096 0.192
wgmmf ,g 0.984 0.002 0.002 0.002 0.003 0.001 0.002 0.002 0.002 0.002

Notes: 𝜇2
n,g = 1000𝜋2

g/𝜎2
v,g.
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Grouped Data IV Model

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

R
e

l.
 B

ia
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

j.
 F

re
q

.2sls

gmmf

rf F
r

0.05

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
e

j.
 F

re
q

.

W 2sls

W gmmf

0.05

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

R
e

l.
 B

ia
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

j.
 F

re
q

.2sls

gmmf

rf F
r

0.05

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W 2sls

W gmmf

0.10

Figure 1: Top: Moderate Endogeneity. Bottom: High Endogeneity. Left: Bias of 2SLS and GMMf estimators
relative to OLS bias, and F̂r-based weak-instrument test rejection frequencies, 𝛼 = 0.05, 𝜏 = 0.10, least-squares
benchmark bias. The “0.05” line refers to the rej. freq. Right: Rejection frequencies of robust Wald tests, 𝛼 = 0.05.
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In Practice

Compute both F̂r and F̂eff and their critical values. Large differences favour
one estimator over the other, 𝛽̂2sls vs 𝛽̂gmmf .

I have adapted “weakivtest” in Stata to do this.

One of the AER examples in Andrews et al. (2019) is Stevens and Yang (2014),
“Compulsory Education and the Benefits of Schooling”, estimates of return
of number of years of education on log weekly wages, using three indicators
RS7, RS8 and RS9 for being required to attend 7, 8 and nine or more years of
schooling.

Estimated by 2sls, with reported cluster-robust first-stage F-statistics (state of
birth/year of birth).
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In Practice

Table 3: The Effect of Schooling on log Weekly Wages

2sls GMMf F̂ F̂eff F̂r cvLS
eff cvLS

r

White males 40-49 0.095
(0.016)

0.095
(0.016) 108.6 42.85 42.75 9.21 8.64

+region*yob −0.020
(0.041)

−0.014
(0.040) 16.06 8.11 8.22 10.31 8.73

White males 25-54 0.0973
(0.0096)

0.0998
(0.0095) 548.0 64.17 81.37 13.50 8.74

+region*yob −0.014
(0.021)

−0.012
(0.021) 89.06 24.38 23.63 10.36 8.74

All whites 20–54 0.105
(0.011)

0.111
(0.011) 870.0 62.98 91.73 14.65 9.62

+region*yob −0.0025
(0.016)

0.0035
(0.016) 197.0 42.40 40.57 11.10 8.65

Whites 25-54, Non-South −0.0086
(0.012)

0.015
(0.011) 603.6 34.40 67.25 16.30 8.96

South 0.019
(0.043)

0.022
(0.044) 20.89 6.13 6.34 9.49 8.82
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Dynamic Panel Data Model
Consider the dynamic AR(1) panel data specification

yit = 𝛾yi,t−1 + 𝜂i + uit.

for i = 1, . . . , n and t = 1, . . . T.

Generalized effective F-statistic as test for weak instruments applies directly
to Arellano-Bond first-differenced model one-step GMM estimator,

𝛾̂FD =
Δy′−1ZΩFD

n Z′Δy

Δy′−1ZΩFD
n Z′Δy−1

,

ΩFD
n =

(
1
n

n∑
i=1

Z′
iDZi

)−1

,

with instruments Zi the matrix of sequential lagged levels.

Then Δyi,−1 = Zi𝜋 + 𝜉i, 𝜉̂i =Δyi,−1 − Zi𝜋, Ŵ2 = 1
n
∑n

i=1 Z′
i 𝜉̂i𝜉̂

′
iZi, and

F̂geff =
Δy′−1ZΩFD

n Z′Δy−1

ntr
(
Ŵ2ΩFD

n

) .
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Conclusions

▶ Montiel Olea and Pflueger methods apply to general class of linear GMM
estimators with associated class of generalized effective F-statistics.

▶ Robust F-statistic informative about Nagar bias of new GMMf estimator.
▶ When estimating by 2sls, compute both effective F and robust F and their

weak-instrument critical values, and also the GMMf estimator
(“gfweakivtest” for Stata).

▶ To do: Extend to behaviour of Wald test.
▶ To do: Extend to multiple endogenous variables. Lewis and Mertens

(2022) have done so for the 2sls effective F.
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