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Introduction
> Classical linear model with a single endogenous variable x and
instruments Z,

y=xB+u
x=Zn+v

» Model is overidentified, k, > 1.
> E(zju;) =0.

> First-stage F-statistic, test for Hy : m = 0, also valid test for weak
instruments, in terms of bias and/or Wald test size distortion of 2sls,
Liml and Fuller, when (1, v3|Z) homoskedastic (Stock and Yogo, 2005).
Rule of thumb, F > 10.

> Most (all?) packages produce robust F-statistics when estimating by 2sls
with robust standard errors (heteroskedasticity, serial correlation,
clustering).

> While still test for Hp : ™ = 0, robust F does not convey weak instrument
information for 2sls.

> Isaiah Andrews (2018) famously finds a design where mean F, = 100,000
and the 2sls confidence set has a 15% size distortion.



Introduction

Weak identification test (Cragg-Donald Wald F statistic): 4,342
(Kleibergen-Paap rk Wald F statistic): 5.021

Stock-Yogo weak ID test critical values: 5% maximal IV relative bias
10% maximal IV relative bias
20% maximal IV relative bias
30% maximal IV relative bias
10% maximal IV size
15% maximal IV size
20% maximal IV size
25% maximal IV size

Source: Stock-Yogo (2005). Reproduced by permission.

NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
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Introduction

> Montiel-Olea and Pflueger (2013) Effective F-statistic is test for weak
instruments related to Nagar bias of 2sls, valid under general forms of
nonhomoskedasticity.

> Andrews, Stock and Sun (2019) recommend “that researchers judge
instrument strength based on the effective F-statistic of Montiel Olea and
Pflueger ”.

> This paper: shows that MOP method applies to class of linear GMM
estimators, with associated class of generalized effective F-statistics.

> It follows that the robust F-statistic is a test for weak instruments related
to the Nagar bias of a GMM estimator.

> [ call this the GMM( estimator, as the weight matrix is based on the
first-stage residuals.

> So when F; is large, this estimator performs well, as in the Andrews
(2018) example.



Model and Assumptions
The general model specification is given by

y=xp+u=2Zn,+0
x=Zn+v
Ty = 1B, v1 = U + foo.

Weak instrument asymptotics: 7 = 7, = i

Further, as n — oo,
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2sls and F-Statistics

The 2sls estimator is

Bosis = YDx’

P,=7Z'2)' 7.

Standard F-statistic is
x'Pyx

F= :
k03

The Effective F-statistic is given by,

~ x'Pyx

x'Pyx

Fefr =

and the robust F is

Fr= nk;

~ x’ZWElZ’x

tr ((%Z'z)_l/2 W, (%Z’Z)_l/z) & (Wz (%Z’Z)_l)
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Generalized Effective F-statistic

> Montiel Olea and Pflueger (2013) show that the effective F-statistic is a
test for weak instruments in terms of Nagar bias of 2sls estimator as a
proportion of a benchmark, worst-case bias.

> I show that the their approach applies to the class of one-step linear
GMM estimators
~ X' ZOnZ'y
O = WZQuZx’

with Q,; — Q, with the generalized effective F-statistic given by

Y / 4 7 /
Foetf (Qn) = xi(zl,inl/Z - I
ntr (Qn W0 ) ntr(Wan)

-1 —~ -1
For 2sls, Q, = (%Z/Z) and so Fgeff ((%Z’Z) ) = Feff.



Generalized Effective F-statistic

> LetQ), = Wz_l, then

—~ - x/ZW2_1Z’y
Bzt = Bgmmf = ——=——"/
2 x’ZW2 Z'x
and then _
S ey XYZW'Zx
Fgeff (W2 ) = I’l—kz = Fr.

» So the robust F-statistic can be used as a test for weak instruments in
relation to the Nagar bias of the GMMf estimator.

> “Canonical” relationship, expressions and limiting distribution simplify.



Steps, General
1. Let Wq, = (12 @ QY 2) W (12 o0l 2). Obtain

; [ (<00 W)
B(fo)-  wp  [Iior ol
ﬁER,CQr()GSszl BM (IB/ WQn)

by a numerical maximization routine.

2. Computedq =B (WQW) /7 and the effective degrees of freedom

o) 2.0

tr (an,ZWQ",z) + ZdeTtl‘ (ngz) Amax (ngz)

7€geff (Qn) =

and compute the critical value cv (oz, W()" 2, dQn’T) for a user specified

threshold value 7 as the upper a quantile of

2 -~ ~
2 o (s, Rgets () /et ()

3. Reject the null of weak instruments, that the proportion of the Nagar bias
of fq, relative to the benchmark bias is larger than 7, for at least some

value of § and some direction cq g, if fgeff (Qp) > cv (oc, WQWZ, dQn,T).



Steps, Robust F and GMMf

1. Obtain

tr (WQ,,,lz) - 2c o Wa,12¢0,0 — (ke = 2)5’

Bmf (WQH) = sup
BER e 0 Sk \/ . (tr (WQV,,I) —2ptr (WQn,12) + kzﬁz)

by a numerical maximization routine, where
WQH = (12 ® Wz—l/Z) W (12 ® Wz_l/Z). Note WQWZ =1I,.

2. Reject the null of weak instruments if Fr > cv (a, WQ”,Z, dQn’T), where

Aoy, = Bomms (VA\/QH) /t and where cv (a, VAVQ,q,zf dQn,T) is the upper «
quantile of )(]% (kzdqy, ) k=
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Harmonizing the Benchmark Bias

The probability limit of the worst-case weak-instrument OLS (absolute) bias
is given by

Brs—B ="
Z'ufn + vhu
¢’Z' Ze[n + 2¢' 2/ vy [Nn + vvp
b o BE) oulp2)

a% o e 02
2 2 2
o , g5 =2 012 +‘B o,
< u (ﬁ v) — 1 ﬁ . 2 — BMLS (ﬁ/ ):v) )
02 o5

This is an appropriate benchmark bias for the class of linear GMM estimators
considered as it can be seen to be the worst-case benchmark bias under
homoskedasticity. Similar in spirit to the Stock-Yogo relative bias results.
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Grouped-Data IV Model

The implication is that if fr > Feﬁ the GMMTf estimator will be better behaved
than the 2sls estimator in terms of bias.

This is the case with the Andrews (2018) example, which is a grouped-data
IV specification:

yi = xiptu;
p— 4 .
Xj = zm+0

fori=1,...,n, where the G-vector z; € {ey, ..., eg}, with eg an G-vector with
gth entry equal to 1 and zeros everywhere else, forg=1,...,G.

Flexibility by group:

2
Wi gx, =| Cus Gung
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Grouped-Data IV Model

The group-specific IV estimators for  are given by

~ yg
ﬁg Eg .
The group-specific F-statistics are
=2
s ngXe
&7 =
Oug

A large value of fg indicates that ‘Eg is well behaved.

.EZsls is a weighted average of the Eg:

G
Bosis = Z szls,g.Bg,
8=l
neXy a5, < g

G =2 ’
2Ly X Zl:l %z,zFl

Wosls,g =

so when E%,g is relatively small, an informative group may be given a small

weight.
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Grouped-Data IV Model

The non-robust F-statistic is given by

G =2
sz,g —~

O Y S
G 52 8
§=1 (ZI 170 2, 1)

The Effective F-statistic is given by

f:

= ZG: E%Z,g
76 52 &
( 1=1 vz, )
and so l?eff =Tif ng =n/Gforg=1,...,G, (which is the case in expectation
below).

The robust F-statistic is given by
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Grouped-Data IV Model

With equal group sizes and first-stage homoskedasticity, azz,,g = o2 for
g=1,...,G, we have that

and
Wasls,g ~

For the GMM( estimator and the robust F-statistic we have that, independent
of the values of the variances,

C)I

and
F g

5gmmf ngmmf gﬁg' Wemmf,g = .

g=1



Grouped Data IV Model

Andrews (2018) design, G = 10, f = 0, n = 10, 000, group sizes 1000 in

expectation.
Table 1: Estimation results
F Feff FY Enls EZS[S Egmmf Wﬂlesls Wald, mmf

ME 1411 1411 80.23 -0.608 -0.424 -0.001 0.534 0.049
17.09,0 12.22,1
17:09.0 1345 1 0.011)  (0257)  (0.563)

HE 0.993 0.993 80.12 0.747 0.742 0.007 0.999 0.065
17.12,0 12.31,1
1712.0 1226.0 0.001)  (0.057)  (0.029)

Notes: f = 0. Means and (st.dev.), [mean of critical values, rej.freq., « = 0.05, T = 0.10, LS
benchmark in second row], of 10, 000 replications. Rej.freq. of robust Wald tests at 5% level.
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Grouped Data IV Model

Table 2: Group information and estimator weights, ME

s 1 2 3 4 5 6 7 8 9 10

T[§ 0.058 -0.023 0.049 0.015 0.022 0.008 -0.017 0.011 -0.036 -0.040
Ohg 0.004 2.789 4.264 0.779 0.395 7.026 1.226 0.308 1.709 6.099
}l%,lg 785.7 0.184 0556 0284 1.190 0.009 0236  0.387 0.770 0.266
fg 789.5 1.170 1.564 1.279 2.225 0.997 1.203 1.372 1.798 1.246
Wasls g 0.126 0.098 0178 0.035 0.031  0.180 0.049  0.015 0.096 0.192
Wemmf,g  0.984 0.002  0.002 0.002 0.003 0.001 0.002  0.002 0.002 0.002

Notes: yi7 . = 100073 /3 .
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Grouped Data IV Model
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Figure 1: Top: Moderate Endogeneity. Bottom: High Endogeneity. Left: Bias of 25LS and GMM estimators

relative to OLS bias, and ?r-based weak-instrument test rejection frequencies, a = 0.05, T = 0.10, least-squares
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In Practice

Compute both F, and feﬁ and their critical values. Large differences favour
one estimator over the other, Basjs VS By

I'have adapted “weakivtest” in Stata to do this.

One of the AER examples in Andrews et al. (2019) is Stevens and Yang (2014),
“Compulsory Education and the Benefits of Schooling”, estimates of return
of number of years of education on log weekly wages, using three indicators
RS7, RS8 and RS9 for being required to attend 7, 8 and nine or more years of
schooling.

Estimated by 2sls, with reported cluster-robust first-stage F-statistics (state of
birth/year of birth).
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In Practice

Table 3: The Effect of Schooling on log Weekly Wages

l

| Fx | Fr

LS

LS

2sls GMM i3 [ coff | o’ |
White males 40-49 (8822) (88?2) 108.6 | 42.85 | 42.75 9.21 8.64
- —0.020 —-0.014
+region*yob (0.041) (0.040) 16.06 8.11 8.22 10.31 | 8.73
. 0.0973 0.0998
White males 25-54 (Og?ﬁi) (083252) 548.0 | 64.17 | 81.37 | 13.50 | 8.74
+region*yob (0.021) (0_621) 89.06 | 24.38 | 23.63 | 10.36 | 8.74
All whites 20-54 (8(1)(1)‘;)) (8(1)%) 870.0 | 62.98 | 91.73 | 14.65 | 9.62
. —0.0025 0.0035
+region*yob (0.016) (0.016) 197.0 | 42.40 | 40.57 | 11.10 | 8.65
. -0.0086 0.015
Whites 25-54, Non-South (0.012) (0.011) 603.6 | 34.40 | 67.25 | 16.30 | 8.96
0.019 0.022
South (0.043) (0.044) 20.89 6.13 6.34 9.49 8.82
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Dynamic Panel Data Model
Consider the dynamic AR(1) panel data specification

Yit = VVit-1 + 1 + Ujp.

fori=1,...,nandt=1,...T.

Generalized effective F-statistic as test for weak instruments applies directly
to Arellano-Bond first-differenced model one-step GMM estimator,

Ay’ ZOEPZ' Ay
N ZOPZNy

1 n
QFD - (; Z Z/Dz;
i=1

with instruments Z; the matrix of sequential lagged levels.

YED =

-1

’

Then Ayi,—l = ZZ'T( + 51’, a :Ayi,—l - Zﬁf, Wz = % 2?21 Z;E@Zi, and

~ Ay ZOP7/ Ay
Fgeff =

ntr (Wz QED)
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Conclusions

> Montiel Olea and Pflueger methods apply to general class of linear GMM
estimators with associated class of generalized effective F-statistics.

> Robust F-statistic informative about Nagar bias of new GMMf estimator.

> When estimating by 2sls, compute both effective F and robust F and their
weak-instrument critical values, and also the GMMf estimator
(“gfweakivtest” for Stata).

» To do: Extend to behaviour of Wald test.

> To do: Extend to multiple endogenous variables. Lewis and Mertens
(2022) have done so for the 2sls effective F.
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