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Scope

» A new method for conducting econometric analysis using nonlinear
panel data models.

> Example: dynamic binary response panel data model.
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Scope

» A new method for conducting econometric analysis using nonlinear
panel data models.

> Example: dynamic binary response panel data model.
Yi=1[vYie1+Zup+C+Up>0], teT={1..., T}.

» Each observational unit (OU) i — family, person, firm, etc. — delivers
a value of Y; and Z;

Yi= (Y., YiT) Zi=(Zi, .- ZiT)
given realizations of unobservable C; and U;
U,' = (U,'l, ceey U,‘T).
» (; and initial condition Yy are OU-specific latent variables.
Vi = (G, Yio).

Henceforth V; denotes the collection of OU-specific variables.
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» Study SMALL T — short panels. There is the Incidental
Parameter Problem. Neyman and Scott (1948).



Short Panels

» Binary response example - now drop i subscripts
Ytzl['th_l—l—Zt,B—i-CwLUtzO}, tGTE{l,...,T}.

» Study SMALL T — short panels. There is the Incidental
Parameter Problem. Neyman and Scott (1948).

» By contrast with available approaches we proceed placing no
additional restrictions on OU-specific V = (C, Yp).
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Yi=1[yYee1 +ZB+C+ U >0], teT={1,..., T}

» Models imposing UiL(C, Z) and often more, e.g. 11D logistic U;:

> includes: Rasch (1960, 1961), Andersen (1973), Honoré and
Kyriazidou (2000, 2019), Honoré and Tamer (2006), Honoré & de
Paula (2021), Davezies, D'Haultfoeuille & Laage (2022), Honoré &
Weidner (2022), Kitazawa (2022), Bonhomme, Dano & Graham
(2023), Dano (2023), Davezies, D'Haultfoeuille & Mugnier (2023),
Honoré, Muris & Weidner (2023).

> UiL(C, Z) is also imposed in likelihood based models including
Functional Differencing — Bonhomme (2012).

» May not believe C and U independent if e.g. C captures
OU-specific risk preference.
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Related Literature on Nonlinear Panel Data Models 2

Ye=1[yYeo1+Zip+C+ U >0], teT ={1,..., T}.
» Models imposing conditional stationarity as in Manski (1987).

V(s,t)eT  Us|(C.2Z)~ U|(C,2)

> includes:Blevins (2011), Chernozhukov, Fernandez-Val, Hahn and
Newey (2013), Pakes and Porter (2022), Shi Shum and Song (2018),
Kahn, Ouyang and Tamer (2023), Gao and Li (2020), Pakes, Porter,
Shepard and Calder-Wang (2021), Kahn, Ponomareva and Tamer
(2023), Mbakop (2023), Gao and Wang (2024).

» Requires scalar V, linear index, no life changing outcomes.

» Point identification requires rich support for Z.
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Differencing and a new approach
> In linear models differencing removes individual effects.
Y =Z:f+ C+ Ut
Ye—=Ys = (2t — Zs) B+ (Ur — Us)

» Differencing transformed outcomes delivers partial identification of
parameters in a censored outcome linear model.

Yi: = max(Zif+ C+ Ut, Yor)
Kahn, Ponomareva, and Tamer (2016).

> Aristodemou (2021) (like Rasch (1960) etc) for particular models
finds events whose probability of occurrence does not depend on
OU-specific variables and so obtains some of the bounds we produce.

» We propose a new universally applicable approach to remove C
when differencing not feasible.

> leads to models imposing no restrictions on e.g. “fixed effects” C or
unobserved initial conditions, Yy .
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Structural functions

» Define a structural function, h: Supp(Y, Z, V,U) — R, that
embodies the structural relationships specified by a model via:

h(Y,Z,V,U)=0, as

» For example in the binary panel
u 2
h(Y,Z,V,U) =3 (Ye=1[yYe1+Zef+ C+ Ur >0))
t=1
where V = (C, Yp) .

> Model place restrictions on h and on the distribution of U given Z,
Gy|z—, where

Guiz=2(S) =P[U € S|Z =]
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The idea

» There is the structural function:
h(Y,Z,V,U)=0.

> Define the set of U values that, for some value of V deliver Y =y
when Z = z.

U (y,z;h) = {u: 3v € Supp(V) such that h(y,z,u, v) = 0}.

» When Y =y and Z = z, it must be that U € U*(y, z; h), therefore

PlY =y|Z=2z] <P[UecU"(y z;h)|Z =Z]

» Voilal Moment inequalities.

P[Y = y|Z = z] < Gyz=,(U"(y, z: h)).
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Identification Post-Removal

> Results in Chesher and Rosen (Ecta 2017) characterize sharp
identified sets as follows.

» For a set W C Supp(Y) define
SW.Z:h) = |J U*(y.z: h)
yew

and

YW,z h)={y U (y,z;h) € SOW, Z; h)}.

» For a suitable choice of sets VW and all z € Supp(Z) the moment
inequalities

PlY e YW . zih)|Z=2] < Gyjz—, [{u:ue S(W,Z;h)}]
characterize the sharp identified set of functions h and distributions

GU\Z:Z :

» Models will restrict GU‘Z e.g. UJLZ, parametrically, or
nonparametrically.
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» 2 period dynamic binary panel model with Y; observed so V = C .
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> Define 6 = (B, 7).
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Example: Dynamic Binary Panel Model

» What values of (uy, up) are in the set U*(y, (z,y0);6)?

U (y, (z,y0);0) = {(u1, 1) : Jc €R:
ye =1zep+ye-1 +c+u >0, te{1,2}}

» Consider (y1,y2) = (0,1) . There are inequalities:

u < —zfp-—yp—c U =-—np-c
so (uy, up) can deliver (y1,y2) = (0, 1) if there exists ¢ such that

—nfp—wm <c<—z1f—Fy—u

> Define Ayju = up — ug and Ar1z = zp — z;. With y; observed:

U ((0,1),(z,y0):0) ={u:Bp1u> —A1zB+ vy}
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Ye=1Zip+7Ye1+ C+ U >0, te{l,2}, Supp(C) =R

> The sharp (see Chesher and Rosen (2017)).identified set for
(B.7, Gy|z—,) comprises values satisfying, for all z € Supp(Z)

PlY = (0.1)]Z = 2] <
Guiz=z ({u: Boru > —A1zB+y0})
PY = (1,0)|Z = 2] <

Gujz—r ({u: Do1u < =Ag1zB+ (v — 1)})

» Can impose e.g. U and Z independent and calculate with Uy, U,
1D e.g. logistic. But we can drop logistic!
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Dynamic Binary Panel Model: Initial Y NOT observed

Ye=1Zip+7Ye1+ C+ U >0, te{l,2}, Supp(C) =R

» When (y1,y2) = (0,1) there is

U((0,1),(z.y0):0) ={u:Dpu>—Anizf+yy}.  (*¥)

» With yp not observed U*((0,1), z;0) is the UNION of the sets
(**) with yp =0 and yp = 1.

U ((0,1),2;0) ={u:Ayyu > —AyzB} U {u:Apyu> —Ay1zB+ v}
that is

U*((0,1),2;0) = {u: Ayju> —Ayzp + min(7,0)}
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Summary

Ye=1Zp+7Ye1 + C+ U 20, te{l,2}, Supp(C) =R



Dynamic Binary Panel Model: Initial Y not observed:
Summary

Ye=1[Ztf+7Ye-1+ C+ U 20|, te€{1,2}, Supp(C)=R

> The sharp identified set for (8, Gy|z—,) comprises values satisfying,
for all z € Supp(2)
PlY =(0,1)|Z=2] <
Gy|z—z ({u: Bo1u > —A212B + min(7,0)})

P[Y =(1,0)|1Z=2] <
Guiz=; ({u: Bo1u < —A1zf —min(7y,0)})

» Can impose e.g. U and Z independent and calculate with Uy, U,
1D e.g. logistic. But we can drop logistic!
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How to drop the logistic restriction - nonparametrics

» Restrict U1l Z. The sharp identified set of (B, 7, Gy|z=;): values
satisfying, Vz € Supp(Z):
PlY =(01)|Z =2 <
GU\Z:Z ({u:Aru>—NAp1zB+ min(y, 0)})

P[Y =(1,0)|Z2=2z] <
Guiz=z ({u:Bo1u < —Anzf — min(y,0)})

» Specify N intervals (—oo, 71], (71, T2], .-, (Tny_1,0). Define
probabilities:
pi = P[An U € [t;-1,T/]]

P[Y =(0,1)|Z =2 < Y¥jr>_azptmin(4,0)Pi
Vz e Ry, = i
z { ]P[Y = (1,0)‘2 = Z] < ZI:T,-ngzﬁfmin('y,O) Pi
» A value (B, ) is in the identified set iff 3 proper probabilities
(p1,---, pn) such that these inequalities are satisfied.

> Linear programme. Inference using e.g. Kline and Tamer (2016).



Scope

» The paper gives many examples of applications, e.g. to multiple
discrete, and ordered, choice panels.

> Endogenous explanatory variables are permitted.
> Easy to allow for unobserved initial conditions in dynamic models.

> With linear indexes U* sets obtained using Fourier-Motzkin
elimination.

> Can dispense with linear index restrictions.
> There can be multiple OU-specific effects.

> A nonparametric specification of the distribution of U can be
accommodated.

> In likelihood based models incidental parameters can be removed in
the same way.
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