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Scope
I A new method for conducting econometric analysis using nonlinear
panel data models.

I Example: dynamic binary response panel data model.

Yit = 1 [γYit�1 + Zitβ+ Ci + Uit � 0] , t 2 T � f1, . . . ,Tg.

I Each observational unit (OU) i �family, person, �rm, etc. �delivers
a value of Yi and Zi

Yi � (Yi1, . . . ,YiT ) Zi � (Zi1, . . . ,ZiT )

given realizations of unobservableCi and Ui

Ui � (Ui1, . . . ,UiT ).

I Ci and initial condition Yi0 are OU-speci�c latent variables.

Vi = (Ci ,Yi0).

Henceforth Vi denotes the collection of OU-speci�c variables.
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Short Panels
I Binary response example - now drop i subscripts

Yt = 1 [γYt�1 + Ztβ+ C + Ut � 0] , t 2 T � f1, . . . ,Tg.

I Study SMALL T � short panels. There is the Incidental
Parameter Problem. Neyman and Scott (1948).

I By contrast with available approaches we proceed placing no
additional restrictions on OU-speci�c V = (C ,Y0).
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Related Literature on Nonlinear Panel Data Models 1

Yt = 1 [γYt�1 + Ztβ+ C + Ut � 0] , t 2 T � f1, . . . ,Tg.

I Models imposing U k (C ,Z ) and often more, e.g. IID logistic Ut :

I includes: Rasch (1960, 1961), Andersen (1973), Honoré and
Kyriazidou (2000, 2019), Honoré and Tamer (2006), Honoré & de
Paula (2021), Davezies, D�Haultfoeuille & Laage (2022), Honoré &
Weidner (2022), Kitazawa (2022), Bonhomme, Dano & Graham
(2023), Dano (2023), Davezies, D�Haultfoeuille & Mugnier (2023),
Honoré, Muris & Weidner (2023).

I U k (C ,Z ) is also imposed in likelihood based models including
Functional Di¤erencing �Bonhomme (2012).

I May not believe C and U independent if e.g. C captures
OU-speci�c risk preference.
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Related Literature on Nonlinear Panel Data Models 2

Yt = 1 [γYt�1 + Ztβ+ C + Ut � 0] , t 2 T � f1, . . . ,Tg.

I Models imposing conditional stationarity as in Manski (1987).

8(s, t) 2 T Us j(C ,Z ) � Ut j(C ,Z )

I includes:Blevins (2011), Chernozhukov, Fernandez-Val, Hahn and
Newey (2013), Pakes and Porter (2022), Shi Shum and Song (2018),
Kahn, Ouyang and Tamer (2023), Gao and Li (2020), Pakes, Porter,
Shepard and Calder-Wang (2021), Kahn, Ponomareva and Tamer
(2023), Mbakop (2023), Gao and Wang (2024).

I Requires scalar V , linear index, no life changing outcomes.

I Point identi�cation requires rich support for Z .
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Di¤erencing and a new approach
I In linear models di¤erencing removes individual e¤ects.

Yt = Ztβ+ C + Ut

Yt � Ys = (Zt � Zs ) β+ (Ut � Us )

I Di¤erencing transformed outcomes delivers partial identi�cation of
parameters in a censored outcome linear model.

Y1t = max(Ztβ+ C + Ut ,Y2t )

Kahn, Ponomareva, and Tamer (2016).

I Aristodemou (2021) (like Rasch (1960) etc) for particular models
�nds events whose probability of occurrence does not depend on
OU-speci�c variables and so obtains some of the bounds we produce.

I We propose a new universally applicable approach to remove C
when di¤erencing not feasible.

I leads to models imposing no restrictions on e.g.��xed e¤ects�C or
unobserved initial conditions, Y0 .
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Structural functions
I De�ne a structural function, h : Supp(Y ,Z , V ,U)! R, that
embodies the structural relationships speci�ed by a model via:

h(Y ,Z ,V ,U) = 0, a.s

I For example in the binary panel

h(Y ,Z ,V ,U) =
T

∑
t=1

(Yt � 1 [γYt�1 + Ztβ+ C + Ut � 0])2

where V � (C ,Y0) .

I Model place restrictions on h and on the distribution of U given Z ,
GU jZ=z where

GU jZ=z (S) � P[U 2 SjZ = z ]
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The idea
I There is the structural function:

h(Y ,Z ,V ,U) = 0.

I De�ne the set of U values that, for some value of V ,deliver Y = y
when Z = z .

U �(y , z ; h) � fu : 9v 2 Supp(V ) such that h(y , z , u, v) = 0g.

I When Y = y and Z = z , it must be that U 2 U �(y , z ; h), therefore

P[Y = y jZ = z ] � P[U 2 U �(y , z ; h)jZ = z ]

I Voila! Moment inequalities.

P[Y = y jZ = z ] � GU jZ=z (U �(y , z ; h)).
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Identi�cation Post-Removal
I Results in Chesher and Rosen (Ecta 2017) characterize sharp
identi�ed sets as follows.

I For a set W � Supp(Y ) de�ne

S(W ,Z ; h) �
[
y2W

U �(y , z ; h)

and
Y(W , z ; h) � fy : U �(y , z ; h) � S(W ,Z ; h)g.

I For a suitable choice of sets W and all z 2 Supp(Z ) the moment
inequalities

P[Y 2 Y(W , z ; h)jZ = z ] � GU jZ=z [fu : u 2 S(W ,Z ; h)g]

characterize the sharp identi�ed set of functions h and distributions
GU jZ=z .

I Models will restrict GU jZ e.g. U k Z , parametrically, or
nonparametrically.
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Example - Dynamic Binary Panel Model
I 2 period dynamic binary panel model with Y0 observed so V = C .

Yt = 1[Ztβ+ γYt�1 +C +Ut � 0], t 2 f1, 2g, Supp(C ) = R

I Can generalize to arbitrary T .

I De�ne θ � (β,γ).

I What values of (u1, u2) are in the set U �(y , (z , y0); θ)?

U �(y , (z , y0); θ) = f(u1, u2) : 9c 2 R :

yt = 1[ztβ+ γyt�1 + c + ut � 0], t 2 f1, 2gg
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Example: Dynamic Binary Panel Model: Summary

Yt = 1[Ztβ+ γYt�1 + C + Ut � 0], t 2 f1, 2g, Supp(C ) = R

I The sharp (see Chesher and Rosen (2017)).identi�ed set for
(β,γ,GU jZ=z ) comprises values satisfying, for all z 2 Supp(Z )

P[Y = (0, 1)jZ = z ] �
GU jZ=z (fu : ∆21u � �∆21zβ+ γy0g)

P[Y = (1, 0)jZ = z ] �
GU jZ=z (fu : ∆21u � �∆21zβ+ γ(y0 � 1)g)

I Can impose e.g. U and Z independent and calculate with U1, U2
IID e.g. logistic. But we can drop logistic!
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Dynamic Binary Panel Model: Initial Y NOT observed

Yt = 1[Ztβ+ γYt�1 + C + Ut � 0], t 2 f1, 2g, Supp(C ) = R

I When (y1, y2) = (0, 1) there is

U �( (0, 1), (z , y0); θ) = fu : ∆21u � �∆21zβ+ γy0g . (**)

I With y0 not observed U �( (0, 1), z ; θ) is the UNION of the sets
(**) with y0 = 0 and y0 = 1.

U �( (0, 1), z ; θ) = fu : ∆21u � �∆21zβg
[
fu : ∆21u � �∆21zβ+ γg

that is

U �( (0, 1), z ; θ) = fu : ∆21u � �∆21zβ+min(γ, 0)g
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How to drop the logistic restriction - nonparametrics
I Restrict U k Z . The sharp identi�ed set of (β,γ,GU jZ=z ): values
satisfying, 8z 2 Supp(Z ):

P[Y = (0, 1)jZ = z ] �
GU jZ=z ( fu : ∆21u � �∆21zβ+min(γ, 0)g)

P[Y = (1, 0)jZ = z ] �
GU jZ=z ( fu : ∆21u � �∆21zβ�min(γ, 0)g)

I Specify N intervals (�∞, τ1 ], (τ1, τ2 ], . . . , (τN�1,∞). De�ne
probabilities:

pi � P[∆21U 2 [τi�1, τi ]]

8z 2 RZ ,
�

P[Y = (0, 1)jZ = z ] � ∑ i :τi��∆zβ+min(γ,0) pi
P[Y = (1, 0)jZ = z ] � ∑ i :τi��∆zβ�min(γ,0) pi

I A value (β,γ) is in the identi�ed set i¤ 9 proper probabilities
(p1, . . . , pN ) such that these inequalities are satis�ed.
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Scope
I The paper gives many examples of applications, e.g. to multiple
discrete, and ordered, choice panels.

I Endogenous explanatory variables are permitted.

I Easy to allow for unobserved initial conditions in dynamic models.

I With linear indexes U� sets obtained using Fourier-Motzkin
elimination.

I Can dispense with linear index restrictions.

I There can be multiple OU-speci�c e¤ects.

I A nonparametric speci�cation of the distribution of U can be
accommodated.

I In likelihood based models incidental parameters can be removed in
the same way.




