Robust Analysis of Short Panels

Andrew Chesher, Adam Rosen and Yuanqi Zhang
(UCL, Duke, UCL)

August 26th 2024

ESEM Rotterdam 2024

- A new method for conducting econometric analysis using nonlinear panel data models.
- Example: dynamic binary response panel data model.

$$Y_{it} = 1 \left[\gamma Y_{it-1} + Z_{it}\beta + C_i + U_{it} \ge 0 \right], \quad t \in \mathcal{T} \equiv \{1, \ldots, T\}.$$

- A new method for conducting econometric analysis using nonlinear panel data models.
- Example: dynamic binary response panel data model.

$$Y_{it} = 1 \left[\gamma Y_{it-1} + Z_{it}\beta + C_i + U_{it} \ge 0 \right], \quad t \in \mathcal{T} \equiv \{1, \dots, T\}.$$

► Each observational unit (OU) i – family, person, firm, etc. – delivers a value of Y_i and Z_i

$$Y_i \equiv (Y_{i1}, \dots, Y_{iT})$$
 $Z_i \equiv (Z_{i1}, \dots, Z_{iT})$

given realizations of unobservable C_i and U_i

$$U_i \equiv (U_{i1}, \ldots, U_{iT}).$$

- A new method for conducting econometric analysis using nonlinear panel data models.
- Example: dynamic binary response panel data model.

$$Y_{it} = 1 \left[\gamma Y_{it-1} + Z_{it}\beta + C_i + U_{it} \ge 0 \right], \quad t \in \mathcal{T} \equiv \{1, \dots, T\}.$$

► Each observational unit (OU) i – family, person, firm, etc. – delivers a value of Y_i and Z_i

$$Y_i \equiv (Y_{i1}, \dots, Y_{iT})$$
 $Z_i \equiv (Z_{i1}, \dots, Z_{iT})$

given realizations of unobservable C_i and U_i

$$U_i \equiv (U_{i1}, \ldots, U_{iT}).$$

C_i and initial condition Y_{i0} are OU-specific latent variables.

$$V_i = (C_i, Y_{i0}).$$

Henceforth V_i denotes the collection of OU-specific variables.

Short Panels

▶ Binary response example - now drop *i* subscripts

$$Y_t = \mathbf{1} \left[\gamma Y_{t-1} + Z_t \beta + \mathbf{C} + U_t \ge \mathbf{0} \right], \quad t \in \mathcal{T} \equiv \{1, \dots, T\}.$$

► Study SMALL *T* – **short** panels. There is the **Incidental Parameter Problem**. Neyman and Scott (1948).

Short Panels

▶ Binary response example - now drop *i* subscripts

$$Y_t = \mathbf{1} \left[\gamma Y_{t-1} + Z_t \beta + \mathbf{C} + U_t \ge \mathbf{0} \right], \quad t \in \mathcal{T} \equiv \{1, \dots, T\}.$$

- ► Study SMALL *T* **short** panels. There is the **Incidental Parameter Problem**. Neyman and Scott (1948).
- **B**y contrast with available approaches we proceed placing **no** additional restrictions on OU-specific $V = (C, Y_0)$.

$$Y_t = \mathbf{1} \left[\gamma Y_{t-1} + Z_t \beta + \textcolor{red}{C} + \textcolor{black}{U_t} \geq 0 \right], \quad t \in \mathcal{T} \equiv \{1, \ldots, T\}.$$

▶ Models imposing $U \perp (C, Z)$ and often more, e.g. IID *logistic* U_t :

$$Y_t = 1 [\gamma Y_{t-1} + Z_t \beta + C + U_t \ge 0], \quad t \in T \equiv \{1, ..., T\}.$$

- ▶ Models imposing $U \perp (C, Z)$ and often more, e.g. IID *logistic* U_t :
 - includes: Rasch (1960, 1961), Andersen (1973), Honoré and Kyriazidou (2000, 2019), Honoré and Tamer (2006), Honoré & de Paula (2021), Davezies, D'Haultfoeuille & Laage (2022), Honoré & Weidner (2022), Kitazawa (2022), Bonhomme, Dano & Graham (2023), Dano (2023), Davezies, D'Haultfoeuille & Mugnier (2023), Honoré, Muris & Weidner (2023).

$$Y_t = 1 [\gamma Y_{t-1} + Z_t \beta + C + U_t \ge 0], \quad t \in T \equiv \{1, ..., T\}.$$

- ▶ Models imposing $U \perp (C, Z)$ and often more, e.g. IID *logistic* U_t :
 - includes: Rasch (1960, 1961), Andersen (1973), Honoré and Kyriazidou (2000, 2019), Honoré and Tamer (2006), Honoré & de Paula (2021), Davezies, D'Haultfoeuille & Laage (2022), Honoré & Weidner (2022), Kitazawa (2022), Bonhomme, Dano & Graham (2023), Dano (2023), Davezies, D'Haultfoeuille & Mugnier (2023), Honoré, Muris & Weidner (2023).
- ► *U* ⊥ (*C*, *Z*) is also imposed in likelihood based models including Functional Differencing Bonhomme (2012).
- ▶ May not believe *C* and *U* independent if e.g. *C* captures OU-specific risk preference.

$$Y_t = \mathbf{1} \left[\gamma Y_{t-1} + Z_t \beta + C + U_t \ge 0 \right], \quad t \in \mathcal{T} \equiv \{1, \dots, T\}.$$

▶ Models imposing conditional stationarity as in Manski (1987).

$$\forall (s,t) \in \mathcal{T}$$
 $U_s|(C,Z) \sim U_t|(C,Z)$

$$Y_t = 1 [\gamma Y_{t-1} + Z_t \beta + C + U_t \ge 0], \quad t \in \mathcal{T} \equiv \{1, \dots, T\}.$$

▶ Models imposing conditional **stationarity** as in Manski (1987).

$$\forall (s,t) \in \mathcal{T}$$
 $U_s|(C,Z) \sim U_t|(C,Z)$

- includes:Blevins (2011), Chernozhukov, Fernandez-Val, Hahn and Newey (2013), Pakes and Porter (2022), Shi Shum and Song (2018), Kahn, Ouyang and Tamer (2023), Gao and Li (2020), Pakes, Porter, Shepard and Calder-Wang (2021), Kahn, Ponomareva and Tamer (2023), Mbakop (2023), Gao and Wang (2024).
- ▶ Requires scalar V, linear index, no life changing outcomes.
- Point identification requires rich support for Z.

In linear models differencing removes individual effects.

$$Y_t = Z_t \beta + C + U_t$$

$$Y_t - Y_s = (Z_t - Z_s) \beta + (U_t - U_s)$$

In linear models differencing removes individual effects.

$$Y_t = Z_t \beta + C + U_t$$

$$Y_t - Y_s = (Z_t - Z_s) \beta + (U_t - U_s)$$

Differencing transformed outcomes delivers partial identification of parameters in a censored outcome linear model.

$$Y_{1t} = \max(Z_t \beta + C + U_t, Y_{2t})$$

Kahn, Ponomareva, and Tamer (2016).

In linear models **differencing** removes individual effects.

$$Y_t = Z_t \beta + C + U_t$$

$$Y_t - Y_s = (Z_t - Z_s) \beta + (U_t - U_s)$$

Differencing transformed outcomes delivers partial identification of parameters in a censored outcome linear model.

$$Y_{1t} = \max(Z_t \beta + C + U_t, Y_{2t})$$

Kahn, Ponomareva, and Tamer (2016).

 Aristodemou (2021) (like Rasch (1960) etc) for particular models finds events whose probability of occurrence does not depend on OU-specific variables and so obtains some of the bounds we produce.

In linear models **differencing** removes individual effects.

$$Y_t = Z_t \beta + C + U_t$$

$$Y_t - Y_s = (Z_t - Z_s) \beta + (U_t - U_s)$$

 Differencing transformed outcomes delivers partial identification of parameters in a censored outcome linear model.

$$Y_{1t} = \max(Z_t \beta + C + U_t, Y_{2t})$$

Kahn, Ponomareva, and Tamer (2016).

- Aristodemou (2021) (like Rasch (1960) etc) for particular models finds events whose probability of occurrence does not depend on OU-specific variables and so obtains some of the bounds we produce.
- We propose a new universally applicable approach to remove C when differencing not feasible.
 - ▶ leads to models imposing no restrictions on e.g. "fixed effects" C or unobserved initial conditions, Y₀.

Structural functions

▶ Define a structural function, $h : \operatorname{Supp}(Y, Z, V, U) \to \mathbb{R}$, that embodies the structural relationships specified by a model via:

$$h(Y, Z, V, U) = 0$$
, a.s

Structural functions

▶ Define a structural function, $h : \operatorname{Supp}(Y, Z, V, U) \to \mathbb{R}$, that embodies the structural relationships specified by a model via:

$$h(Y, Z, V, U) = 0$$
, a.s

For example in the binary panel

$$h(Y, Z, V, U) = \sum_{t=1}^{T} (Y_t - 1 [\gamma Y_{t-1} + Z_t \beta + C + U_t \ge 0])^2$$

where $V \equiv (C, Y_0)$.

Structural functions

▶ Define a structural function, $h : \operatorname{Supp}(Y, Z, V, U) \to \mathbb{R}$, that embodies the structural relationships specified by a model via:

$$h(Y, Z, V, U) = 0$$
, a.s

For example in the binary panel

$$h(Y, Z, V, U) = \sum_{t=1}^{T} (Y_t - 1 [\gamma Y_{t-1} + Z_t \beta + C + U_t \ge 0])^2$$

where $V \equiv (C, Y_0)$.

Model place restrictions on h and on the distribution of U given Z, $G_{U|Z=z}$ where

$$G_{U|Z=z}(S) \equiv \mathbb{P}[U \in S|Z=z]$$

▶ There is the structural function:

$$h(Y, Z, V, U) = 0.$$

▶ There is the structural function:

$$h(Y,Z,V,U)=0.$$

▶ Define the set of U values that, for **some** value of V, deliver Y = y when Z = z.

$$\mathcal{U}^*(y, z; h) \equiv \{u : \exists v \in \text{Supp}(V) \text{ such that } h(y, z, u, v) = 0\}.$$

▶ There is the structural function:

$$h(Y,Z,V,U)=0.$$

▶ Define the set of U values that, for **some** value of V, deliver Y = y when Z = z.

$$\mathcal{U}^*(y, z; h) \equiv \{u : \exists v \in \text{Supp}(V) \text{ such that } h(y, z, u, v) = 0\}.$$

▶ When Y = y and Z = z, **it must be** that $U \in \mathcal{U}^*(y, z; h)$, therefore

$$\mathbb{P}[Y = y | Z = z] \le \mathbb{P}[U \in \mathcal{U}^*(y, z; h) | Z = z]$$

▶ There is the structural function:

$$h(Y,Z,V,U)=0.$$

▶ Define the set of U values that, for **some** value of V, deliver Y = y when Z = z.

$$\mathcal{U}^*(y, z; h) \equiv \{u : \exists v \in \text{Supp}(V) \text{ such that } h(y, z, u, v) = 0\}.$$

▶ When Y = y and Z = z, **it must be** that $U \in \mathcal{U}^*(y, z; h)$, therefore

$$\mathbb{P}[Y = y | Z = z] \le \mathbb{P}[U \in \mathcal{U}^*(y, z; h) | Z = z]$$

Voila! Moment inequalities.

$$\mathbb{P}[Y = y | Z = z] \le G_{U|Z=z}(\mathcal{U}^*(y, z; h)).$$

▶ Results in Chesher and Rosen (Ecta 2017) characterize sharp identified sets as follows.

- Results in Chesher and Rosen (Ecta 2017) characterize sharp identified sets as follows.
- ▶ For a set $W \subset \operatorname{Supp}(Y)$ define

$$S(W, Z; h) \equiv \bigcup_{y \in W} U^*(y, z; h)$$

and

$$\mathcal{Y}(\mathcal{W}, z; h) \equiv \{y : \mathcal{U}^*(y, z; h) \subseteq \mathcal{S}(\mathcal{W}, Z; h)\}.$$

- ▶ Results in Chesher and Rosen (Ecta 2017) characterize sharp identified sets as follows.
- ▶ For a set $W \subset \operatorname{Supp}(Y)$ define

$$S(W, Z; h) \equiv \bigcup_{y \in W} U^*(y, z; h)$$

and

$$\mathcal{Y}(\mathcal{W}, z; h) \equiv \{y : \mathcal{U}^*(y, z; h) \subseteq \mathcal{S}(\mathcal{W}, Z; h)\}.$$

▶ For a suitable choice of sets W and all $z \in \operatorname{Supp}(Z)$ the moment inequalities

$$\mathbb{P}[Y \in \mathcal{Y}(\mathcal{W}, z; h) | Z = z] \leq \frac{G_{U|Z=z}}{[\{u : u \in \mathcal{S}(\mathcal{W}, Z; h)\}]}$$

characterize the sharp identified set of functions h and distributions $G_{U|Z=z}$.

- Results in Chesher and Rosen (Ecta 2017) characterize sharp identified sets as follows.
- ▶ For a set $W \subset \operatorname{Supp}(Y)$ define

$$S(W, Z; h) \equiv \bigcup_{y \in W} U^*(y, z; h)$$

and

$$\mathcal{Y}(\mathcal{W}, \mathbf{z}; \mathbf{h}) \equiv \{ \mathbf{y} : \mathcal{U}^*(\mathbf{y}, \mathbf{z}; \mathbf{h}) \subseteq \mathcal{S}(\mathcal{W}, \mathbf{Z}; \mathbf{h}) \}.$$

▶ For a suitable choice of sets W and all $z \in \operatorname{Supp}(Z)$ the moment inequalities

$$\mathbb{P}[Y \in \mathcal{Y}(\mathcal{W}, z; h) | Z = z] \leq G_{U|Z=z} [\{u : u \in \mathcal{S}(\mathcal{W}, Z; h)\}]$$
 characterize the sharp identified set of functions h and distributions $G_{U|Z=z}$.

▶ Models will restrict $G_{U|Z}$ e.g. $U \perp \!\!\! \perp Z$, parametrically, or nonparametrically.

Example - Dynamic Binary Panel Model

lacksquare 2 period dynamic binary panel model with Y_0 observed so $V={\it C}$.

$$Y_t = 1[Z_t\beta + \gamma Y_{t-1} + C + U_t \ge 0], \quad t \in \{1, 2\}, \quad \text{Supp}(C) = \mathbb{R}$$

- ► Can generalize to arbitrary T.
- ▶ Define $\theta \equiv (\beta, \gamma)$.

Example - Dynamic Binary Panel Model

 \triangleright 2 period dynamic binary panel model with Y_0 observed so V=C.

$$Y_t = 1[Z_t\beta + \gamma Y_{t-1} + C + U_t \ge 0], \quad t \in \{1, 2\}, \quad \text{Supp}(C) = \mathbb{R}$$

- ► Can generalize to arbitrary T.
- ▶ Define $\theta \equiv (\beta, \gamma)$.
- ▶ What values of (u_1, u_2) are in the set $\mathcal{U}^*(y, (z, y_0); \theta)$?

$$\mathcal{U}^*(y,(z,y_0);\theta)=\{(u_1,u_2):\exists c\in\mathbb{R}:$$

$$y_t = 1[z_t\beta + \gamma y_{t-1} + c + u_t \ge 0], \quad t \in \{1, 2\}\}$$

Example: Dynamic Binary Panel Model

▶ What values of (u_1, u_2) are in the set $\mathcal{U}^*(y, (z, y_0); \theta)$?

$$\mathcal{U}^*(y,(z,y_0);\theta) = \{(u_1,u_2) : \exists c \in \mathbb{R} : \\ y_t = \mathbb{1}[z_t\beta + \gamma y_{t-1} + c + u_t \ge 0], \quad t \in \{1,2\}\}$$

▶ Consider $(y_1, y_2) = (0, 1)$. There are inequalities:

$$u_1 \leq -z_1\beta - \gamma y_0 - c$$
, $u_2 \geq -z_2\beta - c$

so (u_1, u_2) can deliver $(y_1, y_2) = (0, 1)$ if there exists c such that

$$-z_2\beta - u_2 \le c \le -z_1\beta - \gamma y_0 - u_1$$

Example: Dynamic Binary Panel Model

▶ What values of (u_1, u_2) are in the set $\mathcal{U}^*(y, (z, y_0); \theta)$?

$$\mathcal{U}^*(y,(z,y_0);\theta) = \{(u_1,u_2) : \exists c \in \mathbb{R} : \\ y_t = 1[z_t\beta + \gamma y_{t-1} + c + u_t \ge 0], \quad t \in \{1,2\}\}$$

▶ Consider $(y_1, y_2) = (0, 1)$. There are inequalities:

$$u_1 \leq -z_1\beta - \gamma y_0 - c$$
, $u_2 \geq -z_2\beta - c$

so (u_1,u_2) can deliver $(y_1,y_2)=(0,1)$ if there exists c such that

$$-z_2\beta-u_2\leq c\leq -z_1\beta-\gamma y_0-u_1$$

▶ Define $\Delta_{21}u \equiv u_2 - u_1$ and $\Delta_{21}z \equiv z_2 - z_1$. With y_0 **observed**:

$$\mathcal{U}^*((0,1),(z,y_0);\theta) = \{u : \Delta_{21}u \ge -\Delta_{21}z\beta + \gamma y_0\}.$$

Example: Dynamic Binary Panel Model: Summary

$$Y_t = 1[Z_t\beta + \gamma Y_{t-1} + C + U_t \ge 0], \quad t \in \{1, 2\}, \quad \text{Supp}(C) = \mathbb{R}$$

▶ The **sharp** (see Chesher and Rosen (2017)).identified set for $(\beta, \gamma, G_{U|Z=z})$ comprises values satisfying, for all $z \in \operatorname{Supp}(Z)$

$$\mathbb{P}[Y = (0,1)|Z = z] \le G_{U|Z=z} (\{u : \Delta_{21}u \ge -\Delta_{21}z\beta + \gamma y_0\})$$

$$\mathbb{P}[Y = (1,0)|Z = z] \le G_{U|Z=z} (\{u : \Delta_{21}u \le -\Delta_{21}z\beta + \gamma(y_0 - 1)\})$$

Example: Dynamic Binary Panel Model: Summary

$$Y_t = 1[Z_t\beta + \gamma Y_{t-1} + C + U_t \ge 0], \quad t \in \{1, 2\}, \quad \text{Supp}(C) = \mathbb{R}$$

▶ The **sharp** (see Chesher and Rosen (2017)).identified set for $(\beta, \gamma, G_{U|Z=z})$ comprises values satisfying, for all $z \in \operatorname{Supp}(Z)$

$$\mathbb{P}[Y = (0,1)|Z = z] \le G_{U|Z=z} (\{u : \Delta_{21}u \ge -\Delta_{21}z\beta + \gamma y_0\})$$

$$\mathbb{P}[Y = (1,0)|Z = z] \le G_{U|Z=z} (\{u : \Delta_{21}u \le -\Delta_{21}z\beta + \gamma(y_0 - 1)\})$$

▶ Can impose e.g. U and Z independent and calculate with U_1 , U_2 IID e.g. logistic. But we can drop logistic!

Dynamic Binary Panel Model: Initial Y NOT observed

$$Y_t = 1[Z_t\beta + \gamma Y_{t-1} + C + U_t \ge 0], \quad t \in \{1, 2\}, \quad \text{Supp}(C) = \mathbb{R}$$

• When $(y_1, y_2) = (0, 1)$ there is

$$\mathcal{U}^*((0,1),(z,y_0);\theta) = \{u : \Delta_{21}u \ge -\Delta_{21}z\beta + \gamma y_0\}.$$
 (**)

Dynamic Binary Panel Model: Initial Y NOT observed

$$Y_t = 1[Z_t\beta + \gamma Y_{t-1} + C + U_t \ge 0], \quad t \in \{1, 2\}, \quad \text{Supp}(C) = \mathbb{R}$$

• When $(y_1, y_2) = (0, 1)$ there is

$$\mathcal{U}^*((0,1),(z,y_0);\theta) = \{u : \Delta_{21}u \ge -\Delta_{21}z\beta + \gamma y_0\}.$$
 (**)

With y_0 **not** observed $\mathcal{U}^*((0,1),z;\theta)$ is the **UNION** of the sets (**) with $y_0 = 0$ and $y_0 = 1$.

$$\mathcal{U}^*(\ (0,1),z;\theta) = \{u : \Delta_{21}u \ge -\Delta_{21}z\beta\} \ \bigcup \{u : \Delta_{21}u \ge -\Delta_{21}z\beta + \gamma\}$$

that is

$$\mathcal{U}^*((0,1),z;\theta) = \{u : \Delta_{21}u \ge -\Delta_{21}z\beta + \min(\gamma,0)\}$$

Dynamic Binary Panel Model: Initial Y not observed: Summary

$$Y_t = 1[Z_t\beta + \gamma Y_{t-1} + C + U_t \ge 0], \quad t \in \{1, 2\}, \quad \text{Supp}(C) = \mathbb{R}$$

Dynamic Binary Panel Model: Initial Y not observed: Summary

$$Y_t = 1[Z_t\beta + \gamma Y_{t-1} + C + U_t \ge 0], \quad t \in \{1, 2\}, \quad \text{Supp}(C) = \mathbb{R}$$

▶ The sharp identified set for $(\beta, G_{U|Z=z})$ comprises values satisfying, for all $z \in \operatorname{Supp}(Z)$

$$\mathbb{P}[Y = (0,1)|Z = z] \le G_{U|Z=z} (\{u : \Delta_{21}u \ge -\Delta_{21}z\beta + \min(\gamma, 0)\})$$

$$\mathbb{P}[Y = (1,0)|Z = z] \le G_{U|Z=z} (\{u : \Delta_{21}u \le -\Delta_{21}z\beta - \min(\gamma,0)\})$$

▶ Can impose e.g. U and Z independent and calculate with U_1 , U_2 IID e.g. logistic. But we can drop logistic!

▶ Restrict $U \perp\!\!\!\!\perp Z$. The sharp identified set of $(\beta, \gamma, G_{U|Z=z})$: values satisfying, $\forall z \in \operatorname{Supp}(Z)$:

$$\begin{split} \mathbb{P}[Y = (0,1)|Z = z] &\leq \\ G_{U|Z = z} \left(\ \{ u : \Delta_{21} u \geq -\Delta_{21} z \beta + \min(\gamma, 0) \} \right) \\ \mathbb{P}[Y = (1,0)|Z = z] &\leq \\ G_{U|Z = z} \left(\ \{ u : \Delta_{21} u \leq -\Delta_{21} z \beta - \min(\gamma, 0) \} \right) \end{split}$$

▶ Restrict $U \perp\!\!\!\!\perp Z$. The sharp identified set of $(\beta, \gamma, G_{U|Z=z})$: values satisfying, $\forall z \in \operatorname{Supp}(Z)$:

$$\begin{split} \mathbb{P}[Y = (0,1)|Z = z] \leq \\ G_{U|Z = z} \left(\ \left\{ u : \Delta_{21} u \geq -\Delta_{21} z\beta + \min(\gamma,0) \right\} \right) \end{split}$$

$$\mathbb{P}[Y = (1,0)|Z = z] \le G_{U|Z=z} (\{u : \Delta_{21}u \le -\Delta_{21}z\beta - \min(\gamma,0)\})$$

▶ Specify *N* intervals $(-\infty, \tau_1]$, $(\tau_1, \tau_2]$, . . . , (τ_{N-1}, ∞) . Define probabilities:

$$p_i \equiv \mathbb{P}[\Delta_{21} U \in [\tau_{i-1}, \tau_i]]$$

$$\forall z \in \mathcal{R}_{Z}, \qquad \left\{ \begin{array}{l} \mathbb{P}[Y = (0,1)|Z = z] \leq \sum_{i:\tau_{i} \geq -\Delta z\beta + \min(\gamma,0)} p_{i} \\ \mathbb{P}[Y = (1,0)|Z = z] \leq \sum_{i:\tau_{i} \leq -\Delta z\beta - \min(\gamma,0)} p_{i} \end{array} \right.$$

▶ Restrict $U \perp\!\!\!\!\perp Z$. The sharp identified set of $(\beta, \gamma, G_{U|Z=z})$: values satisfying, $\forall z \in \operatorname{Supp}(Z)$:

$$\begin{split} \mathbb{P}[Y = (0,1)|Z = z] \leq \\ G_{U|Z = z} \left(\ \left\{ u : \Delta_{21} u \geq -\Delta_{21} z\beta + \min(\gamma,0) \right\} \right) \end{split}$$

$$\mathbb{P}[Y = (1,0)|Z = z] \le G_{U|Z=z} \left(\left\{ u : \Delta_{21} u \le -\Delta_{21} z\beta - \min(\gamma,0) \right\} \right)$$

▶ Specify *N* intervals $(-\infty, \tau_1]$, $(\tau_1, \tau_2]$, . . . , (τ_{N-1}, ∞) . Define probabilities:

$$p_i \equiv \mathbb{P}[\Delta_{21} U \in [\tau_{i-1}, \tau_i]]$$

$$\forall z \in \mathcal{R}_{Z}, \qquad \left\{ \begin{array}{l} \mathbb{P}[Y = (0,1)|Z = z] \leq \sum_{i:\tau_{i} \geq -\Delta z\beta + \min(\gamma,0)} p_{i} \\ \mathbb{P}[Y = (1,0)|Z = z] \leq \sum_{i:\tau_{i} \leq -\Delta z\beta - \min(\gamma,0)} p_{i} \end{array} \right.$$

A value (β, γ) is in the identified set iff \exists proper probabilities (p_1, \ldots, p_N) such that these inequalities are satisfied.

▶ Restrict $U \perp\!\!\!\!\perp Z$. The sharp identified set of $(\beta, \gamma, G_{U|Z=z})$: values satisfying, $\forall z \in \operatorname{Supp}(Z)$:

$$\mathbb{P}[Y = (0,1)|Z = z] \le G_{U|Z=z} (\{u : \Delta_{21}u \ge -\Delta_{21}z\beta + \min(\gamma,0)\})$$

$$\mathbb{P}[Y = (1,0)|Z = z] \le G_{U|Z=z} (\{u : \Delta_{21}u \le -\Delta_{21}z\beta - \min(\gamma,0)\})$$

▶ Specify *N* intervals $(-\infty, \tau_1], (\tau_1, \tau_2], \ldots, (\tau_{N-1}, \infty)$. Define probabilities:

$$p_i \equiv \mathbb{P}[\Delta_{21} U \in [\tau_{i-1}, \tau_i]]$$

$$\forall z \in \mathcal{R}_{Z}, \qquad \left\{ \begin{array}{l} \mathbb{P}[Y = (0,1)|Z = z] \leq \sum_{i:\tau_{i} \geq -\Delta z\beta + \min(\gamma,0)} p_{i} \\ \mathbb{P}[Y = (1,0)|Z = z] \leq \sum_{i:\tau_{i} \leq -\Delta z\beta - \min(\gamma,0)} p_{i} \end{array} \right.$$

- A value (β, γ) is in the identified set iff \exists proper probabilities (p_1, \ldots, p_N) such that these inequalities are satisfied.
- ▶ Linear programme. Inference using e.g. Kline and Tamer (2016).

- ► The paper gives many examples of applications, e.g. to multiple discrete, and ordered, choice panels.
 - Endogenous explanatory variables are permitted.
 - ► Easy to allow for unobserved **initial conditions** in dynamic models.
 - With linear indexes U* sets obtained using Fourier-Motzkin elimination.
 - Can dispense with linear index restrictions.
 - ► There can be **multiple** OU-specific effects.
 - A nonparametric specification of the distribution of U can be accommodated.
 - In likelihood based models incidental parameters can be removed in the same way.