Rational Inattention Choices in Firms and Households

Yifan Zhang

University of Oxford

August, 2024

Yifan Zhang (University of Oxford)

Rational Inattention Choices in Firms and Households

August, 2024

◆□▶ ◆□▶ ◆目▶ ◆日▶ ●目 のへの

• Expectations are central to decision making

- ⇒ how households revise their expectations is central to their consumption decisions [Coibion et al. (2023)]
- \Rightarrow how firms revise their expectations is central to their pricing decisions [Born et al. (2022)]

• Expectations are central to decision making

- ⇒ how households revise their expectations is central to their consumption decisions [Coibion et al. (2023)]
- ⇒ how firms revise their expectations is central to their pricing decisions [Born et al. (2022)]
- Sizable heterogeneity across agents (e.g. disagreement on inflation expectation) [Carroll (2003); Mankiw et al. (2003); Candia et al. (2020); Andre et al. (2022)]
 - \Rightarrow Most evidence about expectations of different variables considered in isolation

• Expectations are central to decision making

- ⇒ how households revise their expectations is central to their consumption decisions [Coibion et al. (2023)]
- ⇒ how firms revise their expectations is central to their pricing decisions [Born et al. (2022)]
- Sizable heterogeneity across agents (e.g. disagreement on inflation expectation) [Carroll (2003); Mankiw et al. (2003); Candia et al. (2020); Andre et al. (2022)]
 - \Rightarrow Most evidence about expectations of different variables considered in isolation

• Expectations are central to decision making

- ⇒ how households revise their expectations is central to their consumption decisions [Coibion et al. (2023)]
- ⇒ how firms revise their expectations is central to their pricing decisions [Born et al. (2022)]
- Sizable heterogeneity across agents (e.g. disagreement on inflation expectation) [Carroll (2003); Mankiw et al. (2003); Candia et al. (2020); Andre et al. (2022)]
 - \Rightarrow Most evidence about expectations of different variables considered in isolation

• Heterogeneity in expectations across variables

⇒ focus on two classical macro variables: inflation and output [Candia et al. (2020)]

Heterogeneity in expectations across variables [based on Candia et al. (2020)]

- Households associate higher expected inflation with lower output growth supply side view
- Firms/professionals associate higher future inflation with higher growth demand side view

Figure 1: Correlation between expected inflation and expected output

Data Sources: Michigan Survey of Consumers; The Livingston Survey; The Survey of Professional 🕨 Unemployment 💽 Simulation 💽 Empirical Support

Yifan Zhang (University of Oxford)

Rational Inattention Choices in Firms and Household

August, 2024

• How to reconcile the contrasting views?

▲□▶▲□▶▲目▶▲目▶ 目目 のへで

- How to reconcile the contrasting views?
 - ▶ Rational Expectations (RE) all agents have the same belief

Question

- How to reconcile the contrasting views?
 - ► Rational Expectations (RE) all agents have the same belief
 - ► Several theories with departures from FI/RE [learning, diagnostic expectations, memory, etc.]
 - ⇒ cannot account for the disagreement about the directional responses

Question

- How to reconcile the contrasting views?
 - ▶ Rational Expectations (RE) all agents have the same belief
 - ► Several theories with departures from FI/RE [learning, diagnostic expectations, memory, etc.]
 - \Rightarrow cannot account for the disagreement about the **directional** responses
 - In principle, can impose different information frictions for different agents (Han, 2022) or specifying distinct subjective models (Andre et al., 2022)

(日本)

Question

- How to reconcile the contrasting views?
 - ▶ Rational Expectations (RE) all agents have the same belief
 - ► Several theories with departures from FI/RE [learning, diagnostic expectations, memory, etc.]
 - \Rightarrow cannot account for the disagreement about the **directional** responses
 - In principle, can impose different information frictions for different agents (Han, 2022) or specifying distinct subjective models (Andre et al., 2022)

This paper: a unified expectation model based on *rational inattention* to *rationalize the evidence*

★ ■ ★ ■ ★ ■ ■ ■ ● QQO

• A simple model with "rational inattention": agents choose what information to attend

◆□▶ ◆□▶ ◆目▶ ◆日▶ ●目 のへの

A simple model with "rational inattention": agents choose what information to attend
 ⇒ households optimally pay more attention to supply shocks ⇒ supply side view

This Paper

- A simple model with "rational inattention": agents choose what information to attend
 - \Rightarrow households optimally pay more attention to supply shocks \Rightarrow supply side view
 - \Rightarrow firms optimally pay slight more attention to demand shocks \Rightarrow weak demand side view

This Paper

- A simple model with "rational inattention": agents choose what information to attend
 - \Rightarrow households optimally pay more attention to supply shocks \Rightarrow supply side view
 - \Rightarrow firms optimally pay slight more attention to demand shocks \Rightarrow weak demand side view
- A DSGE model to quantitatively match survey evidence
- Implications on business cycles and monetary policy [Not today]

□ + * = + * = + = = * 9 < 0

A Simple Model

A simple model with rational inattentive firms and households:

- Agents: households make consumption decisions; firms make price decisions
- Shocks: productivity shocks (a_t) + monetary policy shock $(q_t \equiv \log Q_t = \log(P_t Y_t))$
- Information structure: *ex ante* attention choices (initial period t = 0)

In each subsequent period t > 0

A Simple Model

Households. A continuum of hand-to-mouth households. Per period utility

$$\mathcal{U}_{it} = \mathbb{E}_{it} \left[rac{C_{it}^{1-\gamma}}{1-\gamma} - rac{L_{it}^{1+\eta}}{1+\eta}
ight]$$

subject to

$$P_t C_{it} = W_t L_{it}$$

◆□▶ ◆□▶ ◆目▶ ◆日▶ ●目 のへの

A Simple Model

Households. A continuum of hand-to-mouth households. Per period utility

$$\mathcal{U}_{it} = \mathbb{E}_{it} \left[\frac{C_{it}^{1-\gamma}}{1-\gamma} - \frac{L_{it}^{1+\eta}}{1+\eta} \right] = \mathbb{E}_{it} \left[\frac{C_{it}^{1-\gamma}}{1-\gamma} - \frac{\left(\frac{P_t C_{it}}{W_t}\right)^{1+\eta}}{1+\eta} \right]$$

subject to

$$P_t C_{it} = W_t L_{it}$$

 \Rightarrow Each period household *i* chooses consumption level C_{it} to maximize expected utility

▲■ → ▲ ■ → ▲ ■ → ▲ ■ → ● ● ●

Yifan Zhang (University of Oxford)

Households. A second-order approximation of household *i* expected utility • Approx

$$u_{it} \propto \mathbb{E}_{it} \left[-\frac{\gamma+\eta}{2} \left(c_{it} - \frac{c_{it}^*}{2}
ight)^2
ight]$$

- where optimal consumption choice under full information: $c_{it}^* = \frac{1+\eta}{(\gamma+\eta)} (w_t - p_t)$

Households. A second-order approximation of household *i* expected utility • Approx

$$u_{it} \propto \mathbb{E}_{it} \left[-\frac{\gamma + \eta}{2} \left(c_{it} - c_{it}^* \right)^2 - \mu^h \mathcal{I} \left(c_{it}^*; s_{it} \right)
ight]$$

- where optimal consumption choice under full information: $c_{it}^* = \frac{1+\eta}{(\gamma+\eta)} (w_t - p_t)$

Costly attention. Expected uncertainty reduction multiplied by marginal cost μ^h • Entropy

Households. A second-order approximation of household *i* expected utility • Approx

$$u_{it} \propto \mathbb{E}_{it} \left[-\frac{\gamma + \eta}{2} \left(c_{it} - c_{it}^* \right)^2 - \mu^h \mathcal{I} \left(c_{it}^*; s_{it} \right)
ight]$$

- where optimal consumption choice under full information: $c_{it}^* = \frac{1+\eta}{(\gamma+\eta)} (w_t - p_t)$

Costly attention. Expected uncertainty reduction multiplied by marginal cost μ^h • Entropy

• Loss from not paying attention (benefit of paying attention) increases when optimal consumption varies significantly in response to certain shocks

Firms. A continuum of firms, produce differentiated good $Y_{j,t}$ with a linear technology. Discounted expected profits

$$\mathcal{V}_{jt} = \mathbb{E}_{jt} \left[\frac{1}{P_t C_t} \Pi_{jt} \right], \quad \Pi_{jt} = P_{jt} Y_{jt} - \left(1 - \theta^{-1} \right) W_t L_{jt}$$

the demand function for firm j's product

$$Y_{jt} = \left(\frac{P_{jt}}{P_t}\right)^{-\theta} Y_t$$

 \Rightarrow Each period firm *j* chooses price level P_{jt} to maximize expected profit

(日本)

Firms. A second-order approximation of firm *j* expected profit

$$v_{jt} \propto \mathbb{E}_{jt} \left[-rac{ heta-1}{2} \left(p_{jt} - rac{p_{jt}^*}{p_{jt}}
ight)^2
ight]$$

- Optimal price choice under full information: $p_{it}^* = w_t - a_t$

Firms. A second-order approximation of firm *j* expected profit

$$v_{jt} \propto \mathbb{E}_{jt} igg[-rac{ heta -1}{2} \left(p_{jt} - p_{jt}^*
ight)^2 - \mu^f \mathcal{I} \left(p_{jt}^*; s_{jt}
ight) igg]$$

- Optimal price choice under full information: $p_{it}^* = w_t - a_t$

Attention cost is the expected reduction of uncertainty times marginal cost μ^{f}

• Loss from not paying attention (benefit of paying attention) increases when optimal price varies significantly in response to certain shocks

(日本)

Firms. A second-order approximation of firm *j* expected profit

$$v_{jt} \propto \mathbb{E}_{jt} igg[-rac{ heta -1}{2} \left(p_{jt} - p_{jt}^*
ight)^2 - \mu^f \mathcal{I} \left(p_{jt}^*; s_{jt}
ight) igg]$$

- Optimal price choice under full information: $p_{it}^* = w_t - a_t$

Attention cost is the expected reduction of uncertainty times marginal cost μ^{f}

• Loss from not paying attention (benefit of paying attention) increases when optimal price varies significantly in response to certain shocks

Shocks. productivity shock
$$a_t \sim N(0, \sigma_a^2)$$
;
monetary policy shock $q_t \equiv \log Q_t = \log(P_t Y_t), q_t \sim N(0, \sigma_q^2)$

The households and firms face two choices in succession:

i. What type of information

◆□▶ ◆□▶ ◆目▶ ◆日▶ ●目 のへの

The households and firms face two choices in succession:

- i. What type of information
 - Households when choose consumption want to learn real wage $(w_t p_t)$
 - Firms when set prices want to track nominal marginal cost $(w_t a_t)$

In line with the attention choices by households and firms in the survey

Monetary Policy Shock

11 / 15

The households and firms face two choices in succession:

- i. What type of information
 - Households when choose consumption want to learn real wage $(w_t p_t)$
 - Firms when set prices want to track nominal marginal cost $(w_t a_t)$

In line with the attention choices by households and firms in the survey

ii.	How much attention to	pay depends or	the responsivene	ss of optimal actions
-----	-----------------------	----------------	------------------	-----------------------

Full information	Household <i>i</i>	Firm j
Monetary policy shock q_t	$c^*_{i,t}=0$	$p_{j,t}^* = q_t$
Productivity shock a_t	$c^*_{i,t} = rac{1+\eta}{\gamma+\eta}a_t$	$p_{j,t}^* = -rac{1+\eta}{\gamma+\eta}a_t$

• Monetary Policy Shock

Productivity Shock
 Beliefs under RI

The households and firms face two choices in succession:

- i. What type of information
 - Households when choose consumption want to learn real wage $(w_t p_t)$
 - Firms when set prices want to track nominal marginal cost $(w_t a_t)$

In line with the attention choices by households and firms in the survey

ii. How much attention to pay depends on the responsiveness of optimal actions

Full information	Household <i>i</i>	Firm j	
Monetary policy shock q_t	$c_{i,t}^* = 0$	$p_{j,t}^* = q_t$	
Productivity shock a_t	$c_{i,t}^* = rac{1+\eta}{\gamma+\eta}a_t$	$p_{j,t}^* = -rac{1+\eta}{\gamma+\eta}a_t$	
	7	"classical dichotomy"	
	 Monetary Policy Shock 	Productivity Sho	ck • Beliefs under RI
		• • • • • • • • •	≣া ৰ≣া হাম প্ৰ

Quantitative Model

Extend the simple model in two dimensions (Static \rightarrow Dynamic):

- 1. Households can trade nominal bonds intertemporal substitution
- 2. Central bank set interest rates following a Taylor rule
 - Central bank has full information
 - Model counterpart of the professional forecasters in the survey

Shocks. *AR*(1) productivity process; *i.i.d* shock to interest rates

▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 目目 • つ Q @

Quantitative Model

Extend the simple model in two dimensions (Static \rightarrow Dynamic):

- 1. Households can trade nominal bonds intertemporal substitution
- 2. Central bank set interest rates following a Taylor rule
 - Central bank has full information
 - Model counterpart of the professional forecasters in the survey

Shocks. *AR*(1) productivity process; *i.i.d* shock to interest rates

Intuition. Under full information, monetary policy shocks have no effect on real variables – classical dichotomy holds ⇒ households have limited incentive to pay attention to such shocks; Firms' problem same as before

Households + Full info + Calibration + Quantitative Results

■▶ ▲ ■▶ ▲ ■▶ ■目目 ののの

Simulated Correlation

Figure 2: Correlation between expected inflation and expected output

Yifan Zhang (University of Oxford)

lational Inattention Choices in Firms and Households

August, 2024

13 / 15

A DSGE model with rational inattention, investigates how rational inattentive agents attend and respond to supply and demand shocks

▲□ → ▲ 三 → ▲ 三 → 三 → の へ ()

A DSGE model with rational inattention, investigates how rational inattentive agents attend and respond to supply and demand shocks

- Households find it optimal to allocate more attention to supply shocks
- Firms find it optimal to allocate slightly more attention to demand shocks
- \Rightarrow Survey-consistent expectations

A DSGE model with rational inattention, investigates how rational inattentive agents attend and respond to supply and demand shocks

- Households find it optimal to allocate more attention to supply shocks
- Firms find it optimal to allocate slightly more attention to demand shocks
- \Rightarrow Survey-consistent expectations
- Rational inattention lead to slow and asymmetric adjustment
- \Rightarrow Slow response to shocks, even slower response to shocks that are less important

A DSGE model with rational inattention, investigates how rational inattentive agents attend and respond to supply and demand shocks

- Households find it optimal to allocate more attention to supply shocks
- Firms find it optimal to allocate slightly more attention to demand shocks
- \Rightarrow Survey-consistent expectations
- Rational inattention lead to slow and asymmetric adjustment
- \Rightarrow Slow response to shocks, even slower response to shocks that are less important
- A DSGE model with both agents subject to RI and prices adjust so that market clears
- \Rightarrow Rich interactions between rational inattentive households and firms
- \Rightarrow Matters for the transmission of shocks
The End Thank You!

Yifan Zhang (University of Oxford)

Rational Inattention Choices in Firms and Households

August, 2024

Disagreement in expectations across variables

- Households associate higher expected inflation with higher unemployment *supply side view*
- Firms/professionals associate higher inflation with lower unemployment *demand side view*

Figure 3: Correlation between expected inflation and expected unemployment change

Data Sources: Michigan Survey of Consumers; The Livingston Survey; The Survey of Professional Forecasters.

Yifan Zhang (University of Oxford)

Rational Inattention Choices in Firms and Households

▶ Back

- Households associate higher expected inflation with lower output growth supply side view
- Firms/professionals associate higher future inflation with higher growth *demand side view*

Figure 4: Correlation between expected inflation and expected output

Data Sources: Michigan Survey of Consumers; The Livingston Survey; The Survey of Professional Forecasters.

Yifan Zhang (University of Oxford)

Rational Inattention Choices in Firms and Households

August, 2024

Unemployment 🖌 🕨 Back

2 / 24

		Growth Forecasts			
	Hc	ouseholds	Firms	Professional	
	Full Sample Great Moderation			forecasters	
Inflation Forecasts	-0.038^{***}	-0.034^{***}	0.039	0.156^{***}	
	(0.001)		(0.049)	(0.023)	
Obs.	232,848	143,680	337	2,886	

Table 1: Perceived Relationship between Expected Inflation and Expected Growth

医下颌 医下颌

		Growth Forecasts				
	Ho	ouseholds	Firms	Professional		
	Full Sample			forecasters		
Inflation Forecasts	-0.038^{***}	-0.034^{***}	0.039	0.156^{***}		
	(0.001)		(0.049)	(0.023)		
Obs.	232,848	143,680	337	2,886		

Table 1: Perceived Relationship between Expected Inflation and Expected Growth

• Potential concern: cross-sectional plots \Rightarrow leverage panel dimension of surveys \blacktriangleright Robust

▲□ → ▲ ■ → ▲ ■ → ■ ■ ● ● ●

		Growth Forecasts				
	Ho	ouseholds	Firms	Professional		
	Full Sample			forecasters		
Inflation Forecasts	-0.038^{***}	-0.034^{***}	0.039	0.156^{***}		
	(0.001)		(0.049)	(0.023)		
Obs.	232,848	143,680	337	2,886		

Table 1: Perceived Relationship between Expected Inflation and Expected Growth

- Potential concern: cross-sectional plots \Rightarrow leverage panel dimension of surveys \blacktriangleright Robust
- Similar results also find in random control trials (Coibion et al., 2018, 2023)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

		Growth Forecasts				
	Ho	ouseholds	Firms	Professional		
	Full Sample	Great Moderation		forecasters		
Inflation Forecasts	-0.038^{***} -0.034^{***}		0.039	0.156^{***}		
	(0.001)	(0.001)	(0.049)	(0.023)		
Obs.	232,848	143,680	337	2,886		

Table 1: Perceived Relationship between Expected Inflation and Expected Growth

- Potential concern: cross-sectional plots \Rightarrow leverage panel dimension of surveys \blacktriangleright Robust
- Similar results also find in random control trials (Coibion et al., 2018, 2023)
- Negative correlation persisted even during Great Moderation

Michigan Survey of Consumers: During the last few months, have you heard of any favorable or unfavorable changes in business conditions? What did you hear?

Figure 5: Fraction of survey respondents having heard news in each category in last quarter

Michigan Survey of Consumers: During the last few months, have you heard of any favorable or unfavorable changes in business conditions? What did you hear?

Figure 5: Fraction of survey respondents having heard news in each category in last quarter

⇒ Households are more attentive to changes in labor market conditions

Yifan Zhang (University of Oxford)

Rational Inattention Choices in Firms and Household

August, 2024

Business Inflation Expectations: Projecting ahead over the next 12 months, how do you think the following five common influences will affect the prices of your products and/or services?

• 72% of firms report nominal costs will have strong/moderate influence on their prices

▲□ → ▲ ■ → ▲ ■ → ■ ■ ● ● ●

- **Business Inflation Expectations:** Projecting ahead over the next 12 months, how do you think the following five common influences will affect the prices of your products and/or services?
- 72% of firms report nominal costs will have strong/moderate influence on their prices
- \Rightarrow Firms when setting prices are more interested in knowing their nominal costs

▲□ → ▲ ■ → ▲ ■ → ■ ■ ● ● ●

Evidence #3: Attention affects households' beliefs

• Question: Does attention matter (for households)?

(四) (종) (종) (종)

Evidence #3: Attention affects households' beliefs

- Question: Does attention matter (for households)?
- Empirical specification:

$$\mathbb{E}_{t}^{i}[\Delta y_{t+1}] = \beta_{0} + \beta_{1} \mathbb{E}_{t}^{i}[\pi_{t+1}] + \gamma_{1} \mathbb{E}_{t}^{i}[\pi_{t+1}] \times News_{i,t}^{labor} + \gamma_{2} \mathbb{E}_{t}^{i}[\pi_{t+1}] \times News_{i,t}^{price} + \alpha_{1}News_{i,t}^{labor} + \alpha_{2}News_{i,t}^{price} + u_{i,t}$$

- here $New_{i,t}^{labor}$ or $New_{i,t}^{price} = 1$ if *i* heard of that news in relevant quarter

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Evidence #3: Attention affects households' beliefs

- Question: Does attention matter (for households)?
- Empirical specification:

$$\mathbb{E}_{t}^{i}[\Delta y_{t+1}] = \beta_{0} + \beta_{1} \mathbb{E}_{t}^{i}[\pi_{t+1}] + \gamma_{1} \mathbb{E}_{t}^{i}[\pi_{t+1}] \times News_{i,t}^{labor} + \gamma_{2} \mathbb{E}_{t}^{i}[\pi_{t+1}] \times News_{i,t}^{price} + \alpha_{1}News_{i,t}^{labor} + \alpha_{2}News_{i,t}^{price} + u_{i,t}$$

- here $New_{i,t}^{labor}$ or $New_{i,t}^{price} = 1$ if *i* heard of that news in relevant quarter

	Interpretation
$\gamma_x < 0$	Attention to that news <i>x</i> contributes to supply-side view
$\gamma_x > 0$	Attention to that news <i>x</i> contributes to demand-side view

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

	Growth Forecasts			
	All			
Inflation Forecasts	-0.047^{***}	-0.047^{***}	-0.047^{***}	
	(0.001)			
Inflation Forecasts $ imes$ Labor news	-0.0186^{**}			
	(0.007)			
Inflation Forecasts $ imes$ Price news	0.006			
	(0.027)			
Labor news	-0.091^{***}			
	(0.025)			
Price news	0.061			
	(0.073)			
Intercept	0.019			
_	(0.002)			

Table 2: Perceived Relationship between Expected Inflation and Growth: Households

Data Sources: Michigan Survey of Consumers.

Table 2: Perceived Relationship between Expected Inflation and Growth: Households

	Growth Forecasts			
	All			
Inflation Forecasts	-0.047^{***}	-0.047^{***}	-0.047^{***}	
	(0.001)			
Inflation Forecasts × Labor news	(-0.0186^{**})	-0.019^{**}		
	(0.007)			
Inflation Forecasts $ imes$ Price news	0.006			
	(0.027)			
Labor news	-0.091^{***}			
	(0.025)			
Price news	0.061			
	(0.073)			
Intercept	0.019			
*	(0.002)			

Data Sources: Michigan Survey of Consumers.

Table 2: Perceived Relationship between Expected Inflation and Growth: Households

	Growth Forecasts			
	All			
Inflation Forecasts	-0.047^{***}	-0.047^{***}	-0.047^{***}	
	(0.001)			
Inflation Forecasts × Labor news	(-0.0186^{**})	-0.019^{**}		
	(0.007)			
Inflation Forecasts × Price news	0.006	0.006		
	(0.027)			
Labor news	-0.091^{***}			
	(0.025)			
Price news	0.061			
	(0.073)			
Intercept	0.019			
-	(0.002)			

Data Sources: Michigan Survey of Consumers.

	Growth Forecasts			
	All	Labor news (+)	Labor news (–)	
Inflation Forecasts	-0.047^{***}	-0.047^{***}	-0.047^{***}	
	(0.001)	(0.002)	(0.002)	
Inflation Forecasts $ imes$ Labor news	-0.0186^{**}	-0.019^{**}	-0.013^{*}	
	(0.007)	(0.025)	(0.008)	
Inflation Forecasts $ imes$ Price news	0.006	0.006	0.006	
	(0.027)	(0.027)	(0.027)	
Labor news	-0.091^{***}	0.152***	-0.237^{***}	
	(0.025)	(0.024)	(0.022)	
Price news	0.061	0.063	0.060	
	(0.073)	(0.073)	(0.073)	
Intercept	0.019	0.017	0.020	
-	(0.002)	(0.002)	(0.002)	

Table 2: Perceived Relationship between Expected Inflation and Growth: Households

Data Sources: Michigan Survey of Consumers.

Robust

	Growth Forecasts			
	All	Labor news (+)	Labor news (–)	
Inflation Forecasts	-0.047^{***}	-0.047^{***}	-0.047^{***}	
	(0.001)	(0.002)	(0.002)	
Inflation Forecasts $ imes$ Labor news	-0.0186^{**}	-0.019^{**}	-0.013^{*}	
	(0.007)	(0.025)	(0.008)	
Inflation Forecasts $ imes$ Price news	0.006	0.006	0.006	
	(0.027)	(0.027)	(0.027)	
Labor news	-0.091^{***}	0.152***	-0.237^{***}	
	(0.025)	(0.024)	(0.022)	
Price news	0.061	0.063	0.060	
	(0.073)	(0.073)	(0.073)	
Intercept	0.019	0.017	0.020	
	(0.002)	(0.002)	(0.002)	

Table 2: Perceived Relationship between Expected Inflation and Growth: Households

Data Sources: Michigan Survey of Consumers.

Robust

- Households: of 4,276 interviewed \geq 3 times, 75.3% display a negative slope
- Firms: 54.3% positive, 45.7% negative
- Professional forecasters: 73.7% positive

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Robustness

	Inflation Forecasts			
	All	Price news (+)	Price news (-)	
Growth Forecasts	-0.462^{***}	-0.462^{***}	-0.462^{***}	
	(0.006)	(0.006)	(0.007)	
Growth Forecasts $ imes$ Labor news	-0.109^{*}	-0.109^{*}	-0.109^{*}	
	(0.067)	(0.067)	(0.067)	
Growth Forecasts $ imes$ Price news	0.105	0.1274	0.129	
	(0.253)	(0.275)	(0.255)	
Labor news	-0.051	-0.051	-0.051	
	(0.062)	(0.067)	(0.062)	
Price news	-0.028	-0.195	-0.005	
	(0.230)	(0.251)	(0.233)	
Intercept	0.012	0.012	0.011	
	(0.006)	(0.006)	(0.006)	
Observations	218,716	218,716	218,716	

Table 3: Perceived Relationship between Inflation and Growth: Households

Data Sources: Michigan Survey of Consumers.

イロト 人間 とくほ とくほう

Back

Second Order Approximation - utility function

• Household per-period utility

$$U(C_{it}, P_t, W_t) = \frac{C_{it}^{1-\gamma}}{1-\gamma} - \frac{L_{it}^{1+\eta}}{1+\eta} =_{[1]} \frac{(C_{it})^{1-\gamma}}{1-\gamma} - \frac{\left(\frac{P_t C_{it}}{W_t}\right)^{1+\eta}}{1+\eta} =_{[2]} \left[\frac{\left(\bar{C}e^{c_{it}}\right)^{1-\gamma}}{1-\gamma} - \frac{\left(\frac{\bar{P}e^{p_t}\bar{C}e^{c_{it}}}{We^{w_t}}\right)^{1+\eta}}{1+\eta}\right]$$

 $=_{[1]}$ substitute labor using budget constraint $L_{it} = P_t C_{it} / W_t$; $=_{[2]}$ express as log-deviations

• Taking second-order approximation to the function $L(c_{it}, p_t, w_t) \equiv u(c_{it}, p_t, w_t) - u(c_{it}^*, p_t, w_t)$ around the steady state

$$L(c_{it}, p_t, w_t) \approx \frac{1}{2} u_{11} \left(c_{it}^2 - c_{it}^{*2} \right) + u_{12} p_t \left(c_{i,t} - c_{it}^* \right) + u_{13} w_t \left(c_{it} - c_{it}^* \right)$$
(A1)

• Note that since optimal consumption maximizes the utility function for any p_t and w_t

$$u_1(c_{it}^*, p_t, w_t) = 0 \Rightarrow u_{11}c_{it}^* + u_{12}p_t + u_{13}w_t \approx 0$$
(A2)

• Combining Equation (A1) and (A2)

$$u(c_{it}, p_t, w_t) = L(c_{it}, p_t, w_t) + \hat{u}(c_{it}^*, p_t, w_t) = \frac{1}{2}u_{11}(c_{it} - c_{it}^*)^2 + \text{terms independent of } c_{it}$$

• Finally, \hat{u}_1 is the derivative of \hat{u} w.r.t c_{it} and evaluated at the non-stochastic steady state. As c_{it} is choice variable, $\hat{u}_1 = 0$. And \hat{u}_{11} is the second derivative of \hat{u} w.r.t c_{it} , $\hat{u}_{11} = \gamma + \eta$

Cost of Information

• Flow cost of information is measured as

 $\mu \mathbb{I}(X^t; \mathcal{S}^t | \mathcal{S}^{t-1})$

- where $\mu > 0$ is a parameter (marginal cost of attention), and $\mathbb{I}(X^t; S^t | S^{t-1})$ the reduction in entropy of X^t by expanding knowledge from S^{t-1} to S^t

$$\mathbb{I}(X^{t}; \mathcal{S}^{t} | \mathcal{S}^{t-1}) \equiv h(X^{t} | \mathcal{S}^{t-1}) - \mathbb{E}\left[h(X^{t} | \mathcal{S}^{t}) | \mathcal{S}^{t-1}\right]$$

- here $\{S^t\}_{t\geq 0}$ denote the information sets for the agent at time *t*

• For example, consider a Gaussian white noise *x* with prior uncertainty σ_x^2

$$\mathbb{I}(x;\mathcal{S}) \equiv h(x) - \mathbb{E}\left[h(x|\mathcal{S})\right] = \frac{\log \sigma_x^2}{2\pi e} - \frac{\log \sigma_{x|s}^2}{2\pi e}$$

- here $\sigma_{x|s}^2 \ge \sigma_x^2$ is the posterior uncertainty of *x* upon reception of signal *s*

Firms' attention problem

- Households have full information, optimal price $p_{it}^* = q_t$
- The rational inattention problem of firm *j* becomes

$$\max_{\{p_{jt} \in \mathcal{S}^{t}\}} \mathbb{E} \left[-\frac{(\theta-1)}{2} \left(p_{jt} - q_{t} \right)^{2} - \mu^{f} \mathbb{I} \left(q_{t}; p_{jt} \right) |p_{j}^{-1} \right]$$

$$=_{[1]} \max_{\{p_{j,t} \in \mathcal{S}^{t}\}} \mathbb{E} \left[-\frac{(\theta-1)}{2} \left(\mathbb{E} \left(q_{t} | p_{jt} \right) - q_{t} \right)^{2} - \mu^{f} \mathbb{I} \left(q_{t}; p_{jt} \right) |p_{j}^{-1} \right]$$

$$=_{[2]} \max_{\{\sigma_{q|s}^{2} \leq \sigma_{q}^{2}\}} \frac{1}{2} \left[-\left(\theta - 1 \right) \sigma_{q|s}^{2} - \mu^{f} \ln \frac{\sigma_{q}^{2}}{\sigma_{q|s}^{2}} \right]$$

 $=_{[1]} \text{ substitute } p_{j,t} = \mathbb{E}[p_{j,t}^*|s_{j,t}] = \mathbb{E}[w_t|s_{j,t}], =_{[2]} \text{ posterior variance } \sigma_{q|s}^2 = \mathbb{E}[(\mathbb{E}(q_t|p_{j,t}) - q_t)^2]$

• F.O.C \Rightarrow posterior uncertainty \Rightarrow Kalman gain

$$\sigma_{q|s}^2 = \min\left(\sigma_q^2, rac{\mu^f}{(heta-1)}
ight), \quad \xi_q^f \equiv 1 - rac{\sigma_{q|s}^2}{\sigma_q^2}$$

- A signal is worthwhile if σ_q^2 large, μ^f small, or $(\theta - 1)$ large

• Full information baseline.

Yifan Zhang (University of Oxford)

Rational Inattention Choices in Firms and Households

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□■ のへの

- Full information baseline.
 - Firms set prices optimally $p_t = q_t = w_t$, real wage remains constant

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□■ のへの

• Full information baseline.

- Firms set prices optimally $p_t = q_t = w_t$, real wage remains constant
- Households observe constant real wage and not change their consumption $c_t = 0$

◆母 → ◆ 臣 → ∢ 臣 → ◆ 国 ■ → ○ ○ ○

• Full information baseline.

- Firms set prices optimally $p_t = q_t = w_t$, real wage remains constant
- Households observe constant real wage and not change their consumption $c_t = 0$ \Rightarrow Information on demand shocks has no value for households

ALLARDARD SHA SOO

• Full information baseline.

- Firms set prices optimally $p_t = q_t = w_t$, real wage remains constant
- ▶ Households observe constant real wage and not change their consumption c_t = 0
 ⇒ Information on demand shocks has no value for households
- Rational inattentive firms.

NOR STRATE STRAGE

• Full information baseline.

- Firms set prices optimally $p_t = q_t = w_t$, real wage remains constant
- ▶ Households observe constant real wage and not change their consumption c_t = 0
 ⇒ Information on demand shocks has no value for households

• Rational inattentive firms.

Firms compare the cost and benefit of paying attention <a>Solution

$$\max_{\{p_{jt} \in S_{j}^{r}\}_{t \geq 0}} \mathbb{E}^{j} \left[\underbrace{-\frac{\theta - 1}{2} \left(p_{j,t} - w_{t}\right)^{2}}_{\text{benefit: improve precision}} - \underbrace{\mu^{f} \mathbb{I}\left(w_{t}; p_{jt}\right)}_{\text{cost of attention}} | p_{j}^{-1} \right]$$

→ < E > < E > E = <000</p>

• Full information baseline.

- Firms set prices optimally $p_t = q_t = w_t$, real wage remains constant
- ▶ Households observe constant real wage and not change their consumption c_t = 0
 ⇒ Information on demand shocks has no value for households

• Rational inattentive firms.

Firms compare the cost and benefit of paying attention <a>Solution

$$\max_{\{p_{jt} \in \mathcal{S}_{f}^{t}\}_{t \geq 0}} \mathbb{E}^{j} \left[\underbrace{-\frac{\theta - 1}{2} \left(p_{j,t} - w_{t}\right)^{2}}_{\text{benefit: improve precision}} - \underbrace{\mu^{f} \mathbb{I}\left(w_{t}; p_{jt}\right)}_{\text{cost of attention}} |p_{j}^{-1}\right]$$

Firms under-react to the aggregate nominal demand shock $p_t = \xi_q^f w_t$, where $\xi_q^f \equiv \max\{0, 1 - \frac{\sigma_f^2}{\sigma_q^2}\} \in [0, 1]$ reflects the chosen level of attention

• Full information baseline.

- Firms set prices optimally $p_t = q_t = w_t$, real wage remains constant
- ▶ Households observe constant real wage and not change their consumption c_t = 0
 ⇒ Information on demand shocks has no value for households

• Rational inattentive firms.

Firms compare the cost and benefit of paying attention <a>Solution

$$\max_{\{p_{jt} \in \mathcal{S}_{j}^{t}\}_{t \geq 0}} \mathbb{E}^{j} \left[\underbrace{-\frac{\theta - 1}{2} \left(p_{j,t} - w_{t}\right)^{2}}_{\text{benefit: improve precision}} - \underbrace{\mu^{f} \mathbb{I}\left(w_{t}; p_{jt}\right)}_{\text{cost of attention}} |p_{j}^{-1}\right]$$

Firms under-react to the aggregate nominal demand shock $p_t = \xi_q^f w_t$, where $\xi_q^f \equiv \max\{0, 1 - \underline{\sigma}_f^2 / \sigma_q^2\} \in [0, 1]$ reflects the chosen level of attention

 \Rightarrow Real wage varies due to firms' attention error $w_t - p_t = (1 - \xi_q^f) w_t$

• Full information baseline.

- Firms set prices optimally $p_t = q_t = w_t$, real wage remains constant
- Households observe constant real wage and not change their consumption $c_t = 0$ \Rightarrow Information on demand shocks has no value for households

• Rational inattentive firms.

Firms compare the cost and benefit of paying attention <a>Solution

$$\max_{\{p_{jt} \in \mathcal{S}_{j}^{t}\}_{t \geq 0}} \mathbb{E}^{j} \left[\underbrace{-\frac{\theta - 1}{2} \left(p_{j,t} - w_{t}\right)^{2}}_{\text{benefit: improve precision}} - \underbrace{\mu^{f} \mathbb{I}\left(w_{t}; p_{jt}\right)}_{\text{cost of attention}} | p_{j}^{-1} \right]$$

- Firms under-react to the aggregate nominal demand shock $p_t = \xi_q^f w_t$, where $\xi_q^f \equiv \max\{0, 1 \underline{\sigma}_f^2 / \sigma_q^2\} \in [0, 1]$ reflects the chosen level of attention
- \Rightarrow Real wage varies due to firms' attention error $w_t p_t = (1 \xi_q^f) w_t$
- \Rightarrow Information on demand shock becomes valuable for households

• Rational inattentive households.

Households compare cost and benefit of paying attention

$$\max_{\{c_{it}\in\mathcal{S}_{h}^{t}\}_{t\geq0}}\mathbb{E}^{i}\left[-\frac{(\gamma+\eta)}{2}\left(c_{it}-\frac{1+\eta}{\gamma+\eta}(\overbrace{w_{t}-p_{t}}^{\text{firms' error}})\right)^{2}-\mu^{h}\mathbb{I}\left(c_{it}^{*};c_{it}\right)|c_{i}^{-1}\right]$$

• Households' consumption slightly increases $c_t = \xi_q^h \left[\frac{1+\eta}{\gamma+\eta} (w_t - p_t) \right]$, ξ_q^h attention level

• Rational inattentive households.

Households compare cost and benefit of paying attention

$$\max_{\{c_{it}\in\mathcal{S}_{h}^{t}\}_{t\geq0}}\mathbb{E}^{i}\left[-\frac{(\gamma+\eta)}{2}\left(c_{it}-\frac{1+\eta}{\gamma+\eta}(\widetilde{w_{t}-p_{t}})\right)^{2}-\mu^{h}\mathbb{I}\left(c_{it}^{*};c_{it}\right)|c_{i}^{-1}\right]$$

► Households' consumption slightly increases $c_t = \xi_q^h \left[\frac{1+\eta}{\gamma+\eta} (w_t - p_t) \right]$, ξ_q^h attention level

So far take w_t as given, but <u>endogenous</u> to attention choices and decisions by firms and households \triangleleft Back

▲■ → ▲ ■ → ▲ ■ ■ ■ ● ● ●

Results #1: Households pay limited attention to demand shocks

• Households are naturally insured against demand shocks as firms will set prices to closely track nominal wage, and thus not much variation in real wage
Results #1: Households pay limited attention to demand shocks

- Households are naturally insured against demand shocks as firms will set prices to closely track nominal wage, and thus not much variation in real wage
- ⇒ Households don't pay attention unless firms make big mistakes substitutes

-

• Full information baseline.

• Positive productivity shock, price decreases on impact $p_t = w_t - a_t = -\frac{1+\eta}{\gamma+\eta}a_t$

• A surge in demand
$$c_t = \frac{1+\eta}{\gamma+\eta}a_t$$

▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 目目 • つ Q @

Full information baseline.

- Ill information baseline. Positive productivity shock, price decreases on impact $p_t = w_t^{\uparrow} a_t^{\uparrow} = -\frac{1+\eta}{\gamma+\eta}a_t$
- A surge in demand $c_t = \frac{1+\eta}{\gamma+\eta}a_t$
- If income effect dominates \Rightarrow labor supply \downarrow wage \uparrow

▲ E ▶ ★ E ▶ E = 9QQ

• Full information baseline.

- Positive productivity shock, price decreases on impact $p_t = w_t a_t = -\frac{1+\eta}{\gamma+\eta}a_t$
- A surge in demand $c_t = \frac{1+\eta}{\gamma+\eta}a_t$
- If income effect dominates \Rightarrow labor supply \downarrow wage \uparrow

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Full information baseline.

- Positive productivity shock, price decreases on impact $p_t = w_t a_t = -\frac{1+\eta}{\gamma+\eta}a_t$
- A surge in demand $c_t = \frac{1+\eta}{\gamma+\eta}a_t$
- If income effect dominates \Rightarrow labor supply \downarrow wage \uparrow

• Rational inattentive firms.

$$\max_{\{p_{jt}\in\mathcal{S}_{f}^{t}\}_{t\geq0}}\mathbb{E}_{jt}\left[-\frac{\theta-1}{2}\left(p_{jt}-(w_{t}-a_{t})\right)^{2}-\mu^{f}\mathbb{I}\left(p_{jt}^{*};p_{jt}\right)|p_{j}^{-1}\right]$$

- ► Firms under-react to productivity shock $p_t = \xi_a^f(w_t a_t)$, where $\xi_a^f \in [0, 1]$ reflects the chosen level of attention
- Under-react even more if labor are relatively elastic ($w_t \uparrow more$)

▲■ → ▲ ■ → ▲ ■ ■ ■ ● ● ●

• Rational inattentive households.

• Information on supply shock is particularly valuable for households as $w_t \uparrow$ and $p_t \downarrow$

$$\max_{\{c_{it}\in\mathcal{S}_{h}^{t}\}_{t\geq0}}\mathbb{E}_{it}\left[-\frac{\left(\gamma+\eta\right)}{2}\left(c_{it}-\frac{1+\eta}{\gamma+\eta}\left(w_{t}-p_{t}\right)\right)^{2}-\mu^{h}\mathbb{I}\left(c_{it}^{*};c_{it}\right)|c_{i}^{-1}\right]$$

- Change in real wage more significant if firms pay high attention
- Aggregate consumption $c_t = \frac{1+\eta}{(\gamma+\eta)} \xi_a^h \left[\left(1 \xi_a^f \right) w_t + \xi_a^f a_t \right]$

▲■ → ▲ ■ → ▲ ■ ■ ■ ● ● ●

Results #2: Both pay attention to supply shocks

- Both households and firms pay attention to supply shocks
- Less important for firms if labor is elastic
- Attention choices by households and firms are complements

4 E 5 E

• True data generating process

$$y_t = \Psi_{y,q}q_t + \Psi_{y,a}a_t,$$

$$p_t = \Psi_{p,q}q_t - \Psi_{p,a}a_t.$$
 (DGP)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

• True data generating process

$$y_t = \Psi_{y,q}q_t + \Psi_{y,a}a_t,$$

$$p_t = \Psi_{p,q}q_t - \Psi_{p,a}a_t.$$
 (DGP)

• Perceived data generating process

$$\mathbb{E}^{i} y_{t} = \Psi_{y,q} \xi_{q}(i) q_{t} + \Psi_{y,a} \xi_{a}(i) a_{t} + e_{t}^{i},
\mathbb{E}^{i} p_{t} = \Psi_{p,q} \xi_{q}(i) q_{t} - \Psi_{p,a} \xi_{a}(i) a_{t} + \nu_{t}^{i}.$$
(PDGP)

where $\xi_q(i)$ and $\xi_a(i) \in [0, 1]$ are attention weights on q_t and a_t , e and ν are errors

▲□ → ▲ ■ → ▲ ■ → ■ ■ ● ● ●

• True data generating process

$$y_t = \Psi_{y,q}q_t + \Psi_{y,a}a_t,$$

$$p_t = \Psi_{p,q}q_t - \Psi_{p,a}a_t.$$
 (DGP)

• Perceived data generating process

$$\mathbb{E}^{i} y_{t} = \Psi_{y,q} \xi_{q}(i) q_{t} + \Psi_{y,a} \xi_{a}(i) a_{t} + e_{t}^{i},
\mathbb{E}^{i} p_{t} = \Psi_{p,q} \xi_{q}(i) q_{t} - \Psi_{p,a} \xi_{a}(i) a_{t} + \nu_{t}^{i}.$$
(PDGP)

where $\xi_q(i)$ and $\xi_a(i) \in [0, 1]$ are attention weights on q_t and a_t , e and ν are errors

Covariance between expected output growth and expected inflation

$$Cov\left(\mathbb{E}^{i}(y_{t+1}-y_{t}),\mathbb{E}^{i}(\pi_{t+1})\right)=\Psi_{y,q}\Psi_{p,q}\xi_{q}(i)^{2}\sigma_{q}^{2}-\Psi_{y,a}\Psi_{p,a}\xi_{a}(i)^{2}\sigma_{a}^{2}$$

Yifan Zhang (University of Oxford)

August, 2024

• True data generating process

$$y_t = \Psi_{y,q}q_t + \Psi_{y,a}a_t,$$

$$p_t = \Psi_{p,q}q_t - \Psi_{p,a}a_t.$$
 (DGP)

• Perceived data generating process

$$\mathbb{E}^{i} y_{t} = \Psi_{y,q} \xi_{q}(i) q_{t} + \Psi_{y,a} \xi_{a}(i) a_{t} + e_{t}^{i},
\mathbb{E}^{i} p_{t} = \Psi_{p,q} \xi_{q}(i) q_{t} - \Psi_{p,a} \xi_{a}(i) a_{t} + \nu_{t}^{i}.$$
(PDGP)

where $\xi_q(i)$ and $\xi_a(i) \in [0, 1]$ are attention weights on q_t and a_t , e and ν are errors

Covariance between expected output growth and expected inflation

$$Cov\left(\mathbb{E}^{i}(y_{t+1}-y_{t}),\mathbb{E}^{i}(\pi_{t+1})\right) = \Psi_{y,q}\Psi_{p,q}\xi_{q}(i)^{2}\sigma_{q}^{2} - \Psi_{y,a}\Psi_{p,a}\xi_{a}(i)^{2}\sigma_{a}^{2}$$

• Full information: $\xi_q(i) = \xi_a(i) = 1$

• True data generating process

$$y_t = \Psi_{y,q}q_t + \Psi_{y,a}a_t,$$

$$p_t = \Psi_{p,q}q_t - \Psi_{p,a}a_t.$$
 (DGP)

• Perceived data generating process

$$\mathbb{E}^{i} y_{t} = \Psi_{y,q} \xi_{q}(i) q_{t} + \Psi_{y,a} \xi_{a}(i) a_{t} + e_{t}^{i},
\mathbb{E}^{i} p_{t} = \Psi_{p,q} \xi_{q}(i) q_{t} - \Psi_{p,a} \xi_{a}(i) a_{t} + \nu_{t}^{i}.$$
(PDGP)

where $\xi_q(i)$ and $\xi_a(i) \in [0, 1]$ are attention weights on q_t and a_t , e and ν are errors

Covariance between expected output growth and expected inflation

$$Cov\left(\mathbb{E}^{i}(y_{t+1}-y_{t}),\mathbb{E}^{i}(\pi_{t+1})\right)=\Psi_{y,q}\Psi_{p,q}\xi_{q}(i)^{2}\sigma_{q}^{2}-\Psi_{y,a}\Psi_{p,a}\xi_{a}(i)^{2}\sigma_{a}^{2}$$

- Full information: $\xi_q(i) = \xi_a(i) = 1$
- Rational inattentive households: $\xi_q \ll \xi_a$ negative *Cov*

• True data generating process

$$y_t = \Psi_{y,q}q_t + \Psi_{y,a}a_t,$$

$$p_t = \Psi_{p,q}q_t - \Psi_{p,a}a_t.$$
 (DGP)

• Perceived data generating process

$$\mathbb{E}^{i} y_{t} = \Psi_{y,q} \xi_{q}(i) q_{t} + \Psi_{y,a} \xi_{a}(i) a_{t} + e_{t}^{i},
\mathbb{E}^{i} p_{t} = \Psi_{p,q} \xi_{q}(i) q_{t} - \Psi_{p,a} \xi_{a}(i) a_{t} + \nu_{t}^{i}.$$
(PDGP)

where $\xi_q(i)$ and $\xi_a(i) \in [0, 1]$ are attention weights on q_t and a_t , e and ν are errors

Covariance between expected output growth and expected inflation

$$Cov\left(\mathbb{E}^{i}(y_{t+1}-y_{t}),\mathbb{E}^{i}(\pi_{t+1})\right) = \Psi_{y,q}\Psi_{p,q}\xi_{q}(i)^{2}\sigma_{q}^{2} - \Psi_{y,a}\Psi_{p,a}\xi_{a}(i)^{2}\sigma_{a}^{2}$$

- Full information: $\xi_q(i) = \xi_a(i) = 1$
- Rational inattentive households: $\xi_q \ll \xi_a$ negative *Cov*
- Rational inattentive firms: $\xi_q \leq \xi_a$ weak *Cov*

Households' attention problem

$$\max_{\{C_{i,t}, B_{t}, L_{t}\}} \mathbb{E}_{it} \left[\sum_{t=0}^{\infty} \beta^{t} \left(\frac{C_{i,t}^{1-\gamma}}{1-\gamma} - \frac{L_{i,t}^{1+\eta}}{1+\eta} \right) \right]$$

s.t. $P_{t}C_{i,t} + B_{i,t} = W_{t}L_{i,t} + R_{t-1}B_{i,t-1} + D_{t} + T_{t}, \quad C_{i,t} = \left[\int_{0}^{1} C_{i,j,t}^{\frac{\theta}{-1}} dj \right]^{\frac{\theta}{\theta-1}}$

Household *i* chooses $v_t \equiv (\tilde{b}_{i,t}, c_{i,t})'$. A log-quadratic approximation of Eq. (A3)

$$\sum_{t=0}^{\infty} \beta^{t} \mathbb{E}_{i}^{h} \left[\frac{1}{2} \left(v_{t} - v_{t}^{*} \right)' \Theta_{0} \left(v_{t} - v_{t}^{*} \right) + \left(v_{t} - v_{t}^{*} \right) \Theta_{1} \left(v_{t+1} - v_{t+1}^{*} \right) \right]$$

with optimal actions path

$$\omega_B\left(\frac{1}{\beta}\tilde{b}^*_{i,t-1}-\tilde{b}^*_{i,t}\right)+c^*_{i,t}=\mathbb{E}_t\left[\omega_B\left(\frac{1}{\beta}\tilde{b}^*_{i,t}-\tilde{b}^*_{i,t+1}\right)+c^*_{i,t+1}\right]$$

$$-\omega_B\left(\frac{1}{\beta}\tilde{b}^*_{i,t-1}-\tilde{b}^*_{i,t}\right) + \left(\gamma\frac{\omega_W}{\eta}+1\right)c^*_{i,t} = \omega_W\left(\frac{1}{\eta}+1\right)\tilde{w}_t + \left[\frac{1}{\beta}\omega_B\left(i_{t-1}-\pi_t\right) + \omega_D\tilde{d}_t + \omega_T\tilde{\tau}_t\right]$$

Yifan Zhang (University of Oxford)

Rational Inattention Choices in Firms and Households

(A3)

Households' attention problem

$$\begin{split} &\sum_{t=0}^{\infty} \beta^{t} \mathbb{E}_{i}^{h} \left[\frac{1}{2} \left(v_{t} - v_{t}^{*} \right)' \Theta_{0} \left(v_{t} - v_{t}^{*} \right) + \left(v_{t} - v_{t}^{*} \right) \Theta_{1} \left(v_{t+1} - v_{t+1}^{*} \right) \right] \\ &= \sum_{t=0}^{\infty} \beta^{t} \mathbb{E}_{i,-1} \left[\frac{1}{2} \left(x_{i,t} - x_{i,t}^{*} \right)' \Theta \left(x_{i,t} - x_{i,t}^{*} \right) \right] \end{split}$$

Instead of choosing directly $v_t = (\tilde{b}_{i,t}, c_{i,t})'$, I assume the household *i* chooses

$$x_{i,t} = \begin{pmatrix} \omega_B \left(\tilde{b}_{i,t} - \tilde{b}_{i,t-1} \right) \\ -\omega_B \left(\frac{1}{\beta} \tilde{b}_{i,t-1} - \tilde{b}_{i,t} \right) + \left(\gamma \frac{\omega_W}{\eta} + 1 \right) c_{i,t} \end{pmatrix}$$

And the optimal choice of $x_{i,t}^*$ under full information is

$$x_{i,t}^{*} = \begin{pmatrix} z_{t} - (1-\beta) \sum_{s=t}^{\infty} \beta^{s-t} \mathbb{E}_{t} \left[z_{s} \right] + \frac{\beta}{\gamma} \left(1 + \omega_{W} \frac{\gamma}{\eta} \right) \sum_{s=t}^{\infty} \beta^{s-t} \mathbb{E}_{t} \left(i_{s} - \pi_{s+1} \right) \\ \omega_{W} \left(\frac{1}{\eta} + 1 \right) \tilde{w}_{t} + \left[\frac{1}{\beta} \omega_{B} \left(i_{t-1} - \pi_{t} \right) + \omega_{D} \tilde{d}_{t} + \omega_{T} \tilde{\tau}_{t} \right] \end{pmatrix}$$

Here
$$z_t \equiv \omega_W \left(1 + \frac{1}{\eta}\right) \tilde{w}_t + \frac{1}{\beta} \omega_B \left(i_{t-1} - \pi_t\right) + \omega_D \tilde{d}_t + \omega_T \tilde{\tau}_t$$
 Back

Yifan Zhang (University of Oxford)

■ ▶ ▲ ■ ▶ ▲ ■ ■ ● 9 Q Q

Full information benchmark

Under full information, the equilibrium consumption and labor are

$$c_t = rac{1+\eta}{\gamma+\eta}a_t, \qquad l_t = rac{1-\gamma}{\gamma+\eta}a_t$$

The real interest rate is determined by the Euler Equation

$$r_{t} \equiv i_{t} - \mathbb{E}_{t} \left(\pi_{t+1} \right) = -\gamma \frac{1+\eta}{\gamma+\eta} \left(1 - \rho_{a} \right) a_{t}$$

Then the monetary policy will determine the nominal variables. • Back

(日) (日) (日) (日) (日) (日) (日)

Calibration

Parameter	Value	Moment Matched / Source
Time discount factor (β)	0.99	Quarterly frequency
Elasticity of substitution across firms (θ)	10	Firms' average markup
Risk aversion coefficient (γ)	3.5	Households' risk aversion level
Inverse of Frisch elasticity (η)	2.5	Aruoba et al. (2017)
Taylor rule: smoothing (ρ)	0.936	Estimates 1985-2017 based on Tealbook forecast
Taylor rule: response to inflation (ϕ_{π})	1.62	Estimates 1985-2017 based on Tealbook forecast
Taylor rule: response to output gap (ϕ_x)	0.225	Estimates 1985-2017 based on Tealbook forecast
Persistence of productivity shocks (ρ_a)	0.93	Estimates 1981-2022 based on Fernald (2014)
S.D of productivity shocks (σ_a)	0.0086	Estimates 1981-2022 based on Fernald (2014)
S.D of monetary shocks (σ_q)	0.0041	Estimates 1985-2017 based on Tealbook forecast

Table 4: Calibrated Parameters

Solve for a grid values of attention cost parameters for households (μ^h) and firms (μ^f)

$$\mu^h = 0.4 imes 10^{-2}; \quad \mu^f = 0.4 imes 10^{-3};$$

(四) (종) (종) (종)

Quantitative Results

Table 5: Moments in the Model and the Data

Moment	Data	95% conf. interval	Model
Slope coef. of HHs' expectations	-0.038	[-0.039, -0.037]	-0.038
Slope coef. of Firms' expectations	0.039	[-0.042, 0.120]	0.010
Slope coef. of Professionals' expectations	0.156	[0.111, 0.200]	0.151
R-squared value of HH's expectations	0.022	-	0.020
R-squared value of Firms's expectations	0.002	-	0.001
R-squared value of Professionals' expectations	0.016	-	0.261
P-value of HH's expectations	0.000***	-	0.000***
P-value of Firm's expectations	0.428	-	0.320
P-value of Professionals' expectations	0.000***	-	0.000***

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□■ のへの

Quantitative Results

Table 5: Moments in the Model and the Data

Moment	Data	95% conf. interval	Model
Slope coef. of HHs' expectations	-0.038	[-0.039, -0.037]	-0.038
Slope coef. of Firms' expectations	0.039	[-0.042, 0.120]	0.010
Slope coef. of Professionals' expectations	0.156	[0.111, 0.200]	0.151
R-squared value of HH's expectations	0.022	-	0.020
R-squared value of Firms's expectations	0.002	-	0.001
R-squared value of Professionals' expectations	0.016	-	0.261
P-value of HH's expectations	0.000***	-	0.000***
P-value of Firm's expectations	0.428	-	0.320
P-value of Professionals' expectations	0.000***	-	0.000***

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□■ のへの

Quantitative Results

Table 5: Moments in the Model and the Data

Moment	Data	95% conf. interval	Model
Slope coef. of HHs' expectations	-0.038	[-0.039, -0.037]	-0.038
Slope coef. of Firms' expectations	0.039	[-0.042, 0.120]	0.010
Slope coef. of Professionals' expectations	0.156	[0.111, 0.200]	0.151
R-squared value of HH's expectations	0.022	-	0.020
R-squared value of Firms's expectations	0.002	-	0.001
R-squared value of Professionals' expectations	0.016	-	0.261
P-value of HH's expectations	0.000***	-	0.000***
P-value of Firm's expectations	0.428	-	0.320
P-value of Professionals' expectations	0.000***	-	0.000***

		6

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□■ のへの