

Quantile on Quantiles

Martina Pons

University of Bern

martina.pons@unibe.ch

August 26th, 2024

- This paper suggests a method to study **distributional effects along** multiple dimensions simultaneously (within and between groups).
- Let groups be geographical regions (counties or commuting zones)
- Large body of literature focusing on inequalities / distributional effects:
	- Within groups: Trade shocks [\(Autor et al., 2021\)](#page-29-0), minimum wages [\(Autor](#page-29-1) [et al., 2016;](#page-29-1) [Engbom and Moser, 2022\)](#page-30-0), place-based policies [\(Lang et al.,](#page-31-0) [2023;](#page-31-0) [Albanese et al., 2023\)](#page-29-2).
	- Between groups: Place-based policies [\(Becker et al., 2010;](#page-29-3) [Busso et al., 2013\)](#page-29-4)

- This paper suggests a method to study **distributional effects along** multiple dimensions simultaneously (within and between groups).
- Let groups be geographical regions (counties or commuting zones)
- Large body of literature focusing on inequalities / distributional effects:
	- Within groups: Trade shocks [\(Autor et al., 2021\)](#page-29-0), minimum wages [\(Autor](#page-29-1) [et al., 2016;](#page-29-1) [Engbom and Moser, 2022\)](#page-30-0), place-based policies [\(Lang et al.,](#page-31-0) [2023;](#page-31-0) [Albanese et al., 2023\)](#page-29-2).
	- Between groups: Place-based policies [\(Becker et al., 2010;](#page-29-3) [Busso et al., 2013\)](#page-29-4)
- Inequalities (along both dimensions) have welfare effects:
	- Within groups: Individuals compare themselves with their peers, neighbors, and co-workers (Galí, 1994; [Luttmer, 2005;](#page-31-1) [Card et al., 2012\)](#page-29-5). Within-group inequality is associated with a higher murder rate [\(Glaeser et al., 2009\)](#page-31-2) and lower future outcomes for children [\(Chetty and Hendren, 2018b\)](#page-30-2).
	- Between groups: Neighborhood quality matter for future outcomes [\(Chetty](#page-30-3) [et al., 2016;](#page-30-3) [Chetty and Hendren, 2018a,](#page-29-6)[b\)](#page-30-2).

- Modelling welfare as a function of the unconditional distribution of the outcome ignores the role of inequalities within smaller regions and between these regions.
	- If we keep the unconditional income distribution constant, it is possible to reduce within-region inequality by moving people across space into a more segregated spatial allocation.
- These two dimensions are interdependent and there are tradeoffs. \rightarrow Hence, we should model them together.

This paper...

- suggests a method to simultaneously study distributional effects within and between groups.
- Introduces a quantile model with two quantile indices: one for the heterogeneity within groups and one for the heterogeneity between groups.
- proposes a two-step quantile regression estimator with within-group regression in the first stage and between-group regression in the second stage.

Related Literature

- Within distribution [\(Galvao and Wang, 2015;](#page-31-3) [Chetverikov, Larsen, and](#page-30-4) [Palmer, 2016;](#page-30-4) [Melly and Pons, 2023\)](#page-31-4).
	- Model also the between distribution.
- Multidimensional heterogeneity [\(Arellano and Bonhomme, 2016;](#page-29-7) [Frumento,](#page-30-5) Bottai, and Fernández-Val, 2021; [Liu and Yang, 2021;](#page-31-5) Fernández-Val, Gao, [Liao, and Vella, 2022\)](#page-30-6).
	- Allow the effect of individual-level and group-level variables to vary across both dimensions.
- Quantile regression with generated dependent variables/regressors [\(Chen](#page-29-8) [et al., 2003;](#page-29-8) [Ma and Koenker, 2006;](#page-31-6) [Bhattacharya, 2020;](#page-29-9) [Chen et al., 2021\)](#page-29-10).

Example: Business Training

- Consider an experiment designed to improve small business outcomes (e.g., sales, profit, income).
- Quantile regression of sale on the treatment dummy identifies the treatment effect at different points of the sales distribution (high-performing vs. low-performing firms).
- It might be different to be a median business in a highly-performing market compared to a lower-performing one.

Example: Business Training

- Consider an experiment designed to improve small business outcomes (e.g., sales, profit, income).
- Quantile regression of sale on the treatment dummy identifies the treatment effect at different points of the sales distribution (high-performing vs. low-performing firms).
- It might be different to be a median business in a highly-performing market compared to a lower-performing one.
	- A poor-performing market might have poor locations and low consumer traffic.

Example: Business Training

- Consider an experiment designed to improve small business outcomes (e.g., sales, profit, income).
- Quantile regression of sale on the treatment dummy identifies the treatment effect at different points of the sales distribution (high-performing vs. low-performing firms).
- It might be different to be a median business in a highly-performing market compared to a lower-performing one.
	- A poor-performing market might have poor locations and low consumer traffic.
- Identify the quantile treatment effect over the distribution of income within the market and over the distribution of markets.
	- With rank invariance over treatment states, the method identifies the effect for a median (or other percentile) business (in his market) over the distribution of markets.

Let $j = 1, \ldots, m$ be the groups and $i = 1, \ldots, n$ be the individuals. Consider the following structural function for the outcome variable

$$
y_{ij} = q(x_{1ij}, x_{2j}, v_j, u_{ij}), \qquad (1)
$$

where $q(\cdot)$ is **strictly increasing** in the third and fourth arguments.

- x_{1ii} : individual-level variables
- x_{2j} : group-level variables
- u_{ii} : ranks individuals within a group
- v_j : ranks the groups

Let $j = 1, \ldots, m$ be the groups and $i = 1, \ldots, n$ be the individuals. Consider the following structural function for the outcome variable

$$
y_{ij} = q(x_{1ij}, x_{2j}, v_j, u_{ij}),
$$
 (2)

where $q(\cdot)$ is strictly increasing in the third and fourth arguments.

Normalize

$$
u_{ij}|x_{1ij},x_{2j},v_j \sim U(0,1) \n v_j|x_{1ij},x_{2j} \sim U(0,1).
$$

Conditional on $x_{1ij},x_{2j},$ v_j , $\bm{q}(x_{1ij},x_{2j},v_j,u_{ij})$ is strictly monotonic with respect to u_{ii} so that

$$
Q(\tau_1, y_{ij}|x_{1ij}, x_{2j}, v_j) = q(x_{1ij}, x_{2j}, v_j, \tau_1)
$$
\n(3)

is the τ_1 -conditional quantile function of the outcome y_{ii}

Assume there are no covariates.

Take two groups $j=\{h,l\}$ with $v_h>v_l.$ Strict monotonicity of $q(v_j,\tau_1)$ with respect to v_j implies:

$$
q(v_h, \tau_1) > q(v_l, \tau_1), \quad \text{for all } \tau_1 \in (0, 1).
$$

Hence, if a group has a higher first decile, it must also have a higher ninth decile.

A model with a **univariate** v_i restricts the evolution of the group ranks at different values of τ_1 (constant ranks over τ_1).

Satisfied if all groups share the same outcome distribution up to a **location** parameter.

Assume there are no covariates.

Take two groups $j=\{h,l\}$ with $v_h>v_l.$ Strict monotonicity of $q(v_j,\tau_1)$ with respect to v_j implies:

 $q(v_h, \tau_1) > q(v_l, \tau_1), \quad \text{for all } \tau_1 \in (0,1).$

Hence, if a group has a higher first decile, it must also have a higher ninth decile.

A model with a *univariate* v_i restricts the evolution of the group ranks at different values of τ_1 (constant ranks over τ_1).

Satisfied if all groups share the same outcome distribution up to a **location** parameter.

• Allow for different mean and variance across groups \rightarrow bivariate v_i

Assume there are no covariates.

Take two groups $j=\{h,l\}$ with $v_h>v_l.$ Strict monotonicity of $q(v_j,\tau_1)$ with respect to v_j implies:

$$
q(v_h, \tau_1) > q(v_l, \tau_1), \quad \text{for all } \tau_1 \in (0, 1).
$$

Hence, if a group has a higher first decile, it must also have a higher ninth decile.

A model with a **univariate** v_i restricts the evolution of the group ranks at different values of τ_1 (constant ranks over τ_1).

Satisfied if all groups share the same outcome distribution up to a **location** parameter.

- Allow for different mean and variance across groups \rightarrow bivariate v_i
- Allow for different outcome distribution over groups \rightarrow infinitely dimensional v_j .

Consider the linear specification

$$
y_{ij}=x'_{1ij}\beta(u_{ij},v_j)+x'_{2j}\gamma(u_{ij},v_j)+\alpha(u_{ij},v_j),
$$

where $\alpha(u_{ij}, v_i)$ is the intercept.

Maintain assumptions on u_{ij} , but allow v_i to be **infinitely dimensional**.

• τ_1 -CQF of the outcome y_{ij} conditional on x_{1ij}, x_{2j} , and v_j :

$$
Q(\tau_1, y_{ij}|x_{1ij}, x_{2j}, v_j) = x'_{1ij}\beta(\tau_1, v_j) + x'_{2j}\gamma(\tau_1, v_j) + \alpha(\tau_1, v_j).
$$

Consider the linear specification

$$
y_{ij}=x_{1ij}'\beta(u_{ij},v_j)+x_{2j}'\gamma(u_{ij},v_j)+\alpha(u_{ij},v_j),
$$

where $\alpha(u_{ii}, v_i)$ is the intercept.

Maintain assumptions on u_{ii} , but allow v_i to be **infinitely dimensional**.

• τ_1 -CQF of the outcome y_{ij} conditional on x_{1ij}, x_{2j} , and v_j :

$$
Q(\tau_1, y_{ij}|x_{1ij}, x_{2j}, v_j) = x'_{1ij}\beta(\tau_1, v_j) + x'_{2j}\gamma(\tau_1, v_j) + \alpha(\tau_1, v_j).
$$

• Multidimensionality of v_i requires restricting the relationship between the $\tau_1\text{-CQF}$ and $v_j = (v_i^{(1)})$ $\mathcal{V}_j^{(1)}, \mathcal{V}_j^{(2)}$ $j^{(2)}, \ldots$).

Consider the linear specification

$$
y_{ij}=x_{1ij}'\beta(u_{ij},v_j)+x_{2j}'\gamma(u_{ij},v_j)+\alpha(u_{ij},v_j),
$$

where $\alpha(u_{ii}, v_i)$ is the intercept.

Maintain assumptions on u_{ii} , but allow v_i to be **infinitely dimensional**.

• τ_1 -CQF of the outcome y_{ij} conditional on x_{1ij}, x_{2j} , and v_j :

$$
Q(\tau_1, y_{ij}|x_{1ij}, x_{2j}, v_j) = x'_{1ij}\beta(\tau_1, v_j) + x'_{2j}\gamma(\tau_1, v_j) + \alpha(\tau_1, v_j).
$$

• Multidimensionality of v_i requires restricting the relationship between the $\tau_1\text{-CQF}$ and $v_j = (v_i^{(1)})$ $\mathcal{V}_j^{(1)}, \mathcal{V}_j^{(2)}$ $j^{(2)}, \ldots$). \implies For each τ_1 , there is a **scalar-valued function** $v_i(\tau_1)$ such that $q(x_{1ij}, x_{2j}, v_j, \tau_1) = q(x_{1ij}, x_{2j}, v_j(\tau_1), \tau_1).$

Consider the linear specification

$$
y_{ij}=x'_{1ij}\beta(u_{ij},v_j)+x'_{2j}\gamma(u_{ij},v_j)+\alpha(u_{ij},v_j),
$$

where $\alpha(u_{ii}, v_i)$ is the intercept.

Maintain assumptions on u_{ii} , but allow v_i to be **infinitely dimensional**.

• τ_1 -CQF of the outcome y_{ij} conditional on x_{1ij}, x_{2j} , and v_j :

$$
Q(\tau_1, y_{ij}|x_{1ij}, x_{2j}, v_j) = x'_{1ij}\beta(\tau_1, v_j) + x'_{2j}\gamma(\tau_1, v_j) + \alpha(\tau_1, v_j).
$$

- Multidimensionality of v_i requires restricting the relationship between the $\tau_1\text{-CQF}$ and $v_j = (v_i^{(1)})$ $\mathcal{V}_j^{(1)}, \mathcal{V}_j^{(2)}$ $j^{(2)}, \ldots$). \implies For each τ_1 , there is a **scalar-valued function** $v_i(\tau_1)$ such that $q(x_{1ij}, x_{2j}, v_j, \tau_1) = q(x_{1ij}, x_{2j}, v_j(\tau_1), \tau_1).$
- Imposing monotonicity w.r.t. $v_i(\tau_1)$, and with proper normalization, we obtain the τ_2 –CQF of $Q(\tau_1, y_{ij} | x_{1ij}, x_{2j}, v_j)$

 $Q(\tau_2, Q(\tau_1, y_{ij} | x_{1ij}, x_{2j}, v_j) | x_{1ij}, x_{2j}) = x'_{1ij}\beta(\tau_1, \tau_2) + x'_{2j}\gamma(\tau_1, \tau_2) + \alpha(\tau_1, \tau_2).$

Interpretation of the coefficients

- $\beta(\tau_1, \tau_2)$ tells how the (τ_1, τ_2) -conditional quantile function responds to a change in x_{1ij} by one unit.
- $\beta(0.5, \tau_2)$ gives the effect of x_{1ij} on the **conditional quantile function of** group medians, with groups with the highest medians positioned at the top and those with the lowest medians at the bottom of the distribution.
- With rank invariance over treatment states, the coefficients can be interpreted as individual effects
	- $\beta(\tau_1, \tau_2)$ gives the effects for individuals at the τ_1 percentile of their groups, belonging to a group at the τ_2 percentile, where this second distribution is viewed from their perspective.
- Interpretation of $\gamma(\tau_1, \tau_2)$ follows the same argument.

Estimator

1 First stage: group-by-group quantile regression of the outcome on the variables that vary within groups for quantiles $\tau_1 \in \mathcal{T}$. For each group *i* and quantile $\tau_1 \in \mathcal{T}$:

$$
\hat{\beta}_j(\tau_1) \equiv \left(\hat{\beta}_{1,j}(\tau_1), \hat{\beta}_{2,j}(\tau_1)'\right)' = \argmin_{(b_1, b_2) \in \mathbb{R}^{\dim(x_1)+1}} \frac{1}{n} \sum_{i=1}^n \rho_{\tau_1}(y_{ij} - b_1 - x'_{1ij}b_2),
$$

where $\rho_{\tau}(x) = (\tau - 1\{x < 0\})x$ for $x \in \mathbb{R}$ is the check function.

Estimator

1 First stage: group-by-group quantile regression of the outcome on the variables that vary within groups for quantiles $\tau_1 \in \mathcal{T}$. For each group *i* and quantile $\tau_1 \in \mathcal{T}$:

$$
\hat{\beta}_j(\tau_1) \equiv \left(\hat{\beta}_{1,j}(\tau_1), \hat{\beta}_{2,j}(\tau_1)'\right)' = \argmin_{(b_1, b_2) \in \mathbb{R}^{\text{dim}(x_1)+1}} \frac{1}{n} \sum_{i=1}^n \rho_{\tau_1}(y_{ij} - b_1 - x'_{1ij}b_2),
$$

where $\rho_{\tau}(x) = (\tau - 1\{x < 0\})x$ for $x \in \mathbb{R}$ is the check function. Save the fitted values for each quantile and each group j.

Estimator

1 First stage: group-by-group quantile regression of the outcome on the variables that vary within groups for quantiles $\tau_1 \in \mathcal{T}$. For each group *i* and quantile $\tau_1 \in \mathcal{T}$:

$$
\hat{\beta}_j(\tau_1) \equiv \left(\hat{\beta}_{1,j}(\tau_1), \hat{\beta}_{2,j}(\tau_1)'\right)' = \argmin_{(b_1,b_2) \in \mathbb{R}^{\text{dim}(x_1)+1}} \frac{1}{n} \sum_{i=1}^n \rho_{\tau_1}(y_{ij} - b_1 - x'_{1ij}b_2),
$$

where $\rho_{\tau}(x) = (\tau - 1\{x < 0\})x$ for $x \in \mathbb{R}$ is the check function. Save the fitted values for each quantile and each group j.

2 Second stage: For each quantile $\tau_1 \in \mathcal{T}$ regress the first-stage fitted values on all variables using quantile regression for each quantile $\tau_2 \in \mathcal{T}$:

$$
\hat{\delta}(\hat{\beta}(\tau_1), \tau_2) = \underset{(a,b,g)\in \mathbb{R}^{\text{dim}(x)+1}}{\arg \min} \frac{1}{mn} \sum_{j=1}^m \sum_{i=1}^n \rho_{\tau_2}(\hat{y}_{ij}(\tau_1) - x_{2j}'g - x_{1ij}'b - a),
$$
\nwhere $\delta = (\alpha, \beta', \gamma')'$ and $\hat{y}_{ij}(\tau_1) = \hat{\beta}_{1,j}(\tau_1) + x_{1ij}'\hat{\beta}_{2,j}(\tau_1)$.

Asymptotics

Asymptotic framework where *n* and $m \to \infty$.

Challenges:

- non-smooth quantile regression objective function with a generated dependent variable.
- dimension of the first stage increases with the number of groups.
- different rate of convergence of first step estimator.

Use results in [Chen, Linton, and Van Keilegom \(2003\)](#page-29-8); [Volgushev, Chao, and](#page-31-7) [Cheng \(2019\)](#page-31-7); [Galvao, Gu, and Volgushev \(2020\)](#page-30-7).

Asymptotic Distribution

$$
\sqrt{m}\left(\hat{\delta}(\hat{\beta},\tau) - \delta_0(\beta_0,\tau)\right)
$$

= $-\Gamma_1(\delta_0, \beta_0, \tau)^{-1}\sqrt{m}\left(\frac{1}{m}\sum_{j=1}^m \bar{\Gamma}_{2j}(\tau, \delta_0, \beta_0)[\hat{\beta}_j(\tau_1) - \beta_{j,0}(\tau_1)] + M_{mn}(\delta_0, \beta_0, \tau)\right)$
+ $o_p(1)$

- **1** In blue: first-stage error
- **2** In yellow: second-stage noise

The first-stage quantile regression bias is of order $1/\sqrt{n} \implies$ the number of observations per group must diverge to infinity.

Asymptotic Distribution

If $\frac{\sqrt{m}\log n}{n} \to 0$ and other assumptions are satisfied \longrightarrow [more](#page-40-0)

First stage error:

$$
\frac{1}{m}\sum_{j=1}^{m}\bar{\Gamma}_{2j}(\tau,\delta_0,\beta_0)[\hat{\beta}_j(\tau_1)-\beta_{j,0}(\tau_1)]=o_p(m^{-1/2})
$$

Second stage noise:

$$
\sqrt{m}\left(M_{mn}(\delta_0,\beta_0,\tau)\right) \stackrel{d}{\to} N\left(0,\Omega_2(\tau)\right),\,
$$

where $\Omega_2(\tau)=\mathbb{E}\left[[\tau_2-1(\tilde{x}_{ij}'\beta_{j,0}(\tau_1)\leq x_{ij}'\delta_0(\beta_0,\tau)]^2x_{ij}x_{ij}'\right].$

Asymptotic Distribution

If $\frac{\sqrt{m}\log n}{n} \to 0$ and other assumptions are satisfied \longrightarrow [more](#page-40-0)

First stage error:

$$
\frac{1}{m}\sum_{j=1}^{m}\bar{\Gamma}_{2j}(\tau,\delta_0,\beta_0)[\hat{\beta}_j(\tau_1)-\beta_{j,0}(\tau_1)]=o_p(m^{-1/2})
$$

Second stage noise:

$$
\sqrt{m}\left(M_{mn}(\delta_0,\beta_0,\tau)\right)\stackrel{d}{\to} \mathcal{N}\left(0,\Omega_2(\tau)\right),
$$

where $\Omega_2(\tau)=\mathbb{E}\left[[\tau_2-1(\tilde{x}'_{ij}\beta_{j,0}(\tau_1)\leq x'_{ij}\delta_0(\beta_0,\tau)]^2x_{ij}x'_{ij}\right]$. Hence, $\sqrt{m}\left(\hat{\delta}(\hat{\beta},\tau) - \delta_0(\beta_0,\tau)\right) \stackrel{d}{\rightarrow} \mathcal{N}(0,\Gamma_1^{-1}\Omega_2(\tau)\Gamma_1'^{-1})$

with $\Gamma_1 = \Gamma_1(\delta_0, \beta_0, \tau)$. \rightarrow [Degenerate Distribution](#page-54-0)

Empirical Application

- Build on [McKenzie and Puerto \(2021\)](#page-31-8)
- Estimate the impact of business training on the outcomes of female-owned businesses.
- Sample: 3,537 female-owned businesses operating in 157 different rural markets in Kenya.
- Two-stage randomization:
	- **1** market-level randomization (93 markets are assigned to the treatment markets, and the remaining 64 are control markets)
	- 2 individual-level randomization. Firms in the treatment markets are randomly assigned to training.
- Estimate distributional effect both within and between markets.
- Outcomes: Sales, Profits, Income from Work.

▶ [Specification](#page-44-0)

Conclusion

- • This paper suggests a method to simultaneously study distributional effects within and between groups.
	- Allows us to consider tradeoffs between different components of inequality.
	- Ranking groups is a nontrivial task without assuming a welfare function.
- Monte Carlo simulations show good finite sample performance. \rightarrow [Simulations](#page-46-0)
- Example of income inequality in Switzerland
- Application to policy evaluation and optimal treatment assignment.
- The road ahead:
	- Uniform results

References I

- Albanese, G., G. Barone, and G. de Blasio (2023): "The impact of place-based policies on interpersonal income inequality," Economica, 90, 508–530.
- ARELLANO, M. AND S. BONHOMME (2016): "Nonlinear panel data estimation via quantile regressions." Econometrics Journal, 19, C61–C94.
- Autor, D. H., D. Dorn, and G. H. Hanson (2021): "When Work Disappears: Manufacturing Decline and the Falling Marriage Market Value of Young Men," American Economic Review: Insights, 1, 161–178.
- Autor, D. H., A. Manning, and C. L. Smith (2016): "The contribution of the minimum wage to US wage inequality over three decades: A reassessment." American Economic Journal: Applied Economics, 8, 58–99.
- BECKER, S. O., P. H. EGGER, AND M. VON EHRLICH (2010): "Going NUTS: The effect of EU Structural Funds on regional performance," Journal of Public Economics, 94, 578–590.

BHATTACHARYA, J. (2020): "Quantile regression with generated dependent variable and covariates.".

- BUSSO, M., J. GREGORY, AND P. KLINE (2013): "Assessing the incidence and efficiency of a prominent place based policy," American Economic Review, 103, 897–947.
- CARD, D., A. MAS, E. MORETTI, AND E. SAEZ (2012): "Inequality at work: The effect of peer salaries on job satisfaction," American Economic Review, 102, 2981–3003.
- CHEN, L., A. F. GALVAO, AND S. SONG (2021): "Quantile regression with generated regressors," Econometrics, 9.
- Chen, X., O. Linton, and I. Van Keilegom (2003): "Estimation of semiparametric models when the criterion function is not smooth," Econometrica, 71, 1591–1608.
- CHETTY, R. AND N. HENDREN (2018a): "The Impact of Neighborhoods on Intergenerational Mobility I: County-Level Estimates," Quarterly Journal of Economics, 133, 1107–1162.

References II

——— (2018b): "The impacts of neighborhoods on intergenerational mobility II: County-level How are children," The Quarterly Journal of Economics, 133, 1163–1228.

- CHETTY, R., N. HENDREN, AND L. F. KATZ (2016): "The effects of exposure to better neighborhoods on children: New evidence from the moving to opportunity experiment," American Economic Review, 106, 855–902.
- Chetverikov, D., B. Larsen, and C. Palmer (2016): "IV Quantile Regression for Group-Level Treatments, With an Application to the Distributional Effects of Trade," Econometrica, 84, 809–833.
- Dhaene, G. and K. Jochmans (2015): "Split-Panel Jackknife Estimation of Fixed-Effect Models," Review of Economic Studies, 82, 991–1030.
- ENGBOM, N. AND C. MOSER (2022): "Earnings Inequality and the Minimum Wage: Evidence from Brazil," American Economic Review, 112, 3803–3847.
- FERNÁNDEZ-VAL, I., W. Y. GAO, Y. LIAO, AND F. VELLA (2022): "Dynamic Heterogeneous Distribution Regression Panel Models, with an Application to Labor Income Processes," 1–45.
- FRUMENTO, P., M. BOTTAL AND I. FERNÁNDEZ-VAL (2021): "Parametric Modeling of Quantile Regression Coefficient Functions With Longitudinal Data," Journal of the American Statistical Association, 116, 783–797.
- GALÍ, J. (1994): "Keeping up with the Joneses : Consumption Externalities , Portfolio Choice , and Asset Prices," Journal of Money , Credit and Banking, 26, 1–8.
- GALVAO, A. F., J. GU, AND S. VOLGUSHEV (2020): "On the unbiased asymptotic normality of quantile regression with fixed effects," Journal of Econometrics, 218, 178–215.

GALVAO, A. F. AND K. KATO (2016): "Smoothed quantile regression for panel data." Journal of Econometrics, 193, 92–112.

References III

- Galvao, A. F. and L. Wang (2015): "Efficient Minimum Distance Estimator for Quantile Regression Fixed Effects Panel Data," Journal of Multivariate Analysis, 133, 1–26.
- GLAESER, E. L., M. RESSEGER, AND K. TOBIO (2009): "Inequality in cities." Journal of Regional Science, 49, 617–646.
- Kaji, T. and J. Cao (2023): "Assessing Heterogeneity of Treatment Effects," 1–22.
- KITAGAWA, T. AND A. TETENOV (2021): "Equality-Minded Treatment Choice." Journal of Business and Economic Statistics, 39, 561–574.
- LANG, V., N. REDEKER, AND D. BISCHOF (2023): "Place-based Policies and Inequality Within Regions," OSF Reprints.
- LIU, S. AND X. YANG (2021): "Human capital externalities or consumption spillovers? The effect of high-skill human capital across low-skill labor markets," Regional Science and Urban Economics, 87, 103620.
- LUTTMER, E. F. (2005): "Neighbors as negatives: Relative earnings and well-being," Quarterly Journal of Economics, 120, 963–1002.
- MA, L. AND R. KOENKER (2006): "Quantile regression methods for recursive structural equation models," Journal of Econometrics, 134, 471–506.
- McKenzie, D. and S. Puerto (2021): "Growing Markets through Business Training for Female Entrepreneurs: A Market-Level Randomized Experiment in Kenya," American Economic Journal: Applied Economics, 13, 297–332.
- MELLY, B. AND M. PONS (2023): "Minimum Distance Estimation of Quantile Panel Data Models." Working Paper.
- Volgushev, S., S.-K. Chao, and G. Cheng (2019): "Distributed inference for quantile regression processes," The Annals of Statistics, 47, 1634–1662.

Descriptive Example - Income heterogeneity within and between regions

- Groups: 83 Swiss regions (2-digit zip code)
- Data: Administrative data on the universe of Swiss residents
- Restrict to individuals aged 29 to 64 (4.2 million observations)

Average Income by Region

Average and Median Income by Region

Two Dimensional Quantile Function

Optimal Treatment Assignment

- Two-dimensional quantile treatment effects can be used to optimally assign groups or individuals to treatment.
- Policymaker decide whom to treat in a given **target** population after observing data from a **sample** population by maximizing a rank dependent social welfare function [\(Kitagawa and Tetenov, 2021\)](#page-31-9):

$$
W=\int\int y_{ij}\cdot w(\text{Rank}(y_{ij}))\text{didj}.
$$

- With rank invariance of individuals and groups over treatment states, treatment effects for individuals at given quantiles are identified.
- Individuals rank implies some welfare weights for each individual and consequently of the group.

[Descriptive Example](#page-32-0) [Conceptual Framework](#page-36-0) [Asymptotics](#page-39-1) [Empirical Application](#page-44-1) [Simulations](#page-46-1) [Questions](#page-53-0)

Optimal Treatment Assignment

- Two-dimensional quantile treatment effects can be used to optimally assign groups or individuals to treatment.
- Policymaker decide whom to treat in a given **target** population after observing data from a **sample** population by maximizing a rank dependent social welfare function [\(Kitagawa and Tetenov, 2021\)](#page-31-9):

$$
W=\int\int y_{ij}\cdot w(\text{Rank}(y_{ij}))\,\text{did}\,j.
$$

- Point of departure:
	- [Kitagawa and Tetenov \(2021\)](#page-31-9) assigns treatment based on observable covariates. Baseline outcomes are not always available.
	- [Kaji and Cao \(2023\)](#page-31-10) considers one dimensional heterogeneity.
- Here, the goal is to select a treatment rule that assigns individuals depending on their ranks (u_{ii}, v_i) .
- Exploit treatment effect heterogeneity within and between groups to allocate the treatment more efficiently.

Welfare Function

Welfare is a weighted average of the outcomes with weights that depend on both within and between rank:

$$
W=\int_0^1\int_0^1q(\tau_1,\tau_2)\cdot w(\tau_1,\tau_2)d\tau_2d\tau_1
$$

let $w(\tau_1, \tau_2) = w(\tau_1)$. The welfare function simplifies to a weighted average of the expectation of the group quantiles:

$$
W=\int_0^1 E[q(\tau_1,v_j)]w(\tau_1)d\tau_1,
$$

if $w(\tau_1, \tau_2) = w(\tau_2)$. The welfare function simplifies to the weighted average of the conditional expectation in each group:

$$
W = E\left[\int_0^1 q(\tau_1, v_j) d\tau_1 w(v_j)\right] = E_j\left[E_{i|j}[y_{ij}]w(v_j)\right].
$$

The welfare function assigns different weights to different groups. The outcome distribution within the group does not matter.

Asymptotics - Intuition

If the first stage parameter vector $\beta_0(\tau_1)$ was known, the true parameter vector $\delta_0(\beta_0, \tau)$ of the second stage quantile regression uniquely satisfies:

$$
\mathbb{E}[m_{ij}(\delta_0,\beta_0,\tau)]=0 \qquad \qquad (4)
$$

with $m_{ij}(\delta, \beta, \tau) = x_{ij}'[\tau_2 - 1(\tilde{x}_{ij}'\beta_j(\tau_1) \leq x_{ij}'\delta(\beta(\tau_1), \tau_2))].$

Let $M_{mn}(\hat{\delta}, \hat{\beta}, \tau) = \frac{1}{mn} \sum_{j=1}^{m} \sum_{i=1}^{n} m_{ij}(\hat{\delta}, \hat{\beta}, \tau)$.

 \bullet Show that $||M_{mn}(\hat{\delta},\hat{\beta},\tau)]-\mathcal{L}(\hat{\delta})||\leq o_p(m^{-1/2}),$ for some linear function $\mathcal{L}(\delta)$.

 $\mathbf \Theta$ Let $\bar{\delta}$ be the minimizer of $\mathcal{L}(\delta)$ where

$$
\sqrt{m}\left(\bar{\delta}-\delta_0\right)=-\Gamma_1(\delta_0,\beta_0)^{-1}\sqrt{m}\left(\frac{1}{m}\sum_{j=1}^m\bar{\Gamma}_{2j}(\delta_0,\beta_0)[\hat{\beta}_j-\beta_{j,0}]+M_{mn}(\delta_0,\beta_0)\right)
$$

9 Show that $\sqrt{m}\left(\hat{\delta}(\hat{\beta}) - \bar{\delta}\right) = o_p(1).$

Assumptions I

- **1 Sampling** – The observations $(y_{ij}, x_{ij})_{i=1,\dots,n, j=1,\dots,m}$ are i.i.d across *i* and *j*.
- **2 Covariates** (i) For all $j = 1, ..., m$ and all $i = 1, ..., n$, $||x_{ij}|| \le C$ almost surely. (ii) The eigenvalues of $\mathbb{E}_{i|j}[x_{1ij}x'_{1ij}]$ and $\mathbb{E}[x_{ij}x'_{ij}]$ are bounded away from zero and infinity uniformly across j. (iii) as $m \to \infty$,

$$
\lim_{m\to\infty}\frac{1}{m}\sum_{j=1}^m\mathbb{E}_{i|j}\left[f_{Q(\tau_1,y_{ij}|\nu_j)|x_{ij}}(x_{ij}'\delta_0|x)x_{ij}\tilde{x}_{ij}'\right]=\mathbb{E}[f_{Q(\tau_1,y_{ij}|\nu_j)|x_{ij}}(x_{ij}'\delta_0|x)x_{ij}\tilde{x}_{ij}']
$$

where the eigenvalues of $\mathbb{E}[f_{Q(\tau_1,y_{ij}|\nu_j)|\mathsf{x}_{ij}}(\mathsf{x}_{ij}'\delta_0|\mathsf{x})\mathsf{x}_{ij}\mathsf{x}_{ij}']$ are abounded from below and above.

Assumptions II

 \bullet Conditional distribution I– The conditional distribution $F_{y_{ij}|x_{1ij},v_j}(y|x,\nu)$ is twice differentiable w.r.t. y, with the corresponding derivatives $f_{\mathsf{y}_{ij}|\mathsf{x}_{1ij},\mathsf{v}_j}(\mathsf{y}|\mathsf{x},\mathsf{v})$ and $f'_{\mathsf{y}_{ij}|\mathsf{x}_{1ij},\mathsf{v}_j}(\mathsf{y}|\mathsf{x},\mathsf{v})$. Further, assume that

$$
f_{y}^{\text{max}} := \sup_{j} \sup_{y \in \mathbb{R}, x \in \mathcal{X}} |f_{y_{ij}|x_{1ij}, y_{j}}(y|x, v)| < \infty,
$$

and

$$
\bar{f}'_y := \sup_j \sup_{y \in \mathbb{R}, x \in \mathcal{X}_1} |f'_{y_{ij}|x_{1ij}, v_j}(y|x, v)| < \infty.
$$

where \mathcal{X}_1 is the support of x_{1ij}

 \bullet Bounded density I – There exists a constant $f_{\mathsf{y}}^{min} < f_{\mathsf{y}}^{max}$ such that

$$
0 < f_{min} \le \inf_j \inf_{\tau \in \mathcal{T}} \inf_{x \in \mathcal{X}_1} f_{y_{ij}|x_{1ij},v_j}(Q(\tau,y_{ij}|x_{ij},v_j)|x,v).
$$

Assumptions III

6 Group level heterogeneity The conditional distribution $F_{Q(\tau_1,y_{ii}|x_{ii},v_i)|x_{ii}}(q|x)$ is twice continuously differentiable w.r.t. q, with the corresponding derivatives $f_{Q(\tau_1,y_{ij}|x_{ij},v_j)|x_{ij}}(q|x)$ and $f'_{Q(\tau_1,y_{ij}|x_{ij},v_j)|x_{ij}}(q|x).$

Further, assume that

$$
f_Q^{\text{max}}:=\sup_{q\in\mathbb{R},x\in\mathcal{X}}|f_{Q(\tau_1,y_{ij}|x_{ij},\mathsf{v}_j)|x_{ij}}(q|x)|<\infty
$$

and

$$
\bar{f}'_Q := \sup_{q \in \mathbb{R}, x \in \mathcal{X}} |f'_{Q(\tau_1, y_{ij} | x_{ij}, v_j) | x_{ij}}(q|x)| < \infty.
$$

where X is the support of x_{ii}

 $\textcircled{\textbf{}}$ Bounded density II – There exists a constant $f_Q^{min} < f_Q^{max}$ such that

$$
0 < f_{min} \leq \inf_{\tau_2 \in \mathcal{T}} \inf_{x \in \mathcal{X}} f_{Q(\tau_1, y_{ij}|x_{ij}, v_j)|x_{ij}}(x_{ij}^{\prime} \delta_0(\tau)|x).
$$

Assumptions IV

- \odot **Compact parameter space** For all τ , $\beta_{i,0}(\tau_1) \in \text{int}(\mathcal{B}_i)$ and $\delta_0(\beta_0,\tau)\in\mathsf{int}(\mathcal{D})$, where \mathcal{B}_j and $\mathcal D$ are compact subsets of \mathbb{R}^{K_1} and \mathbb{R}^K , respectively.
- **8 Growth rates–** As $m \to \infty$, we have

$$
\begin{array}{c} \mathbf{0} \xrightarrow[n]{\log m} \to 0, \\ \mathbf{2} \xrightarrow[n]{m \log n} \to 0, \end{array}
$$

Empirical Application

Specification:

 $Q(\tau_2, Q(\tau_1, y_{ijt} | D_{ii}, S_{ii}, W_{5,ii}, v_i) | D_{ii}, S_{ii}, W_{5,iit}) = \beta_1(\tau) \cdot D_{ii} + \beta_2(\tau) \cdot S_{ii} + \beta_3(\tau) \cdot W_{5,iit}$

- y_{ijt} : outcome of firm *i* operating in market *j* in wave t
- D_{ij} : treatment indicator,
- S_{ii} binary variable that accounts for potential spillover effects ($= 1$ for individuals in the treatment markets that are assigned to the control group).
- $W_{5,ijt}$: indicator variable for the last wave.

Rank Correlation

Table: Correlation of Ranks over τ_1

Note:

The table shows the correlation matrix of the ranks at different values of τ_1 .

• Data generating process:

 $y_{ii} = 1 + x_{1ii} + \gamma \cdot x_{2i} + \eta_i(1 - 0.1 \cdot x_{1ii} - 0.1 \cdot x_{2i}) + \nu_{ii}(1 + 0.1 \cdot x_{1ii} + 0.1 \cdot x_{2i})$

with $x_{1ij}=1+h_j+w_{ij}$, where $h_j\sim\mathit{U}[0,1]$ and $w_{ij},x_{2j},\eta_j,\nu_{ij}$ are $\mathcal{N}(0,1).$

Let F be the standard normal cdf.

- $\bullet \ \ \beta(\tau_1,\tau_2) = 1 + 0.1 \cdot \digamma^{-1}(\tau_1) + 0.1 \cdot \digamma^{-1}(\tau_2)$
- $\bullet~~ \gamma(\tau_1,\tau_2)=1-0.1\cdot F^{-1}(\tau_1)-0.1\cdot F^{-1}(\tau_2).$
- $(m, n) = \{(25, 25), (200, 25), (25, 200), (200, 200)\}\$
- $\mathcal{T} = \{0.25, 0.5, 0.75\}$
- 2'000 Monte Carlo simulations.

Table: Bias and Standard Deviation

	β			γ							
$\tau_1 \setminus \tau_2$	0.25	0.5	0.75	0.25	0.5	0.75					
$(m, n) = (25, 25)$											
0.25	-0.026	0.001	0.031	-0.019	0.004	0.028					
	(0.114)	(0.109)	(0.118)	(0.237)	(0.223)	(0.243)					
0.5	-0.027	-0.004	0.023	-0.020	0.000	0.023					
	(0.112)	(0.104)	(0.109)	(0.241)	(0.219)	(0.240)					
0.75	-0.034	-0.006	0.022	-0.020	-0.002	0.026					
	(0.116)	(0.109)	(0.114)	(0.239)	(0.220)	(0.241)					
$(m, n) = (25,200)$											
0.25	-0.010	-0.001	0.007	-0.008	0.000	0.007					
	(0.074)	(0.066)	(0.072)	(0.234)	(0.219)	(0.230)					
0.5	-0.008	-0.002	0.004	-0.008	-0.001	0.004					
	(0.072)	(0.065)	(0.069)	(0.234)	(0.221)	(0.231)					
0.75	-0.012	-0.003	0.005	-0.010	-0.002	0.004					
	(0.074)	(0.067)	(0.070)	(0.235)	(0.219)	(0.231)					

Table: Bias and Standard Deviation

	β			γ							
$\tau_1 \setminus \tau_2$	0.25	0.5	0.75	0.25	0.5	0.75					
$(m, n) = (200, 25)$											
0.25	-0.022	0.006	0.031	-0.022	-0.001	0.021					
	(0.042)	(0.038)	(0.042)	(0.079)	(0.073)	(0.079)					
0.5	-0.025	-0.001	0.023	-0.020	-0.002	0.017					
	(0.041)	(0.037)	(0.039)	(0.078)	(0.073)	(0.078)					
0.75	-0.033	-0.007	0.020	-0.023	-0.003	0.018					
	(0.042)	(0.038)	(0.041)	(0.079)	(0.074)	(0.081)					
$(m, n) = (200, 200)$											
0.25	-0.005	0.002	0.007	-0.004	0.000	0.006					
	(0.028)	(0.026)	(0.028)	(0.076)	(0.070)	(0.078)					
0.5	-0.004	0.001	0.005	-0.003	0.000	0.006					
	(0.027)	(0.025)	(0.028)	(0.075)	(0.070)	(0.079)					
0.75	-0.006	0.000	0.006	-0.004	0.000	0.006					
	(0.027)	(0.026)	(0.028)	(0.076)	(0.070)	(0.078)					

Table: Bootstrap Standard Errors relative to Standard Deviation

Table: Bootstrap Standard Errors relative to Standard Deviation

Table: Coverage Probability of Bootstrap Confidence Interval

Table: Coverage Probability of Bootstrap Confidence Interval

Questions

- • Convergence Rate [more](#page-55-0)
- \bullet Growth Condition \rightarrow [more](#page-56-0)
- Degenerate Distribution \rightarrow [more](#page-54-0)
- Smoothed Quantile Regression \rightarrow [more](#page-57-0)
- \bullet Bias Correction \rightarrow [more](#page-58-0)

Degenerate Distribution

- • In similar settings, [Galvao et al. \(2020\)](#page-30-7), [Melly and Pons \(2023\)](#page-31-4) show that without group-level heterogeneity, the first stage error dominates, and the estimator convergences at the $1/\sqrt{mn}$ rate (requirement: $\frac{m(\log n)^2}{n} \to 0$).
- Under the stronger growth condition, it is possible to show that $\sqrt{mn} \frac{1}{m} \sum_{j=1}^{m} \bar{\Gamma}_{2,j}(\delta_0, \beta_0, \tau) (\hat{\beta}_j(\tau_1) - \beta_{j,0}(\tau_1)) \stackrel{d}{\rightarrow} N(0, \Omega_1(\tau)).$
- Intuitively, without heterogeneity between groups, the estimated group-level conditional quantile functions are identical up to the first stage error, and the conditional quantile functions are identical up to the estimator should converge at the faster $1/\sqrt{mn}$ rate.
- The linearization used to derive the asymptotic results relies on the presence of group-level heterogeneity.
- Simulations without group-level heterogeneity show that this is also the case with the non-linear second-step estimator.

▶ [Asym. Dist](#page-24-0) ▶ [Questions](#page-53-1)

Convergence Rate - OLS

Both $\beta(\tau_1, \tau_2)$ and $\gamma(\tau_1, \tau_2)$ converge at the slower rate because I want to allow them to be different between groups.

Consider a dgp:

$$
y_{ij} = x_{1ij}\beta + x_{2j}\gamma + \eta_j + \nu_{ij} \quad \text{with}
$$

- $\bullet\,$ It is possible to estimate β at the $1/\sqrt{mn}$ by exploiting only the within variation (i.e. fixed effects estimator).
- However, this strategy does not identify heterogeneity over groups.
- γ can only be estimated the a the $1/\sqrt{m}$ rate as x_{2j} varies only between groups.
	- Exception: if there is no group-level heterogeneity $(\eta_i = 0 \ \forall j = 1, \ldots, m)$.

Growth Conditon

- • Nonlinear panel data literature has shown that $m/n \rightarrow 0$ is a sufficient condition to obtain asymptotic normality of nonlinear panel data FE estimators.
- [Galvao et al. \(2020\)](#page-30-7) show that unbiased asymptotic normality of panel data FE QR estimator hold under $m(\log(n))^2/n \to 0$.
	- Previous condition in the literature: $m^2 \log(m) (\log(n))^2/n \to 0$.
- These estimator converge at the \sqrt{mn} rate.
- My estimator converges at the \sqrt{m} rate. Hence, I only need $m \log(n)/n \to 0$.

[Descriptive Example](#page-32-0) [Conceptual Framework](#page-36-0) [Asymptotics](#page-39-1) [Empirical Application](#page-44-1) [Simulations](#page-46-1) [Questions](#page-53-0)

Smoothed Panel Data Quantile Regression

- • [Galvao and Kato \(2016\)](#page-30-8) show that the smoothed FE estimator $\sqrt{mn}(\hat{\beta} - \beta_0) \stackrel{d}{\rightarrow} N(bias, V)$ if $m/n \rightarrow c$.
- Bias correction possible (analytical formula of Split panel Jackknife (see [Dhaene and Jochmans, 2015\)](#page-30-9). Bias corrected estimator is centered at zero under the same growth condition.
	- Growth rate required for unbiased asymptotic normality of FE QR used to be $m^2(\log m)(\log n)^2/n \to 0.$
	- [Galvao et al. \(2020\)](#page-30-7) showed that unbiased asymptotic normality continues to hold provided $m(\log n)^2/n \to 0$.
	- The estimators considered in these papers converge at the $1/\sqrt{mn}$ rate.
- Smoothed QR estimator requires stronger conditions on the smoothness of the outcome variable and the choice of a bandwidth that is arbitrary.

Bias Correction

