Efficient Sampling for Realized Variance Estimation in Time-Changed Diffusion Models

Timo Dimitriadis¹, Roxana Halbleib², **Jasper Rennspies**², Jeannine Polivka³, Sina Streicher⁴, Axel Friedrich Wolter²

¹University of Heidelberg ²University of Freiburg ³University of St.Gallen, Switzerland ⁴KOF Swiss Economic Institute, ETH Zürich

EEA-ESEM, Rotterdam August 27, 2024

• Aim: provide more efficient daily *variance* estimates and forecasts based on high-frequency (HF) returns by sampling in *intrinsic time*

- Aim: provide more efficient daily *variance* estimates and forecasts based on high-frequency (HF) returns by sampling in *intrinsic time*
- Usefulness of the *variance* of financial returns: risk management, portfolio optimization and asset pricing.

- Aim: provide more efficient daily *variance* estimates and forecasts based on high-frequency (HF) returns by sampling in *intrinsic time*
- Usefulness of the *variance* of financial returns: risk management, portfolio optimization and asset pricing.
- Intrinsic time captures the real heartbeat of financial markets.

- Aim: provide more efficient daily *variance* estimates and forecasts based on high-frequency (HF) returns by sampling in *intrinsic time*
- Usefulness of the *variance* of financial returns: risk management, portfolio optimization and asset pricing.
- Intrinsic time captures the real heartbeat of financial markets.
- Why intrinsic (vs. calendar) time?
 - Get more/different insight and better (risk) measures by taking in account the market's activity when sampling data
 - $\diamond\,$ Exploit better the rich information content of HF data (150GB/day from NYSE $\sim\,$ 100 TB HF data)

ldea

- Aim: provide more efficient daily *variance* estimates and forecasts based on high-frequency (HF) returns by sampling in *intrinsic time*
- Usefulness of the *variance* of financial returns: risk management, portfolio optimization and asset pricing.
- Intrinsic time captures the real heartbeat of financial markets.
- Why intrinsic (vs. calendar) time?
 - Get more/different insight and better (risk) measures by taking in account the market's activity when sampling data
 - $\diamond~$ Exploit better the rich information content of HF data (150GB/day from NYSE $\sim~$ 100 TB HF data)
- **Contribution**: First paper to show theoretically and empirically the advantages of intrinsic time for the daily variance estimation from HF data

Our focus in this paper

Realized Variance - RV (Andersen and Bollerslev, 1998; Andersen et al., 2001, Barndorff-Nielsen and Shephard, 2002)

- Extensively studied in financial econometrics literature
- Unbiased and consistent estimator of daily variance (integrated variance) by using HF returns
- Underlying prices follow a **diffusion process** and exhibit no Market Microstructure Noise (MMN)
- Find optimal frequency when equidistantly sampling in clock time: 5-minute
- Under MMN, e.g., pre-averaged RV of Podolskij and Vetter (2009)

Our focus in this paper

Realized Variance - RV (Andersen and Bollerslev, 1998; Andersen et al., 2001, Barndorff-Nielsen and Shephard, 2002)

- Extensively studied in financial econometrics literature
- Unbiased and consistent estimator of daily variance (integrated variance) by using HF returns
- Underlying prices follow a **diffusion process** and exhibit no Market Microstructure Noise (MMN)
- Find optimal frequency when equidistantly sampling in clock time: 5-minute
- Under MMN, e.g., pre-averaged RV of Podolskij and Vetter (2009)

Problems:

- Diffusion process might not reflect reality
- Observed prices are discrete; only change after new trades materialize
- Trading intensity varies heavily over the day
- The ticks (prices) evolve over the day with time-changing variance and the arrival times are stochastic
- The diffusion model can neither model the arrivals of the transactions nor can it accommodate the discontinuity of the many little price jumps
- Discretized diffusion models (Jacod et al. 2017, ...): stochastic arrival times

Contribution of our paper

Tick-time stochastic volatility (TTSV) model:

- The price process is doubly stochastic: pure jump tick process with time-varying **tick volatility** and time-varying **trading intensity** that exhibit different (opposite) intraday patterns
- Is a time-changed/subordinated diffusion process for log-prices: joint stochastic model for asset prices and their arrival times
- It allows to study theoretically (pre-averaged) RV based on calendar time CTS, **business time** BTS and **transaction time** TTS sampling
- Distinguish between (estimated) intensity and (observed) realized/jump-based sampling
- Theoretical analysis in finite sample and asymptotically
- Comprehensive simulation and empirical evidence on real data

Main findings of our paper

- Spot variance = Time-varying tick variance \times trading intensity
- BTS is favourable against CTS and TTS (see literature)
- Find a new optimal sampling scheme: realised BTS (rBTS)
- rBTS samples according to observed ticks adjusted by their variation
- rBTS provides a theoretical lower bound for the efficiency of the (pre-averaged) RV estimator in finite samples and asymptotically.
- In simulation as well as in-sample and out-of-sample outperformance of rBTS

General Sampling and Realized Variance

• We define the general sampling (GS) scheme (not necessarily equidistant in calendar time) by

$$\tau := (\tau_0, \ldots, \tau_M)$$

with $0 = \tau_0 < \tau_1 < \ldots < \tau_M = T$

• $M \in \mathbb{N}$ is the number of subintervals $(\tau_{j-1}, \tau_j]$ for $j = 1, \dots, M$.

General Sampling and Realized Variance

• We define the general sampling (GS) scheme (not necessarily equidistant in calendar time) by

$$\tau := (\tau_0, \ldots, \tau_M)$$

with $0 = \tau_0 < \tau_1 < \ldots < \tau_M = T$

- $M \in \mathbb{N}$ is the number of subintervals $(\tau_{j-1}, \tau_j]$ for $j = 1, \dots, M$.
- The intra-daily log-returns over a trading day are given by

$$r_j := r(\tau_{j-1}, \tau_j) = P(\tau_j) - P(\tau_{j-1}), \quad j = 1, \dots, M.$$
 (1)

General Sampling and Realized Variance

• We define the general sampling (GS) scheme (not necessarily equidistant in calendar time) by

$$\tau := (\tau_0, \ldots, \tau_M)$$

with $0 = \tau_0 < \tau_1 < \ldots < \tau_M = T$

- $M \in \mathbb{N}$ is the number of subintervals $(\tau_{j-1}, \tau_j]$ for $j = 1, \dots, M$.
- The intra-daily log-returns over a trading day are given by

$$r_j := r(\tau_{j-1}, \tau_j) = P(\tau_j) - P(\tau_{j-1}), \quad j = 1, \dots, M.$$
 (1)

Realized Variance (Andersen and Bollerslev, 1998): For a given interval $[0, T], T \ge 0$, the realized variance (RV) based on $M \in \mathbb{N}$ intraday log-returns is defined by

$$\mathsf{RV}_{\tau_M}(0, T) := \sum_{j=1}^M r_j^2,$$
 (2)

where the index au_M highlights its dependence on the chosen grid.

Standard Diffusion Setting

Figure: Snippet of the IBM transaction log-price on July 2nd, 2015.

Standard Diffusion Setting

Figure: Snippet of the IBM transaction log-price on July 2nd, 2015.

P(t) solves the stochastic differential equation

$$dP(t) = \mu(t) dt + \sigma(t) dB(t), \quad t \in [0, T],$$
(3)

where $\mu(t)$ is of finite variation and \mathcal{F}_t -predictable, $\sigma(t)$ is spot variance, \mathcal{F}_t -predictable, is independent of B(t) and $\mathbb{E}\left[\int_0^t \sigma^2(r) dr\right] < \infty$.

The integrated variance (IV) over [0, T]:

$$\mathsf{IV}(0, T) := \int_{0}^{T} \sigma_{spot}^{2}(r) \, dr = \int_{0}^{T} \sigma^{2}(r) \, dr.$$

Standard Diffusion Setting

Figure: Snippet of the IBM transaction log-price on July 2nd, 2015.

P(t) solves the stochastic differential equation

$$dP(t) = \mu(t) dt + \sigma(t) dB(t), \quad t \in [0, T],$$
(3)

where $\mu(t)$ is of finite variation and \mathcal{F}_t -predictable, $\sigma(t)$ is spot variance, \mathcal{F}_t -predictable, is independent of B(t) and $\mathbb{E}\left[\int_0^t \sigma^2(r) dr\right] < \infty$.

The integrated variance (IV) over [0, T]:

$$\mathsf{IV}(0, T) := \int_{0}^{T} \sigma_{spot}^{2}(r) \, dr = \int_{0}^{T} \sigma^{2}(r) \, dr.$$

RV is a consistent and asymptotically normal estimator of IV.

Figure: Snippet of the IBM transaction log-price on July 2nd, 2015.

Oomen (2005, 2006): P(t) follows a compound Poisson process (CPP) given by

$$P(t) = P(0) + \sum_{i=1}^{N(t)} \varepsilon_i, \qquad (4)$$
$$\varepsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_{\varepsilon}^2), \qquad (5)$$

Figure: Snippet of the IBM transaction log-price on July 2nd, 2015.

Oomen (2005, 2006): P(t) follows a compound Poisson process (CPP) given by

$$P(t) = P(0) + \sum_{i=1}^{N(t)} \varepsilon_i, \qquad (4)$$
$$\varepsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_{\varepsilon}^2), \qquad (5)$$

Figure: Snippet of the IBM transaction log-price on July 2nd, 2015.

Oomen (2005, 2006): P(t) follows a compound Poisson process (CPP) given by

$$P(t) = P(0) + \sum_{i=1}^{N(t)} \varepsilon_i, \qquad (4)$$
$$\varepsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_{\varepsilon}^2), \qquad (5)$$

$$\mathsf{IV}(0,T) := \int_0^T \sigma_{spot}^2(r) \, dr = \int_0^T \sigma_{\varepsilon}^2 \lambda(r) \, dr$$

Oomen (2005, 2006): P(t) follows a compound Poisson process (CPP) given by

$$P(t) = P(0) + \sum_{i=1}^{N(t)} \varepsilon_i, \qquad (4)$$
$$\varepsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_{\varepsilon}^2), \qquad (5)$$

$$\mathsf{IV}(0,T) := \int_0^T \sigma_{spot}^2(r) \, dr = \int_0^T \sigma_{\varepsilon}^2 \lambda(r) \, dr$$

Oomen (2005, 2006): P(t) follows a compound Poisson process (CPP) given by

$$P(t) = P(0) + \sum_{i=1}^{N(t)} \varepsilon_i, \qquad (4)$$
$$\varepsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_{\varepsilon}^2), \qquad (5)$$

$$\mathsf{IV}(0,T) := \int_0^T \sigma_{spot}^2(r) \, dr = \int_0^T \sigma_{\varepsilon}^2 \lambda(r) \, dr$$

Tick-Time Stochastic Volatility (TTSV) Model

Our model: The log-price process P(t) follows

$$P(t) = P(0) + \sum_{i=1}^{N(t)} \varsigma(t_i) U_i$$
(6)

- N(t) is a general jump process with stochastic intensity λ(t) and stochastic arrival times t_i, i = 1,..., N; N(t) = i for t ∈ [t_i, t_{i+1}).
- Conditionally that an arrival t_i has occurred, $U_i = B(N(t_i) - B(N(t_{i-1})))$, i.e. $U_i \stackrel{iid}{\sim} \mathcal{N}(0, 1)$

TTSV: N(t) and P(t)

Figure: Upper panel: evolution of the jump process N(t) generating the ticks (arrival times) t_i . Lower panel: the log-price process P(t), which exhibits price jumps at the ticks t_i of N(t) and is constant in between. Vertical red lines represent the sampling times of an exemplary sampling scheme τ^T (that does not have to be equidistant in calendar time), and the red squares show the resampled prices based on the previous tick method. 10/36

Some Assumptions

Assumptions 1:

- ▶ The filtration $\mathcal{F}_t := \sigma(Z_1(s), \ldots, Z_m(s); 0 \le s \le t)$ is generated by a fixed number $m \in \mathbb{N}$ of given stochastic factors $Z_1(t), \ldots, Z_m(t)$ that govern the randomness of the price processes.
- ► The counting process $\{N(t)\}_{t\geq 0}$ is an \mathcal{F}_t -adapted jump process, which has an \mathcal{F}_t -predictable intensity process $\{\lambda(t)\}_{t\geq 0}$ that is left-continuous with right-hand limits and $\int_0^t \lambda(s) ds < \infty$ a.s. for all $t \geq 0$.
- $\{B(n)\}_{n\geq 0}$ is a Brownian motion such that B(N(t)) is adapted to \mathcal{F}_t .
- The tick volatility $\{\varsigma(t)\}_{t>0}$ is a positive, continuous and \mathcal{F}_t -predictable process.

Assumptions 2:

The process $\{B(n)\}_{n\geq 0}$ is independent from $\{N(t)\}_{t\geq 0}$ and from $\{\varsigma(t)\}_{t\geq 0}$.

Assumptions 3:

► The expectations $\mathbb{E}\left[\int_{t}^{T} \varsigma^{2}(r)\lambda(r)dr \mid \mathcal{F}_{t}\right]$, $\mathbb{E}\left[\varsigma^{4}(t)\right]$ and $\mathbb{E}\left[\int_{0}^{t} \varsigma^{4}(r)\lambda(r)dr\right]$ exist and are finite for all $t \in [0, T]$.

Assumptions 4:

- ► The counting process $\{N(t)\}_{t\geq 0}$ is a doubly stochastic Poisson process, adapted to \mathcal{F}_t , which has a positive, \mathcal{F}_t -measurable and continuous intensity $\{\lambda(t)\}_{t\geq 0}$ such that $\int_0^t \lambda(s) ds < \infty$ a.s. for all $t \geq 0$;
- The processes $\{N(t)\}_{t\geq 0}$ and $\{\varsigma(t)\}_{t\geq 0}$ are independent.

TTSV Model

The TTSV model can be written as:

$$dP(t) = \varsigma(t) dB(N(t)), \quad t \in [0, T],$$
(7)

• We show that

$$\sigma_{spot}^{2}(t) = \varsigma^{2}(t) \lambda(t+),$$

where $\lambda(t_+) := \lim_{\delta \searrow 0} \lambda(t + \delta);$

- For continuous intensities $\lambda(t)$, the decomposition simplifies to $\sigma^2(t) = \varsigma^2(t)\lambda(t)$.
- It holds that

$$\mathbb{E}\left[r_{\mathsf{daily}}^2 - \mathsf{IV}\left(0,\,T\right)\right] = 0.$$

• We get

$$\mathsf{IV}(0,T) = \int_0^T \sigma_{spot}^2(r) \, dr = \int_0^T \varsigma^2(r) \, \lambda(r) \, dr.$$

A new concept of IV and unbiasedness results

• Define the following two information sets for $t \in [0, T]$,

$$egin{aligned} &\mathcal{F}^{\lambda,\varsigma}_t &:= \sigmaig(\lambda(s),\varsigma(s); \quad 0 \leq s \leq tig) \subset \mathcal{F}_t, \quad ext{ and } \ &\mathcal{F}^{\lambda,\varsigma,\mathcal{N}}_t &:= \sigmaig(\lambda(s),\varsigma(s),\mathcal{N}(s); \quad 0 \leq s \leq tig) \subset \mathcal{F}_t, \end{aligned}$$

► Define the realized IV (rIV) as
rIV(0,
$$T$$
) := $\int_0^T \varsigma^2(r) dN(r) = \sum_{0 \le t_i \le T} \varsigma^2(t_i)$ that can be interpreted
as a jump-process based and hence "realized" version of the classical IV.

Theorem 1 (Unbiasedness)

(a) Under Assumptions 1-3, it holds that $\mathbb{E}\left[\mathsf{RV}(\tau^{T}) \mid \mathcal{F}_{T}^{\lambda,\varsigma,N}\right] = \mathsf{rIV}(0,T).$ (b) Under Assumptions 1-4, it holds that $\mathbb{E}\left[\mathsf{RV}(\tau^{T}) \mid \mathcal{F}_{T}^{\lambda,\varsigma}\right] = \mathsf{IV}(0,T).$

Efficiency Results I

Theorem 2 (Efficiency) (a) Under Assumptions 1–3 it holds that

$$\mathbb{E}\left[\left(\mathsf{RV}(\boldsymbol{\tau}^{T}) - \mathsf{IV}(0, T)\right)^{2} \middle| \mathcal{F}_{T}^{\lambda,\varsigma,N}\right] = \left(\mathsf{rIV}(0, T) - \mathsf{IV}(0, T)\right)^{2} \\ + 2\sum_{j=1}^{M(T)} \mathsf{rIV}(\tau_{j-1}^{T}, \tau_{j}^{T})^{2}$$

(b) Under Assumptions 1-4 it holds that

$$\mathbb{E}\left[\left(\mathsf{RV}(\boldsymbol{\tau}^{T}) - \mathsf{IV}(0, T)\right)^{2} \middle| \mathcal{F}_{T}^{\lambda, \varsigma}\right] = 3 \,\mathsf{IQ}(0, T) + 2 \sum_{j=1}^{M(T)} \mathsf{IV}(\tau_{j-1}^{T}, \tau_{j}^{T})^{2},$$

where $IQ(s, t) := \int_{s}^{t} \varsigma^{4}(r)\lambda(r)dr$ denotes the Integrated Quarticity of the TTSV model.

Efficiency Results I

Theorem 2 (Efficiency) (a) Under Assumptions 1–3 it holds that

$$\mathbb{E}\left[\left(\mathsf{RV}(\boldsymbol{\tau}^{T}) - \mathsf{IV}(0, T)\right)^{2} \middle| \mathcal{F}_{T}^{\lambda,\varsigma,N}\right] = \left(\mathsf{rIV}(0, T) - \mathsf{IV}(0, T)\right)^{2} \\ + 2\sum_{j=1}^{M(T)} \mathsf{rIV}(\tau_{j-1}^{T}, \tau_{j}^{T})^{2}$$

(b) Under Assumptions 1-4 it holds that

$$\mathbb{E}\left[\left(\mathsf{RV}(\boldsymbol{\tau}^{\mathsf{T}}) - \mathsf{IV}(0, \mathsf{T})\right)^{2} \middle| \mathcal{F}_{\mathsf{T}}^{\lambda,\varsigma}\right] = 3 \,\mathsf{IQ}(0, \mathsf{T}) + 2 \sum_{j=1}^{\mathsf{M}(\mathsf{T})} \mathsf{IV}(\tau_{j-1}^{\mathsf{T}}, \tau_{j}^{\mathsf{T}})^{2},$$

where $IQ(s, t) := \int_{s}^{t} \varsigma^{4}(r)\lambda(r)dr$ denotes the Integrated Quarticity of the TTSV model.

MSE is bounded below and depends on the choice of sampling scheme $au^ au$

Sampling Schemes $au^{ op}$

- Calendar Time Sampling (CTS): the sampling times are equidistant in calendar time.
- Intensity Transaction Time Sampling (iTTS): data sampled equidistantly in the integrated (latent) trading intensity. It is \$\mathcal{F}_{T}^{\lambda,\sigma}\$-measurable.
- **Realized Transaction Time Sampling (rTTS)**: data sampled equidistantly in the *observed number of transactions*. It is $\mathcal{F}_T^{\lambda,\varsigma,N}$ -measurable.
- Intensity Business Time Sampling (iBTS): data sampled equidistantly in integrated (latent) spot variance. It is *F*^{λ,ς}_T-measurable and incorporates the tick variance and the trading intensity, both latent.
- ▶ Realized Business Time Sampling (rBTS): data sampled equidistantly in the observed number of transactions weighted by their tick variance. It is a $\mathcal{F}_{T}^{\lambda,\varsigma,N}$ -measurable extension of iBTS when accounting for the sample path of N(t).

Sampling Schemes $au^{ op}$

Efficiency Results II

Corollary 3

(a) Under Assumptions 1–3 and given that the sampling times τ^T are $\mathcal{F}_T^{\lambda,\varsigma,N}$ -measurable,

$$\mathbb{E}\left[\left(\mathsf{RV}(\boldsymbol{\tau}^{\mathsf{T}})-\mathsf{IV}(0,\mathcal{T})\right)^{2} \mid \mathcal{F}_{\mathcal{T}}^{\lambda,\varsigma,\mathsf{N}}\right] \geq \mathbb{E}\left[\left(\mathsf{RV}(\boldsymbol{\tau}^{\prime\mathcal{B}\mathcal{TS}})-\mathsf{IV}(0,\mathcal{T})\right)^{2} \mid \mathcal{F}_{\mathcal{T}}^{\lambda,\varsigma,\mathsf{N}}\right],$$

with equality if and only if $au^{T} \equiv au^{rBTS}$.

(b) Under Assumptions 1–4 and given that the sampling times τ^T are $\mathcal{F}_T^{\lambda,\varsigma}$ -measurable,

$$\mathbb{E}\left[\left(\left.\mathsf{RV}(\boldsymbol{\tau}^{\,\mathcal{T}})-\mathsf{IV}(0,\,\mathcal{T})\right)^{2}\,\right|\,\mathcal{F}_{\mathcal{T}}^{\lambda,\varsigma}\right]\geq\mathbb{E}\left[\left(\left.\mathsf{RV}(\boldsymbol{\tau}^{\textit{\textit{iBTS}}})-\mathsf{IV}(0,\,\mathcal{T})\right)^{2}\,\right|\,\mathcal{F}_{\mathcal{T}}^{\lambda,\varsigma}\right],$$

with equality if and only if $au^{T} \equiv au^{iBTS}$.

Asymptotic results for jump-based sampling without MMN

- In-fill asymptotic as in diffusion models is not possible within TTSV, as the amount of observed ticks on the fixed interval [0, T] is bounded in probability.
- Our asymptotic is based on increasing the number of ticks by letting T diverge to ∞ (Dahlhaus, 1997; Dahlhaus and Tunyavetchakit, 2016).
- To allow for jump-based sampling, we make assumptions related to Fukasawa (2010) and Mykland and Zhang (2006).

Asymptotic results for jump-based sampling without MMN

Theorem 4 Under the following assumptions

• $\mathbb{E}[\tau_j^T - \tau_{j-1}^T \mid \mathcal{F}_{\tau_{j-1}^T}^T] = \left(f\phi\left(\frac{\tau_{j-1}^T}{T}\right)\right)^{-1} + o_p(1)$ uniformly in $j \in \{1, \ldots, M(T)\}$ for some integrable sampling intensity function $\phi : [0, 1] \to \mathbb{R}_{>0}$ such that $\int_0^1 \phi(s) ds = 1$,

► Var
$$[N_T(\tau_j^T) - N_T(\tau_{j-1}^T) | \mathcal{F}_{\tau_{j-1}^T}^T] = \mu \left(\frac{\tau_{j-1}^T}{T}\right) \mathbb{E}[\tau_j^T - \tau_{j-1}^T | \mathcal{F}_{\tau_{j-1}^T}^T] + o_p(1)$$

uniformly in $j \in \{1, \dots, M(T)\}$ for some integrable function $\mu : [0, 1] \to \mathbb{R}_{>0}$
and some further technical assumptions, it holds that

$$\sqrt{T}(\mathsf{RV}(\boldsymbol{\tau}^{\mathsf{T}}) - \mathsf{IV}) \stackrel{d}{\longrightarrow} \mathcal{N}(0, V_{\phi} + V_{\mu} + \mathsf{IQ}),$$

where

$$V_{\phi} = \frac{2}{f} \int_{0}^{1} \frac{\varsigma^{4}(r)\lambda^{2}(r)}{\phi(r)} dr, V_{\mu} = 2 \int_{0}^{1} \varsigma^{4}(r)\mu(r)dr,$$
$$IQ = \int_{0}^{1} \varsigma^{4}(r)\lambda(r)dr, f = \text{plim}_{T \to \infty} \frac{M(T)}{T} > 0.$$

- CTS, iTTS, iBTS, rTTS satisfy the assumptions
- Conjecture: rBTS also satisfies the assumptions and it minimizes the asymptotic variance.

Market Microstructure Noise (MMN)

We observe $\tilde{P}(t)$ which follows the decomposition

$$\widetilde{P}_{T}(\tau_{j}^{T}) = P_{T}(\tau_{j}^{T}) + v_{j}^{T}, \qquad j = 1, \dots, M(T),$$
(8)

and the corresponding noisy log-returns are given by

$$\tilde{r}_{j,T} = \widetilde{P}_T(\tau_j^T) - \widetilde{P}_T(\tau_{j-1}^T) = r_{j,T} + v_j^T - v_{j-1}^T.$$

where

- $P_T(\cdot)$ is the true, efficient price that follows the TTSV model
- v_i^T is the noise component s.t.
 - (a) is i.i.d. with $\mathbb{E}[v_j^T] = 0$, $Var(v_j^T) = \omega^2$ and $\mathbb{E}[(v_j^T)^4] = \theta \omega^4$ for all $j \in \{0, ..., M(T)\}$ and $T \in \mathbb{N}$,
 - (b) The sequences v_j^T and $P_T(\tau_j^T)$ are independent for all $j \in \{0, ..., M(T)\}$ and $T \in \mathbb{N}$,
 - (c) v_j^T is $\mathcal{F}_{\tau_i^T}^T$ -measurable for all $j \in \{0, ..., M(T)\}$ and $T \in \mathbb{N}$.

Market Microstructure Noise (MMN)

We observe $\tilde{P}(t)$ which follows the decomposition

$$\widetilde{P}_{T}(\tau_{j}^{T}) = P_{T}(\tau_{j}^{T}) + v_{j}^{T}, \qquad j = 1, \dots, M(T),$$
(8)

and the corresponding noisy log-returns are given by

$$\tilde{r}_{j,T} = \widetilde{P}_T(\tau_j^T) - \widetilde{P}_T(\tau_{j-1}^T) = r_{j,T} + v_j^T - v_{j-1}^T.$$

where

- $P_T(\cdot)$ is the true, efficient price that follows the TTSV model
- v_i^T is the noise component s.t.
 - (a) is i.i.d. with $\mathbb{E}[v_j^T] = 0$, $\operatorname{Var}(v_j^T) = \omega^2$ and $\mathbb{E}[(v_j^T)^4] = \theta \omega^4$ for all $j \in \{0, ..., M(T)\}$ and $T \in \mathbb{N}$,
 - (b) The sequences v_j^T and $P_T(\tau_j^T)$ are independent for all $j \in \{0, ..., M(T)\}$ and $T \in \mathbb{N}$,
 - (c) v_j^T is $\mathcal{F}_{\tau_i^T}^T$ -measurable for all $j \in \{0, .., M(T)\}$ and $T \in \mathbb{N}$.
- To deal with MMN, we implement the pre-averaged RV estimator of Podolskij and Vetter (2009)

Asymptotic results for intensity-based sampling with MMN

Theorem 5

Given that the price process is contaminated by MMN, that the sampling times τ^{T} are intensity-based, and that the pre-averaging bandwidth $H = \delta \sqrt{T}$, it holds that

$$T^{1/4}(\overline{\mathsf{RV}}(\boldsymbol{\tau}^{\mathsf{T}}) - \mathsf{IV}) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, \delta\eta_{\mathsf{A}}^{2} + \frac{1}{\delta}\eta_{\mathsf{B}}^{2} + \frac{1}{\delta^{3}}\eta_{\mathsf{C}}^{2}
ight),$$

with

$$\eta_{A}^{2} = \frac{2}{f} \int_{0}^{1} \frac{\varsigma^{4}(r)\lambda^{2}(r)}{\phi(r)} dr, \quad \eta_{B}^{2} = 4\frac{g_{2}'}{g_{2}}\omega^{2} \int_{0}^{1} \varsigma^{2}(r)\lambda(r)dr, \quad \text{and} \quad \eta_{C}^{2} = 2f \left(\frac{g_{2}'}{g_{2}}\right)^{2} \omega^{4}.$$
(9)

The iBTS scheme minimizes the asymptotic variance

Simulation Study

Design

Figure: Simulated paths of the asset price according to TTSV model, the spot variance $\sigma^2(t)$, the trading intensity $\lambda(t)$, and the tick variance $\varsigma^2(t)$ for three exemplary days in colors. Simulate D = 5000 days from the TTSV model using T = 23400.

$$\begin{split} \lambda(t) &= \lambda_{det}(t) \exp\left(0.01\lambda^*(t) - \bar{\lambda}^*\right), & \text{where} & d\lambda^*(t) = -0.0002\lambda^*(t)dt + dB_1(t), \\ \varsigma(t) &= \varsigma_{det}(t) \exp\left(0.005\varsigma^*(t) - \bar{\varsigma}^*\right), & \text{where} & d\varsigma^*(t) = -0.0002\varsigma^*(t)dt + dB_2(t), \end{split}$$

Simulation Study

Bias Results

Sampling scheme ---- CTS --- TTS ---- BTS

Simulation Study N

MSE Results RV

Sampling scheme ---- CTS --- TTS ---- BTS

Data

- 27 liquid stocks traded at the NYSE
- Data from January 01, 2001 and March 31, 2019
- For RV, $M \in \{13, 26, 39, 78, 260, 390\}$
- ▶ For pre-averaged RV, *M* ∈ {78, 260, 390, 780, 2340, 4680}
- Evaluate RV estimates against a standard 5-minute CTS RV (Patton, 2011)

	Realized BTS	Intensity BTS		Realized TTS	Intensity TTS		
AA -	\bullet \bullet \bullet \bullet \bullet		•				
AXP -	$\bullet \bullet \bullet \bullet \bullet \bullet$						
BA-	\bullet \bullet \bullet \bullet \bullet						
BAC -	\bullet \bullet \bullet \bullet \bullet						
CAT -	$\bullet \bullet \bullet \bullet \bullet \bullet$						
DIS -							
GE -							
GS -							
HD-							
HON -							
IPM-							
+ IP-							
S JNJ-				.			
₹ JPM-							
KO -	• • • • • •		- I - •				
MCD -	\bullet \bullet \bullet \bullet \bullet		- I - •				
MMM -	\bullet \bullet \bullet \bullet \bullet						
MO-	\bullet \bullet \bullet \bullet \bullet						
MRK-	\bullet \bullet \bullet \bullet \bullet		•				
NKE -	$\bullet \bullet \bullet \bullet \bullet \bullet$						
PFE -	\bullet \bullet \bullet \bullet \bullet						
PG -			-				
UTX -							
VZ-							
YOM-							
XOIVI-							
	78 260 390 780 23404680	78 260 390 780 2340468	0 78	260 390 780 23404680	78 260 390 780 2340 4680		
			IVI				
	Relative QLIKE Improvement			20% 30%	40% 50%		

		MSE			QLIKE		
Evaluation target	Sampling	avg. rk.	avg.	winning	avg. rk.	avg.	winning
	rBTS	1.92	0.30	0.53	1.48	0.18	0.74
	iBTS	3.32	0.41	0.09	2.70	0.19	0.10
(a) RV CTS $M = 78$	rTTS	2.52	0.31	0.20	2.58	0.18	0.10
	iTTS	3.44	0.43	0.08	3.80	0.19	0.02
	CTS	3.81	0.49	0.10	4.44	0.21	0.04
	rBTS	2.18	1.25	0.42	1.87	1.44	0.52
	iBTS	3.48	1.36	0.09	3.30	1.46	0.06
(b) Squared return	rTTS	2.37	1.26	0.29	2.25	1.45	0.29
	iTTS	3.38	1.38	0.07	3.44	1.45	0.06
	CTS	3.59	1.44	0.12	4.14	1.47	0.06
	rBTS	2.90	0.26	0.30	1.57	0.18	0.64
	iBTS	3.20	0.38	0.16	1.98	0.19	0.33
(c) Individual estimator	rTTS	3.04	0.28	0.13	3.24	0.19	0.01
	iTTS	2.96	0.41	0.08	3.55	0.20	0.02
	CTS	2.90	0.48	0.33	4.65	0.22	0.01

Conclusion

- Exploit HF data from intrinsic time perspective to improve the estimation of daily variance.
- Show theoretically that (r)BTS provides the best RV estimates
- General price model: time-changed diffusion model
- Allow to disentangle **theoretically** between intraday different patterns
- Brings together two strands of literature: duration models and stochastic volatility
- (r)BTS: best RV in simulations and real data

Model Extensions

- Relaxation of independence assumptions of TTSV.
- Possibility of modelling λ(t) to explicitly account for trade clustering (e.g. by self-exciting time-varying Hawkes process).
- Application to broader sets of asset classes and markets.

Thank you for your attention!