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Introduction

Idea

• Aim: provide more efficient daily variance estimates and forecasts based
on high-frequency (HF) returns by sampling in intrinsic time

• Usefulness of the variance of financial returns: risk management,
portfolio optimization and asset pricing.

• Intrinsic time captures the real heartbeat of financial markets.

• Why intrinsic (vs. calendar) time?

⋄ Get more/different insight and better (risk) measures by taking in
account the market’s activity when sampling data

⋄ Exploit better the rich information content of HF data
(150GB/day from NYSE ∼ 100 TB HF data)

• Contribution: First paper to show theoretically and empirically the
advantages of intrinsic time for the daily variance estimation from HF
data
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Theoretical Background and Related Literature Realized Variance

Our focus in this paper

Realized Variance - RV (Andersen and Bollerslev, 1998; Andersen et al., 2001,
Barndorff-Nielsen and Shephard, 2002)

• Extensively studied in financial econometrics literature

• Unbiased and consistent estimator of daily variance (integrated variance) by
using HF returns

• Underlying prices follow a diffusion process and exhibit no Market
Microstructure Noise (MMN)

• Find optimal frequency when equidistantly sampling in clock time: 5-minute

• Under MMN, e.g., pre-averaged RV of Podolskij and Vetter (2009)

Problems:

• Diffusion process might not reflect reality

• Observed prices are discrete; only change after new trades materialize

• Trading intensity varies heavily over the day

• The ticks (prices) evolve over the day with time-changing variance and the
arrival times are stochastic

• The diffusion model can neither model the arrivals of the transactions nor can
it accommodate the discontinuity of the many little price jumps

• Discretized diffusion models (Jacod et al. 2017, ...): stochastic arrival times
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Theoretical Background and Related Literature Realized Variance

Contribution of our paper

Tick-time stochastic volatility (TTSV) model:

• The price process is doubly stochastic: pure jump tick process with
time-varying tick volatility and time-varying trading intensity that
exhibit different (opposite) intraday patterns

• Is a time-changed/subordinated diffusion process for log-prices: joint
stochastic model for asset prices and their arrival times

• It allows to study theoretically (pre-averaged) RV based on calendar time
- CTS, business time - BTS and transaction time - TTS sampling

• Distinguish between (estimated) intensity and (observed)
realized/jump-based sampling

• Theoretical analysis in finite sample and asymptotically

• Comprehensive simulation and empirical evidence on real data
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Theoretical Background and Related Literature Realized Variance

Main findings of our paper

• Spot variance = Time-varying tick variance × trading intensity

• BTS is favourable against CTS and TTS (see literature)

• Find a new optimal sampling scheme: realised BTS (rBTS)

• rBTS samples according to observed ticks adjusted by their
variation

• rBTS provides a theoretical lower bound for the efficiency of the
(pre-averaged) RV estimator in finite samples and asymptotically.

• In simulation as well as in-sample and out-of-sample
outperformance of rBTS
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Theoretical Background and Related Literature Realized Variance

General Sampling and Realized Variance

• We define the general sampling (GS) scheme (not necessarily
equidistant in calendar time) by

τ := (τ0, . . . , τM)

with 0 = τ0 < τ1 < . . . < τM = T
• M ∈ N is the number of subintervals (τj−1, τj ] for j = 1, . . . ,M.

• The intra-daily log-returns over a trading day are given by

rj := r (τj−1, τj) = P (τj)− P (τj−1) , j = 1, . . . ,M. (1)

Realized Variance (Andersen and Bollerslev, 1998): For a given
interval [0,T ],T ≥ 0, the realized variance (RV) based on M ∈ N
intraday log-returns is defined by

RVτM
(0,T ) :=

M∑
j=1

r2j , (2)

where the index τM highlights its dependence on the chosen grid.
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Theoretical Background and Related Literature Existing Price Models

Standard Diffusion Setting

Figure: Snippet of the IBM transaction log-price on July 2nd, 2015.

09:30 09:31 09:32 09:33 09:34 09:35

5.08

5.085

5.09

P (t) solves the stochastic differential equation

dP (t) = µ (t) dt + σ (t) dB (t) , t ∈ [0,T ], (3)

where µ (t) is of finite variation and Ft-predictable, σ (t) is spot variance,

Ft-predictable, is independent of B (t) and E
[ ∫ t

0
σ2 (r) dr

]
< ∞.

The integrated variance (IV) over [0,T ]:

IV (0,T ) :=

∫ T

0

σ2
spot (r) dr =

∫ T

0

σ2 (r) dr .

RV is a consistent and asymptotically normal estimator of IV.
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Theoretical Background and Related Literature Existing Price Models

Compound Poisson process

Figure: Snippet of the IBM transaction log-price on July 2nd, 2015.

09:30 09:31 09:32 09:33 09:34 09:35

5.08

5.085

5.09

Oomen (2005, 2006): P(t) follows a compound Poisson process (CPP) given
by

P (t) = P (0) +

N(t)∑
i=1

εi , (4)

εi
iid∼ N

(
0, σ2

ε

)
, (5)

where N (t) is a doubly stochastic Poisson process with stochastic intensity
λ (t), and N (t) and εi are independent.

IV (0,T ) :=

∫ T

0

σ2
spot (r) dr =

∫ T

0

σ2
ελ (r) dr
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Tick-Time Stochastic Volatility Model

Tick-Time Stochastic Volatility (TTSV) Model

: Figure: Snippet of the IBM transaction log-price on July 2nd, 2015.

09:30 09:31 09:32 09:33 09:34 09:35 . . . . . 15:55 15:56 15:57 15:58 15:59 16:00

5.08

5.085

5.09

Our model: The log-price process P (t) follows

P (t) = P (0) +

N(t)∑
i=1

ς(ti )Ui (6)

• N (t) is a general jump process with stochastic intensity λ (t) and
stochastic arrival times ti , i = 1, . . . ,N; N(t) = i for t ∈ [ti , ti+1).

• Conditionally that an arrival ti has occurred,

Ui = B(N(ti )− B(N(ti−1)), i.e. Ui
iid∼ N (0, 1)
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Tick-Time Stochastic Volatility Model

TTSV: N(t) and P(t)

P(t)

N(t)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10τ0 τ1 τ2 τ3

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10τ0 τ1 τ2 τ3

2.5

5.0

7.5

10.0

5.1550

5.1555

5.1560

5.1565

5.1570

Time

V
al

ue

Figure: Upper panel: evolution of the jump process N(t) generating the ticks (arrival times) ti . Lower
panel: the log-price process P(t), which exhibits price jumps at the ticks ti of N(t) and is constant in

between. Vertical red lines represent the sampling times of an exemplary sampling scheme τT (that
does not have to be equidistant in calendar time), and the red squares show the resampled prices based
on the previous tick method.
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Tick-Time Stochastic Volatility Model

Some Assumptions

Assumptions 1:

▶ The filtration Ft := σ
(
Z1(s), . . . ,Zm(s); 0 ≤ s ≤ t

)
is generated by a fixed number

m ∈ N of given stochastic factors Z1(t), . . . ,Zm(t) that govern the randomness of
the price processes.

▶ The counting process {N(t)}t≥0 is an Ft -adapted jump process, which has an
Ft -predictable intensity process {λ(t)}t≥0 that is left-continuous with right-hand

limits and
∫ t
0 λ(s)ds < ∞ a.s. for all t ≥ 0.

▶ {B(n)}n≥0 is a Brownian motion such that B(N(t)) is adapted to Ft .

▶ The tick volatility {ς(t)}t≥0 is a positive, continuous and Ft -predictable process.

Assumptions 2:

▶ The process {B(n)}n≥0 is independent from {N(t)}t≥0 and from {ς(t)}t≥0.

Assumptions 3:

▶ The expectations E
[ ∫ T

t ς2(r)λ(r)dr | Ft
]
, E

[
ς4 (t)

]
and E

[ ∫ t
0 ς4 (r)λ (r) dr

]
exist

and are finite for all t ∈ [0,T ].

Assumptions 4:

▶ The counting process {N(t)}t≥0 is a doubly stochastic Poisson process, adapted to
Ft , which has a positive, Ft -measurable and continuous intensity {λ(t)}t≥0 such

that
∫ t
0 λ(s)ds < ∞ a.s. for all t ≥ 0;

▶ The processes {N(t)}t≥0 and {ς(t)}t≥0 are independent.
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Tick-Time Stochastic Volatility Model

TTSV Model

The TTSV model can be written as:

dP (t) = ς (t) dB (N (t)) , t ∈ [0,T ], (7)

• We show that
σ2
spot (t) = ς2 (t)λ (t+) ,

where λ(t+) := limδ↘0 λ(t + δ);

• For continuous intensities λ(t), the decomposition simplifies to
σ2(t) = ς2(t)λ(t).

• It holds that

E
[
r2daily − IV (0,T )

]
= 0.

• We get

IV(0,T ) =

∫ T

0

σ2
spot (r) dr =

∫ T

0

ς2 (r)λ (r) dr .
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Theoretical results Efficient sampling with a finite frequency

A new concept of IV and unbiasedness results

▶ Define the following two information sets for t ∈ [0,T ],

Fλ,ς
t := σ

(
λ(s), ς(s); 0 ≤ s ≤ t

)
⊂ Ft , and

Fλ,ς,N
t := σ

(
λ(s), ς(s),N(s); 0 ≤ s ≤ t

)
⊂ Ft ,

▶ Define the realized IV (rIV) as

rIV(0,T ) :=
∫ T

0
ς2(r)dN(r) =

∑
0≤ti≤T ς2(ti ) that can be interpreted

as a jump-process based and hence “realized” version of the classical IV.

Theorem 1 (Unbiasedness)

(a) Under Assumptions 1-3, it holds that E
[
RV(τT )

∣∣∣ Fλ,ς,N
T

]
= rIV(0,T ).

(b) Under Assumptions 1-4, it holds that E
[
RV(τT )

∣∣∣ Fλ,ς
T

]
= IV(0,T ).
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Theoretical results Efficient sampling with a finite frequency

Efficiency Results I

Theorem 2 (Efficiency)
(a) Under Assumptions 1–3 it holds that

E
[(

RV(τT )− IV(0,T )
)2 ∣∣∣ Fλ,ς,N

T

]
=

(
rIV(0,T )− IV(0,T )

)2
+ 2

M(T )∑
j=1

rIV(τT
j−1, τ

T
j )2

.

(b) Under Assumptions 1–4 it holds that

E
[(

RV(τT )− IV(0,T )
)2 ∣∣∣ Fλ,ς

T

]
= 3 IQ(0,T ) + 2

M(T )∑
j=1

IV(τT
j−1, τ

T
j )2,

where IQ(s, t) :=
∫ t

s
ς4(r)λ(r)dr denotes the Integrated Quarticity of the TTSV

model.

▶ MSE is bounded below and depends on the choice of sampling scheme τT
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Theoretical results Efficient sampling with a finite frequency

Sampling Schemes τT

▶ Calendar Time Sampling (CTS): the sampling times are equidistant in
calendar time.

▶ Intensity Transaction Time Sampling (iTTS): data sampled equidistantly in
the integrated (latent) trading intensity. It is Fλ,ς

T -measurable.

▶ Realized Transaction Time Sampling (rTTS): data sampled equidistantly in
the observed number of transactions. It is Fλ,ς,N

T -measurable.

▶ Intensity Business Time Sampling (iBTS): data sampled equidistantly in
integrated (latent) spot variance. It is Fλ,ς

T -measurable and incorporates the
tick variance and the trading intensity, both latent.

▶ Realized Business Time Sampling (rBTS): data sampled equidistantly in
the observed number of transactions weighted by their tick variance. It is a
Fλ,ς,N

T -measurable extension of iBTS when accounting for the sample path of
N(t).
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Theoretical results Efficient sampling with a finite frequency

Sampling Schemes τT

rBTS     

rTTS     

CTS     

10:00 11:00 12:00 13:00 14:00 15:00 16:00

172.5

173.0

173.5

174.0

172.5

173.0

173.5

174.0

172.5

173.0

173.5

174.0

Time

P
ric

e

Sampling Scheme     CTS     rTTS     rBTS     

Figure: BM log-price on May, 1st, 2015 together with the CTS, TTS and BTS sampling schemes based
on M = 26, i.e., corresponding to intrinsic time 15 minute returns.
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Theoretical results Efficient sampling with a finite frequency

Efficiency Results II

Corollary 3

(a) Under Assumptions 1–3 and given that the sampling times τT are Fλ,ς,N
T -

measurable,

E
[(

RV(τT )− IV(0,T )
)2 ∣∣∣ Fλ,ς,N

T

]
≥ E

[(
RV(τ rBTS)− IV(0,T )

)2 ∣∣∣ Fλ,ς,N
T

]
,

with equality if and only if τT ≡ τ rBTS.

(b) Under Assumptions 1–4 and given that the sampling times τT are Fλ,ς
T -

measurable,

E
[(

RV(τT )− IV(0,T )
)2 ∣∣∣ Fλ,ς

T

]
≥ E

[(
RV(τ iBTS)− IV(0,T )

)2 ∣∣∣ Fλ,ς
T

]
,

with equality if and only if τT ≡ τ iBTS.

17 / 36



Asymptotic results and MMN

Asymptotic results for jump-based sampling without MMN

▶ In-fill asymptotic as in diffusion models is not possible within
TTSV, as the amount of observed ticks on the fixed interval
[0,T ] is bounded in probability.

▶ Our asymptotic is based on increasing the number of ticks by
letting T diverge to ∞ (Dahlhaus, 1997; Dahlhaus and
Tunyavetchakit, 2016).

▶ To allow for jump-based sampling, we make assumptions related
to Fukasawa (2010) and Mykland and Zhang (2006).
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Asymptotic results and MMN

Asymptotic results for jump-based sampling without MMN

Theorem 4
Under the following assumptions

▶ E
[
τT
j − τT

j−1 | FT
τT
j−1

]
=

(
f ϕ

(
τT
j−1

T

))−1

+ op(1) uniformly in j ∈

{1, . . . ,M(T )} for some integrable sampling intensity function ϕ : [0, 1] → R>0

such that
∫ 1

0
ϕ(s)ds = 1,

▶ Var
[
NT (τ

T
j ) − NT (τ

T
j−1) | FT

τT
j−1

]
= µ

(
τT
j−1

T

)
E
[
τT
j − τT

j−1 | FT
τT
j−1

]
+ op(1)

uniformly in j ∈ {1, . . . ,M(T )} for some integrable function µ : [0, 1] → R>0

and some further technical assumptions, it holds that

√
T
(
RV(τT )− IV

) d−→ N
(
0,Vϕ + Vµ + IQ

)
,

where

Vϕ =
2

f

∫ 1

0

ς4(r)λ2(r)

ϕ(r)
dr ,Vµ = 2

∫ 1

0

ς4(r)µ(r)dr ,

IQ =

∫ 1

0

ς4(r)λ(r)dr , f = plimT→∞
M(T )

T
> 0.
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Asymptotic results and MMN

▶ CTS, iTTS, iBTS, rTTS satisfy the assumptions

▶ Conjecture: rBTS also satisfies the assumptions and it minimizes
the asymptotic variance.
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Asymptotic results and MMN

Market Microstructure Noise (MMN)

We observe P̃ (t) which follows the decomposition

P̃T (τ
T
j ) = PT (τ

T
j ) + vT

j , j = 1, . . . ,M(T ), (8)

and the corresponding noisy log-returns are given by

r̃j,T = P̃T (τ
T
j )− P̃T (τ

T
j−1) = rj,T + vT

j − vT
j−1.

where

• PT (·) is the true, efficient price that follows the TTSV model

• vT
j is the noise component s.t.

(a) is i.i.d. with E[vT
j ] = 0, Var(vT

j ) = ω2 and E
[
(vT

j )4
]
= θω4 for all

j ∈ {0, ..,M(T )} and T ∈ N,
(b) The sequences vT

j and PT (τ
T
j ) are independent for all j ∈ {0, ..,M(T )}

and T ∈ N,
(c) vT

j is FT
τT
j
-measurable for all j ∈ {0, ..,M(T )} and T ∈ N.

▶ To deal with MMN, we implement the pre-averaged RV estimator of Podolskij
and Vetter (2009)
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Asymptotic results and MMN

Asymptotic results for intensity-based sampling with MMN

Theorem 5
Given that the price process is contaminated by MMN, that the sampling times τT

are intensity-based, and that the pre-averaging bandwidth H = δ
√
T , it holds that

T 1/4(RV(τT )− IV
) d−→ N

(
0, δη2

A +
1

δ
η2
B +

1

δ3
η2
C

)
,

with

η2
A =

2

f

∫ 1

0

ς4(r)λ2(r)

ϕ(r)
dr , η2

B = 4
g ′
2

g2
ω2

∫ 1

0

ς2(r)λ(r)dr , and η2
C = 2f

(
g ′
2

g2

)2

ω4.

(9)

▶ The iBTS scheme minimizes the asymptotic variance
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Simulation Study Design

Simulated tick intensity λ(t) Simulated tick variance ς2(t)
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Figure: Simulated paths of the asset price according to TTSV model, the spot variance σ2(t), the

trading intensity λ(t), and the tick variance ς2(t) for three exemplary days in colors. Simulate
D = 5000 days from the TTSV model using T = 23400.

λ(t) = λdet(t) exp
(
0.01λ∗(t) − λ̄

∗)
, where dλ∗ (t) = −0.0002λ∗(t)dt + dB1(t),

ς(t) = ςdet(t) exp
(
0.005ς∗(t) − ς̄

∗)
, where dς∗ (t) = −0.0002ς∗(t)dt + dB2(t),
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Simulation Study Bias Results
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Simulation Study MSE Results RV
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Simulation Study MSE Results RV vs pre-averaged RV
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Simulation Study MSE Results RV vs pre-averaged RV: under leverage effects
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Real Data Application Data

Data

▶ 27 liquid stocks traded at the NYSE

▶ Data from January 01, 2001 and March 31, 2019

▶ For RV, M ∈ {13, 26, 39, 78, 260, 390}
▶ For pre-averaged RV, M ∈ {78, 260, 390, 780, 2340, 4680}
▶ Evaluate RV estimates against a standard 5-minute CTS RV

(Patton, 2011)
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In-sample Results for RV Significant relative RMSE improvement
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In-sample Results for RV Significant relative QLIKE improvement
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In-sample Results for pre-averaged RV Significant relative RMSE improvement
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In-sample Results for pre-averaged RV Significant relative QLIKE improvement
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Out-of-sample Results

MSE QLIKE

Evaluation target Sampling avg. rk. avg. winning avg. rk. avg. winning

(a) RV CTS M = 78

rBTS 1.92 0.30 0.53 1.48 0.18 0.74
iBTS 3.32 0.41 0.09 2.70 0.19 0.10
rTTS 2.52 0.31 0.20 2.58 0.18 0.10
iTTS 3.44 0.43 0.08 3.80 0.19 0.02
CTS 3.81 0.49 0.10 4.44 0.21 0.04

(b) Squared return

rBTS 2.18 1.25 0.42 1.87 1.44 0.52
iBTS 3.48 1.36 0.09 3.30 1.46 0.06
rTTS 2.37 1.26 0.29 2.25 1.45 0.29
iTTS 3.38 1.38 0.07 3.44 1.45 0.06
CTS 3.59 1.44 0.12 4.14 1.47 0.06

(c) Individual estimator

rBTS 2.90 0.26 0.30 1.57 0.18 0.64
iBTS 3.20 0.38 0.16 1.98 0.19 0.33
rTTS 3.04 0.28 0.13 3.24 0.19 0.01
iTTS 2.96 0.41 0.08 3.55 0.20 0.02
CTS 2.90 0.48 0.33 4.65 0.22 0.01
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Sum-Up

Conclusion

• Exploit HF data from intrinsic time perspective to improve the
estimation of daily variance.

• Show theoretically that (r)BTS provides the best RV estimates

• General price model: time-changed diffusion model

• Allow to disentangle theoretically between intraday different
patterns

• Brings together two strands of literature: duration models and
stochastic volatility

• (r)BTS: best RV in simulations and real data
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Sum-Up

Model Extensions

• Relaxation of independence assumptions of TTSV.

• Possibility of modelling λ(t) to explicitly account for trade
clustering (e.g. by self-exciting time-varying Hawkes process).

• Application to broader sets of asset classes and markets.
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Thank you for your attention!
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