You're the one that I want! Understanding the over-representation of women in the public sector

Pedro Gomes, Zoë Kuehn

Birkbeck, University of London, Universidad Autónoma de Madrid

EEA Meetings-Rotterdam

August 27th, 2024

Public employment is more important for women

Source: OECD (2015); this data does not include the US; 56 percent of US public sector workers are women compared to 48 of workers, see Hammouya (1999).

Public employment is more important for women

Source: OECD (2015); this data does not include the US; 56 percent of US public sector workers are women compared to 48 of workers, see Hammouya (1999).

 \rightarrow Robust to measurement, over time, age, education, industries, occupations.

1 an intrinsic preference for public sector occupations;

- 1 an intrinsic preference for public sector occupations;
- 2 lower gender wage gaps;

- 1 an intrinsic preference for public sector occupations;
- lower gender wage gaps;
- Better work-life balance;

- 1 an intrinsic preference for public sector occupations;
- lower gender wage gaps;
- 3 better work-life balance;
- 4 higher job-security.

Lower gender wage gaps in the public sector

 $log(y_i^a) = \beta_0 + \beta_1 f + \beta_2 X_i + \beta_3 m \times pub + \beta_4 f \times pub + \beta_5 C_i + d_r + d_y + \epsilon_i$

Note: CPS for 1996-2018, Structure of Earnings Survey from 2002, 2006, 2010, and 2014. 🗇 🕨 + 🚊 🕨 + 🚊 👘 - 🚊 👘 - 🚖 - 🖉 - <

Lower gender wage gaps in the public sector

 $log(y_i^a) = \beta_0 + \beta_1 f + \beta_2 X_i + \beta_3 m \times pub + \beta_4 f \times pub + \beta_5 C_i + d_r + d_y + \epsilon_i$

	ι	JS	Sp	ain
	(1)	(2)	(1)	(2)
Public-sector wage	e premium			
Men	-0.0198***	-0.0289***	0.0015	0.0082***
	(-6.26)	(-9.48)	(0.62)	(3.68)
Women	0.0547***	0.0530***	0.0688***	0.0732***
	(19.67)	(18.63)	(28.65)	(32.43)
Gender wage gap				
Private	-0.2888***	-0.2861***	-0.2145***	-0.2472***
	(-158.68)	(-156.20)	(-163.18)	(-196.78)
Controls				
Age	Х	Х	Х	Х
Education	Х	Х	Х	Х
Reg., year	Х	Х	Х	Х
Tenure ²			Х	Х
Occupat.	Х	Х	Х	Х
Part time dummy	Х		Х	
Only fll time wkr		Х		Х
Obs.	1,037,822	796,920	876,274	747,228
R-squared	0.5090	0.3975	0.5989	0.5383

Note: CPS for 1996-2018, Structure of Earnings Survey from 2002, 2006, 2010, and 2014. 🗇 🕨 4 🚊 🕨 4 🚊 🕨 4 🗮 🖉 🔍 🔍

Fewer annual working hours in the public sector

 $log(hours_i) = \alpha_0 + \alpha_1 f + \alpha_2 X_i + \alpha_3 pub + \alpha_4 C_i + d_r + d_y + \epsilon_i$

Note: CPS for 1996-2018, Structure of Earnings Survey from 2002, 2006, 2010, and 2014

<=> <=> <=> == <0 < ○<

Fewer annual working hours in the public sector

$$log(hours_i) = \alpha_0 + \alpha_1 f + \alpha_2 X_i + \alpha_3 pub + \alpha_4 C_i + d_r + d_y + \epsilon_i$$

	ι	JS	Spain				
	(1)	(2)	(1)	(2)			
Panel B: hours regressions							
Public sector hours	s premium						
Public	-0.0109***	-0.0286***	-0.0419***	-0.0365***			
	(-10.15)	(-37.00)	(-38.11)	(-74.59)			
Controls							
Age	Х	Х	Х	Х			
Education	Х	Х	Х	Х			
Reg., year	Х	Х	Х	Х			
Tenure ²			Х	Х			
Occupat.	Х	Х	Х	Х			
Part time dummy	Х		Х				
Only fll time wkr		Х		Х			
-							
Obs.	1,008,225	777,538	876,274	747,228			
R-squared	0.3799	0.0685	0.5478	0.3031			

Note: CPS for 1996-2018, Structure of Earnings Survey from 2002, 2006, 2010, and 2014

Hazard rates by sector and gender						
	US				Spain	
	All	Men	Women	All	Men	Women
P ightarrow U	0.015	0.016	0.012	0.043	0.042	0.044
$P \rightarrow I$	0.023	0.019	0.027	0.033	0.025	0.045
$G \rightarrow U$	0.007	0.006	0.008	0.022	0.020	0.023
$G \rightarrow I$	0.018	0.015	0.020	0.024	0.019	0.027

Conditional probabilities

- *P* = Private sector
- *G* = Public sector

- 1 Lower gender wage gaps for women:
 - Public-sector wage premium by gender

ъ.

- 1 Lower gender wage gaps for women:
 - Public-sector wage premium by gender
- 2 Better work-life balance:
 - Public sector hours discount

ヨトィヨト

- 1 Lower gender wage gaps for women:
 - Public-sector wage premium by gender
- 2 Better work-life balance:
 - Public sector hours discount
- **3** Job security:
 - Flows from public (private) employment to unemployment

- 1 Lower gender wage gaps for women:
 - Public-sector wage premium by gender
- 2 Better work-life balance:
 - Public sector hours discount
- **3** Job security:
 - Flows from public (private) employment to unemployment
- 4 Preferences:
 - Residual needed to explain female over-representation.

Model: General setting

- Search and matching model with .
 - Men and women j = [m, f].
 - Private and public sector i = [g, p],
- Continuous time.
- Risk neutral agents with discount rate r > 0.

Model: General setting

- Search and matching model with .
 - Men and women j = [m, f].
 - Private and public sector i = [g, p],
- Continuous time.
- Risk neutral agents with discount rate r > 0.
- At each instant, au individuals die and a new generation is born.
- Draw a preference for public sector ϵ_j , distributed $\Xi^j(\cdot)$ on $[-\infty,\infty]$.
 - Join the public-sector labor market if ϵ is high enough.
 - Join the private sector otherwise.
- In each market, people can be employed (e) or non-employed (ne).

- At rate λ , they draw x, value of home production
 - Men draw from $F_m(\cdot)$,
 - Women draw from $F_f(\cdot)$ [different by gender].
- Flow utilities:

$$\begin{aligned} \mathbf{v}_{i,j}^{E} &= (1 - \xi_i) \mathbf{x} + \mathbf{w}_{i,j}, \\ \mathbf{v}_{i,j}^{NE} &= \mathbf{x}, \end{aligned}$$

• Time costs of work ξ_i [different across sectors].

ヨトイヨト

$$(r+\tau+\lambda)E_{i,j} = v_{i,j}^{E} + \delta_{i}[NE_{i,j} - E_{i,j}] + \lambda \int_{0}^{\infty} \max(E_{i,j}(x'), NE_{i,j}(x'))dF_{j}(x')$$

$$(r+\tau+\lambda)NE_{i,j} = v_{i,j}^{NE} + m(\theta_i)[\max(E_{i,j}, NE_{i,j}) - NE_{i,j}] + \lambda \int_0^\infty NE_{i,j}(x')dF_j(x')$$

• Exogenous separations at rate δ_i [different across sectors].

ъ

Decision Threshold

Decision of newborn - Segmented markets

Closing the model

- Private sector:
 - Male wage: $w_m = \beta y$
 - Value of a job same for male and female workers: $J_m = J_f$
 - Endogenous gender wage gap: Women are more likely to quit.
 - To target observed gap: Assume a "wedge" on women's wages
 - Free-entry condition pins down θ_p and hence $m(\theta_p) = \zeta \theta_p^{\eta}$.

A = A = A = A = A
 A = A
 A

Closing the model

- Private sector:
 - Male wage: $w_m = \beta y$
 - Value of a job same for male and female workers: $J_m = J_f$
 - Endogenous gender wage gap: Women are more likely to quit.
 - To target observed gap: Assume a "wedge" on women's wages
 - Free-entry condition pins down θ_p and hence $m(\theta_p) = \zeta \theta_p^{\eta}$.
- Government:
 - Employs \bar{e}^g workers, pays an exogenous premia
 - Hires workers to compensate for the ones who retire, or separate into unemployment or inactivity.
 - Does not react to market tightness.

A = A = A = A = A
 A = A
 A

Closing the model

- Private sector:
 - Male wage: $w_m = \beta y$
 - Value of a job same for male and female workers: $J_m = J_f$
 - Endogenous gender wage gap: Women are more likely to quit.
 - To target observed gap: Assume a "wedge" on women's wages
 - Free-entry condition pins down θ_p and hence $m(\theta_p) = \zeta \theta_p^{\eta}$.
- Government:
 - Employs \(\bar{e}^g\) workers, pays an exogenous premia
 - Hires workers to compensate for the ones who retire, or separate into unemployment or inactivity.
 - Does not react to market tightness.
- Initial choice of sector:
 - Comparing expected values of inactivity and unemployment in the private and the public sector, including preferences ε_i:

$$= \max\left\{ (1 - F_j(\hat{x}_{p,j}))I_{p,j} + F_j(\hat{x}_{p,j})U_{p,j}; (1 - F_j(\hat{x}_{g,j}))I_{g,j} + F_j(\hat{x}_{g,j})U_{g,j} + \epsilon_j \right\}$$

白 ト イヨト イヨト ヨヨ ろくの

Equilibrium & Flows

Summarizing the model

Differences between men and women:

- Value of home production: $F_j(\cdot)$,
- Preference for sector: $\Xi^{j}(\cdot)$,
- Wedge on female wages: α .

ъ.

Summarizing the model

Differences between men and women:

- Value of home production: $F_j(\cdot)$,
- Preference for sector: $\Xi^{j}(\cdot)$,
- Wedge on female wages: α .

Differences between sectors:

- Time cost: ξ_i ,
- Exogenous separation rate: δ_i ,
- Wages: w_{i,m}, w_{i,f},
- Job creation: *P* responds to tightness; *G* does not.

Summarizing the model

Differences between men and women:

- Value of home production: $F_j(\cdot)$,
- Preference for sector: $\Xi^{j}(\cdot)$,
- Wedge on female wages: α .

Differences between sectors:

- Time cost: ξ_i ,
- Exogenous separation rate: δ_i ,
- Wages: w_{i,m}, w_{i,f},
- Job creation: *P* responds to tightness; *G* does not.

Interaction P & G: Public-sector employment and wages affect:

- \rightarrow expected values for searching in the public sector.
- \rightarrow decision to join each sector.
- \rightarrow tightness and job creation in the private sector.

Mechanisms behind over-representation

- Lower gender wage gap public sector, higher premium π_f
 - Value for women's employment in public sector increases.
 - On the margin, men prefer a "less crowded" private sector.
 - Magnitude of effect depends on preference distribution.

= 200

- Better conciliation, less working time (lower ξ_g)
 - Value for employment in public sector increases for both genders.
 - If women have on average higher opportunity costs of working, effect will be stronger for them.
 - Again, in that case men would prefer a "less crowded" private sector.

= 900

- Higher job security, lower job separation rate δ_g
 - Value for employment and non-employment in public sector increases.
 - If women have higher opportunity costs of working and lower wages, might benefit less from safer jobs.
 - In that case, women might prefer "less crowded" private sector.

Different preferences

• Different means affect gender composition across sectors on top of job characteristics; variance determines magnitude of crowding out effect.

JI NOC

- France, UK, Spain, US separately.
- Fix 11 parameters.
- Calibrate 9 parameters.
- 9 targets

-

Drivers for women's over-representation

		No sector	No	No	No job	No
	Benchmark	differences	wage	hours	security	sector
		no preference	difference	diff.	diff	diff.
		differences				
		$\pi_i = 1$	$\pi_i = 1$			$\pi_j = 1$
		$\xi_g = \xi_p$		$\xi_g = \xi_P$		$\xi_g = \xi_P$
		$\delta_g = \delta_p$			$\delta_g = \delta_p$	$\delta_g = \delta_\rho$
		$\overline{\epsilon}_f = \overline{\epsilon}_m$				
Public-sector	employment	shares ratio				
US	1.36	0.99	1.15(57.1%)	1.35(1.9%)	1.36(-1.2%)	1.16(56.4%)
UK	1.86	1.00	1.86(-0.9%)	1.83(2.4%)	1.87(-1.3%)	1.87(-2.3%)
FR	1.59	1.01	1.53(10.5%)	1.55(6.9%)	1.60(-2.2%)	1.48(18.3%)
ES	1.56	0.93	1.33(40.1%)	1.52(6.7%)	1.58(-4.2%)	1.33(41.2%)
US						
College	1.41	0.89	0.90(124.6%)	1.45(-9.6%)	1.41(-0.8%)	1.02(96.2%)
Non-college	1.19	1.00	1.19(2.3%)	1.19(1.6%)	1.19(-1.6%)	1.19(2.1%)

Alternative decomposition: 🕒

∃ ▶ ∢

-

Work life balance and job-security premia

Percentage of wage private sector workers would sacrifice for public sector hours

Country	$[\xi_P = \xi_g]$				
	Women	Men			
US	0.84	0.81			
UK	1.46	0.93			
France	3.52	2.82			
Spain	2.23	1.78			

Work life balance and job-security premia

Percentage of wage private sector workers would sacrifice for public sector hours

Country	$[\xi_{P}=\xi_{g}]$				
	Women	Men			
US	0.84	0.81			
UK	1.46	0.93			
France	3.52	2.82			
Spain	2.23	1.78			

Percentage of wage private sector workers would sacrifice for public sector separation rates

Country	$[\delta_p = \delta_g]$				
	Women	Men			
US	0.98	1.02			
UK	0.92	1.17			
France	1.43	1.66			
Spain	2.88	3.39			

Effects of public-sector policies for Spain

Policy	Spain
Increase of wages by 1 percent	-
Δ unemployment rate male	0.07 pp.
Δ unemployment rate female	0.15 pp.
Δ inactivity rate male	-0.06 pp.
Δ inactivity rate female	-0.09 pp.
Δ aggregate wage gap	-0.05 pp.
Increase of employment by 1 p	ercent
Δ unemployment rate male	-0.03 pp.
Δ unemployment rate female	-0.06 pp.
Δ inactivity rate male	0.01 pp.
Δ inactivity rate female	0.01 pp.
Δ aggregate wage gap	-0.01 pp.

Other countries

∃ ► < ∃ ►</p>

-

1 Selection of women into the public sector is driven by:

- an intrinsic preference for public-sector occupations (mainly in the UK).
- lower gender wage gaps (57% in US, 40% Spain, 11% in France);
- better work-life balance (7% in France and Spain);
- no role for job security;
- stark differences across educational groups.

A = A = A = A = A
 A = A
 A

1 Selection of women into the public sector is driven by:

- an intrinsic preference for public-sector occupations (mainly in the UK).
- lower gender wage gaps (57% in US, 40% Spain, 11% in France);
- better work-life balance (7% in France and Spain);
- no role for job security;
- stark differences across educational groups.
- 2 Monetary value of
 - the public-sector job-security premia is 1 to 4 percent higher for men;
 - the public-sector work-life balance premia is 1 to 4 percent higher for women.

1 Selection of women into the public sector is driven by:

- an intrinsic preference for public-sector occupations (mainly in the UK).
- lower gender wage gaps (57% in US, 40% Spain, 11% in France);
- better work-life balance (7% in France and Spain);
- no role for job security;
- stark differences across educational groups.
- 2 Monetary value of
 - the public-sector job-security premia is 1 to 4 percent higher for men;
 - the public-sector work-life balance premia is 1 to 4 percent higher for women.

1 Selection of women into the public sector is driven by:

- an intrinsic preference for public-sector occupations (mainly in the UK).
- lower gender wage gaps (57% in US, 40% Spain, 11% in France);
- better work-life balance (7% in France and Spain);
- no role for job security;
- stark differences across educational groups.
- 2 Monetary value of
 - the public-sector job-security premia is 1 to 4 percent higher for men;
 - the public-sector work-life balance premia is 1 to 4 percent higher for women.
- Olicies regarding public sector wages and employment affect women's unemployment 2-3 times as much as men's.

Gender bias in public employment

.. is robust to measurement

・ 「 ト ・ ヨ ト ・ ヨ ト

EL OQA

	Public sector	Private sector	Total
Women	$e_{g,f}$	e _{p,f}	ef
Men	$e_{g,m}$	$e_{p,m}$	e _m
Total	eg	ep	е

Note: Government (g), private (p), women (f), men (m).

Two statistics:

- Ratio of public employment share: $rg = \frac{\frac{e_{g,f}}{e_f}}{\frac{e_{g,m}}{e_m}}$,
- Ratio of women employment shares : $rf = \frac{\frac{e_{g,f}}{e_g}}{\frac{e_{p,f}}{e_{p,f}}}$,

Gender bias in public employment

... across industries and occupations...

Note: French, UK Labour Force Surveys, CPS. For occupations: CPS data, average between 1996 and 2017. 3-digit occupations that have an overall share of public-sector employment between 0.05 and 0.95.

• • = • • = •

E SQC

Public-sector employment by gender over time

Gomes and Kuehn

Public-sector employment by gender, different age groups

Public-sector employment by gender and regions

Note: French, Spanish, and UK Labour Force Surveys and CPS (2003-2018).

▲ 문 ▶ < 문 ▶ 로 범 = </p>

Public-sector employment by gender, educational groups

Note: For the United States the data is taken from the CPS (2003-2018), for the United Force Survey (2003-2018), for France from the French Labour Force Survey (2003-2017) a Labour Force Survey (2003-2018).

Conditional job-separations: US and Spain

* 3 > < 3</p>

EL OQO

Multinomial logit model: estimate the probabilities of transitioning out of employment conditional on observable characteristics.

$$\lambda_{i}^{U} = \frac{\exp(x_{i}\beta_{U})}{1 + \exp(x_{i}\beta_{U}) + \exp(x_{i}\beta_{I})},$$
(1)
$$\lambda_{i}^{I} = \frac{\exp(x_{i}\beta_{I})}{1 + \exp(x_{i}\beta_{U}) + \exp(x_{i}\beta_{I})},$$
(2)

 x_i includes age, age squared, and dummies for education, region, year, public sector, occupation, age between 60-64, gender and gender dummies interacted with being employed in the public sector.

► < = ► < = ► < = = <0 </p>

Steady-state equilibrium

A set of thresholds $\{\bar{e}_f, \bar{e}_m, \hat{x}_{g,m}, \hat{x}_{p,m}, \hat{x}_{g,f}, \hat{x}_{p,f}\}$, job-finding probabilities $\{m(\theta_p), p_g\}$, stocks of inactive $\{i_{p,m}, i_{p,f}, i_{g,m}, i_{g,f}\}$, unemployed $\{u_{p,m}, u_{p,f}, u_{g,m}, u_{g,f}\}$, employed $\{e_{p,m}, e_{p,f}, e_{g,m}, e_{g,f}\}$, and private and public sector wages $\{w_{p,f}, w_{g,f}, w_{p,m}, w_{g,m}\}$, such that, $\{\pi_m, \pi_f, \bar{e}_g\}$ and an exogenous "wedge" for female private sector wages $\{\alpha\}$:

- Private sector firms satisfy the free-entry condition.
- **2** Male private sector wages are a constant fraction of workers' productivity.
- **3** Female private sector wages prior to applying a "wedge" are such that the value of a job for a firm is the same when hiring a man or a woman.
- 4 Newborns decide optimally which sector to join.
- **5** Workers decide optimally the threshold values of *x* for quitting their job or to stop searching.
- **6** Worker flows in and out of the four stocks are constant.
- 7 The total population adds up to 1 (0.5 men, 0.5, women):

•
$$\frac{1}{2}(1-\Xi_m(\bar{\epsilon}_m)) = i_{g,m} + u_{g,m} + e_{g,m}^a + e_{g,m}^{na}$$

•
$$\frac{1}{2} \equiv_m(\bar{e}_m)) = i_{p,m} + u_{p,m} + e^a_{p,m} + e^{na}_{p,m}$$

•
$$\frac{1}{2}(1-\Xi_f(\bar{\epsilon}_f)) = i_{g,f} + u_{g,f} + e_{g,f}^a + e_{g,f}^{na}$$

•
$$\frac{1}{2} \Xi_f(\bar{\epsilon}_f)) = i_{p,f} + u_{p,f} + e^a_{p,f} + e^{na}_{p,f}$$
.

▲御▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

 $\begin{array}{l} \textbf{Exits} \\ i_{i,j}(\lambda F_j(\hat{x}_{i,j}) + \tau) \\ u_{i,j}(\lambda(1 - F_j(\hat{x}_{i,j})) + \tau + m(\theta_i)) \\ e_{i,j}(\lambda(1 - F_j(\hat{x}_{i,j})) + \tau + \delta_i) \end{array} \\ \hline \textbf{Entries} \\ \lambda(1 - F_j(\hat{x}_{i,j}))[e_{i,j} + u_{i,j}] + \tau(1 - F_j(\hat{x}_{i,j})) \\ \delta_i e_{i,j} + \lambda F_j(\hat{x}_{i,j}) i_{i,j} + \tau F_j(\hat{x}_{i,j}) \\ m(\theta_i) u_{i,j} \end{array}$

Return

Labor market - agent j

▲ Return

▷ ▲ 문 ▶ ▲ 문 ▶ 문 문 ● 외익()

	US (monthly)	UK (qt)	France (qt)	Spain (qt)
Parameters set exogenously				
Discounting				
Interest rate (r)	0.004	0.012	0.012	0.012
Death rate (τ)	0.002	0.006	0.006	0.006
Public sector policies				
Wage premium (men) (π_m)	0.971	1.049	0.897	1.008
Wage premium (women) (π_f)	1.053	1.062	0.905	1.073
Employment (e_g)	0.120	0.170	0.137	0.074
Labor market parameters				
Matching efficiency (ζ)	1	1	1	1
Matching elasticity (η)	0.5	0.5	0.5	0.5
Time cost of labor force				
Private (ξ_p)	1	1	1	1
Public (ξ_g)	0.971	0.964	0.915	0.944
Arrival rate of shocks				
Job separation - private $(\delta_{ ho})$	0.018	0.019	0.021	0.055
Job separation - public (δ_{g})	0.009	0.007	0.008	0.027

ъ.

	US (monthly)	UK (qt)	France (qt)	Spain (qt)
Calibrated parameters				
Labor market parameters				
Bargaining power of men (β)	0.925	0.968	0.964	0.940
Cost of posting vacancies (κ)	3.158	0.914	1.398	1.411
"Wedge" female-male wage prv. sector (α)	0.270	0.201	0.177	0.237
Outside option distribution: Exponential				
Mean - men $(\mu_{x,m})$	0.632	0.570	0.743	0.681
Mean - women $(\mu_{x,f})$	0.694	0.906	0.927	0.873
Arrival rate of shocks				
Outside option (λ)	0.081	0.079	0.065	0.106
Preference distribution: Normal				
Mean - men $(\tilde{\epsilon}_m)$	-85.792	-49.673	-9.959	-30.000
Mean -women $(ilde{\epsilon}_f)$	-76.941	-24.377	-6.402	-25.326
Std men and women $(\sigma_{\epsilon,m})$	84.670	51.889	13.598	21.910

ъ.

Calibration-distributions $F(\mu_x^j), j = [m, f]$

Return

Note: Means of these distributions for men (women) in each country are 0.632 (0.694) for the US and 0.681(0.873) for Spain. Thresholds for the public and private sector for men (women) are 0.990 (0.754) and 0.992 (0.695) in the US and 1.132 (0.872) and 1.039(0.754) for Spain.

Calibration - targets

Targets	U	S	U	UK		France		Spain	
	Data	Model	Data	Model	Data	Model	Data	Model	
Unemployment rate									
$((u_m + u_f)/((1 - i_m) + (1 - i_f)))$	0.064	0.064	0.060	0.060	0.093	0.093	0.168	0.168	
Non-employment rates (full time equ	uivalent)							
Male $(i_m + u_m)$	0.252	0.253	0.200	0.200	0.315	0.315	0.338	0.337	
Female $(i_f + u_f)$	0.418	0.409	0.450	0.450	0.473	0.473	0.522	0.523	
Private sector wage gap									
w_f^p/w_m^p-1	-0.286	-0.289	-0.212	-0.212	-0.183	-0.183	-0.247	-0.248	
Nr. of weekly wages- exp. cost vaca	ncy								
$\kappa \Theta^{(}1-\eta)/(W_{mp}/4)$	8.000	7.997	8.000	8.000	8.000	8.000	8.000	7.998	
Flows rates									
E ightarrow I	0.022	0.022	0.020	0.020	0.021	0.012	0.032	0.032	
Public sector employment shares rat	io; full-t	time equ	iivalent						
$(e_{f}^{g}/(e_{f}^{p}+e_{f}^{g}))/(e_{m}^{g}/(e_{m}^{p}+e_{m}^{g}))$	1.358	1.359	1.855	1.855	1.587	1.587	1.558	1.558	
Ratio probability job finding private/	public								
$p_g/m(\theta_p)$	1.066	1.066	0.743	0.743	0.809	0.809	0.878	0.878	
Regional variation: Public sector size	e & ove	r-represe	entation						
ϵ_{u_g/w_g}	0.004	0.004	0.002	0.002	0.007	0.007	0.011	0.011	

三日 のへの

Drivers for women's over-representation: alternative decomposition

		No sector	Only	Only	Only job	Only	
Country	Benchmark	differences &	wage	hours	security	sector	
		no preference	differences	differences	differences	differences	
		differences					
		$\pi_j = 1$		$\pi_j = 1$	$\pi_j = 1$		
		$\xi_g = \xi_p$	$\xi_g = \xi_p$		$\xi_g = \xi_p$		
		$\bar{\epsilon}_f = \bar{\epsilon}_m$					
		$\delta_g = \delta_p$	$\delta_g = \delta_p$	$\delta_g = \delta_p$			
Public-sector employment shares ratio							
US	1.359	0.991	1.171	0.993	0.985	1.166	
UK	1.855	0.998	1.000	1.008	0.992	1.005	
France	1.587	1.007	1.115	1.049	0.996	1.086	
Spain	1.558	0.931	1.069	0.934	0.906	1.058	

ъ.

Percentage of wage private sector workers would sacrifice for public sector

$$PremiumH_{i}^{p} = \frac{(1 - \xi_{g})\int_{0}^{\hat{x}_{p,j}} xf_{j}(x)dx}{F_{j}(\hat{x}_{p,j})} \frac{1}{w_{p,j}} \times 100$$

	Private se	ctor worker	Public sector worker		
Country	$[\xi_P =$	$= \xi_g$]	$[\xi_g = \xi_ ho]$		
	Women	Men	Women	Men	
US	0.84	0.81	0.87	0.83	
UK	1.46	0.93	1.53	1.02	
France	3.52	2.82	1.70	1.99	
Spain	2.23	1.78	3.20	3.75	

Job-security premia

Consider a private sector worker, with

- wage $w_1 = w_{p,j}$
- job-separation rate δ_p
- outside option $x < \hat{x}_{p,j}$.
- If offered a job-separation rate of δ_g , what wage w_2 would make him indifferent between the two options?

•
$$w_2 = w_1 + \delta_p(U_{p,j}(x|\delta_g) - E_{p,j}(x|\delta_p)) - \delta_g(U_{p,j}(x|\delta_g) - E_{p,j}(x|\delta_g))$$

• where
$$E_{p,j}(x|\delta_i) - U_{p,j}(x|\delta_i) = \frac{\xi_{p,j}(\hat{x}_{p,j}-x)}{r+\tau+\lambda+\delta_p+m(\theta_i)}$$
.

• Integrating over x we calculate the conditional expected value:

	Dubuata aa	at an unarkan	Dublic cos	tor worker
	Private se	ctor worker	Public sec	ctor worker
Country	$\left[\delta_{p}=\delta_{g}\right]$		$\left[\delta_{p}=\delta_{g}\right]$	
-	Women	Men	Women	Men
US	0.98	1.02	0.94	0.98
UK	0.92	1.17	1.20	1.52
France	1.43	1.66	1.70	1.99
Spain	2.88	3.39	3.20	3.75
				4 🗆

Policy	US	UK	France	Spain		
Increase of wages by 1 percent						
Δ unemployment rate male	0.15pp.	0.11pp.	0.15pp.	0.07pp.		
Δ unemployment rate female	0.27pp.	0.37pp.	0.31pp.	0.15pp.		
Δ inactivity rate male	-0.13pp.	-0.11pp.	-0.12pp.	-0.06pp.		
Δ inactivity rate female	-0.17pp.	-0.21pp.	-0.17pp.	-0.09pp.		
Δ aggregate wage gap	-0.05pp.	-0.13pp.	-0.09pp.	-0.05pp.		
Increase of employment by 1 percent						
Δ unemployment rate male	-0.07pp.	-0.09pp.	-0.05pp.	-0.03pp.		
Δ unemployment rate female	-0.14pp.	-0.29pp.	-0.11pp.	-0.06pp.		
Δ inactivity rate male	0.04pp.	0.04pp.	0.02pp.	0.01pp.		
Δ inactivity rate female	0.04pp.	0.06pp.	0.02pp.	0.01pp.		
Δ aggregate wage gap	-0.01pp.	-0.01pp.	-0.001pp.	-0.01pp.		

-

$$E_{i,j}(\hat{x}_{i,j}) = N E_{i,j}(\hat{x}_{i,j}). \tag{3}$$

$$\hat{x}_{i,j} = \frac{w_{i,j}}{\xi_i} + \frac{\lambda}{\xi_i} [A_{i,j} - B_{i,j}],$$
(4)
(5)

Establishes first link between wages and inactivity: lower wages \Rightarrow higher inactivity

글 🖌 🔺 글 🕨

= 900

We define two values functions for non-employed, one for unemployed and another one for inactive individuals.

$$(r + \tau + \lambda)E_{i,j} = (1 - \xi_i)x + w_{i,j} + \delta_i[U_{i,j} - E_{i,j}] + \lambda[A_{i,j}^1 + A_{i,j}^2], (r + \tau + \lambda)U_{i,j} = x + m(\theta_i)[E_{i,j} - U_{i,j}] + \lambda[B_{i,j}^1 + A_{i,j}^2], \quad \text{if } x \le \hat{x}_{i,j} (r + \tau + \lambda)I_{i,j} = x + \lambda[B_{i,j}^1 + A_{i,j}^2], \quad \text{if } x > \hat{x}_{i,j}$$

where
$$A_{i,j}^1 = \int_0^{\hat{x}_{i,j}} E_{i,j}(x') dF_j(x')$$
, $A_{i,j}^2 = \int_{\hat{x}_{i,j}}^\infty I_{i,j}(x') dF_j(x')$,
 $A_{i,j} = A_{i,j}^1 + A_{i,j}^2$, $B_{i,j}^1 = \int_0^{\hat{x}_{i,j}} U_{i,j}(x') dF_j(x')$ and $B_{i,j} = B_{i,j}^1 + A_{i,j}^2$.
(Return