Monetary returns to upper secondary schooling, the evolution of unobserved heterogeneity, and implications for employer learning

Anna Krumme

Matthias Westphal

University of Hagen TU Dortmund RWI Essen

EEA-ESEM 2024 Rotterdam August 27, 2024

Motivation

While a positive relationship between education and earnings in general is a fact in the literature, there is less convincing evidence on the returns to education beyond the compulsory level, such as upper secondary schooling and college education.

The literature has also shown that returns are individual-specific and correlate with individual preferences and abilities for education.

How this heterogeneity is shaped throughout the working career is unclear yet. This can give insights on the wage setting of employers.

Motivation

While a positive relationship between education and earnings in general is a fact in the literature, there is less convincing evidence on the returns to education beyond the compulsory level, such as upper secondary schooling and college education.

The literature has also shown that returns are individual-specific and correlate with individual preferences and abilities for education.

How this heterogeneity is shaped throughout the working career is unclear yet. This can give insights on the wage setting of employers.

Research questions:

1 What are the monetary returns to academic track school education (*Abitur*) in Germany & when are these returns formed?

2 Is there unobserved heterogeneity in the effects & how does it evolve over working careers?

Returns to academic track education

- No (long-run) effects or positive returns [Clark and Del Bono, 2016; Birkelund and van de Werfhorst, 2022; Matthewes and Ventura, 2022]
- Dustmann et al. [2017] find zero returns for Germany

Returns to academic track education

Dustmann et al. [2017] find zero returns for Germany

Unobserved heterogeneity in monetary returns

 Selection into gains pattern for returns to collage education [Carneiro et al., 2011; Nybom, 2017; Kamhöfer et al., 2019] and upper secondary schooling [Carneiro et al., 2017]

Returns to academic track education

Dustmann et al. [2017] find zero returns for Germany

Unobserved heterogeneity in monetary returns

 Selection into gains pattern for returns to collage education [Carneiro et al., 2011; Nybom, 2017; Kamhöfer et al., 2019] and upper secondary schooling [Carneiro et al., 2017]

Employer learning literature

- Mainly evidence for employer learning [Farber and Gibbons, 1996; Altonji and Pierret, 2001; Lange, 2007]
- Aryal et al. [2022]: First using instrumental variables within an employer learning model finding that employers learn quickly

Literature & Contribution

Returns to academic track education

Dustmann et al. [2017] find zero returns for Germany

Unobserved heterogeneity in monetary returns

 Selection into gains pattern for returns to collage education [Carneiro et al., 2011; Nybom, 2017; Kamhöfer et al., 2019] and upper secondary schooling [Carneiro et al., 2017]

Employer learning literature

Aryal et al. [2022]: First using instrumental variables within an employer learning model finding that employers learn quickly

Contribution:

- Adding to Dustmann et al. [2017]: returns to academic track degree for different marginal individuals
- Showing evolution of heterogeneous effects over experience
- First to use marginal treatment effects to get insights on employer learning

Data

NEPS-SC6-ADIAB: Survey data linked to administrative data

- Combines information on educational trajectories of adults with data on labor earnings from 1975 to 2019
- ▶ Key: Information on residential history at local level & high-quality earnings data

Data

NEPS-SC6-ADIAB: Survey data linked to administrative data

- Combines information on educational trajectories of adults with data on labor earnings from 1975 to 2019
- ▶ Key: Information on residential history at local level & high-quality earnings data

School opening data: Purpose-built data set on academic track school (Gymnasien) openings in West Germany

- Covering the years of the educational expansion from 1960 to 1980
- Information on location and opening year of 2,814 schools Map

Data

NEPS-SC6-ADIAB: Survey data linked to administrative data

- Combines information on educational trajectories of adults with data on labor earnings from 1975 to 2019
- ▶ Key: Information on residential history at local level & high-quality earnings data

School opening data: Purpose-built data set on academic track school (Gymnasien) openings in West Germany

- Covering the years of the educational expansion from 1960 to 1980
- Information on location and opening year of 2,814 schools Map

Assignment: Access to academic track education depends on entry cohort and municipality at time of track decision

 \Rightarrow Yearly panel on full-time working males born between 1950-1985

(N = 3496, unbalanced, earnings deflated by consumer price indices and imputed when exceeding assessment ceiling)

Descriptives

Baseline Empirical Strategy

We deal with the **endogeneity** of academic track education by separately estimating the following **two-stage least squares** (2SLS) model for each experience-level t:

$$D_i = \pi_0 + \pi_1 Z_i + X'_i \gamma + \nu_i$$

$$Y_{it} = \alpha_t + \beta_t \widehat{D}_i + X'_i \delta_t + \varepsilon_{it}.$$

- *D_i* Abitur dummy
- Z_i Geographical access (Dummy and continuous index)
- *Y_{it}* Average monthly gross labor earnings p.a.
- X_i Entry cohort fixed-effects, district fixed-effects, birth month fixed-effects and state-specific trends

Baseline Empirical Strategy

We deal with the **endogeneity** of academic track education by separately estimating the following **two-stage least squares** (2SLS) model for each experience-level t:

$$D_i = \pi_0 + \pi_1 Z_i + X'_i \gamma + \nu_i$$

$$Y_{it} = \alpha_t + \beta_t \widehat{D}_i + X'_i \delta_t + \varepsilon_{it}.$$

- D_i Abitur dummy
- Z_i Geographical access (Dummy and continuous index)
- *Y_{it}* Average monthly gross labor earnings p.a.
- *X_i* Entry cohort fixed-effects, district fixed-effects, birth month fixed-effects and state-specific trends
- \Rightarrow **Identifying assumption**: The location and timing of academic track school openings is random within districts

	Abitur	Monthly labor earnings [∅ in first 10 years]	
	First Stage	OLS	IV
Acad. track school in municipality	0.0828*** (0.0241)		
Abitur		1,312.85*** (60.88)	1,927.52** (779.80)
<i>F</i> -statistic (instrument) Baseline earnings w/o Abitur	11.85	2,791.06	2,791.06
Observations	3,469	3,469	3,469

Notes: Own calculations based on NEPS-SC6-ADIAB data. Regressions also include district and entry cohort fixed-effects, birth month dummies and state-specific trends. Standard errors in parentheses are clustered at the municipality level. Baseline: Average monthly earnings for individuals without Abitur. * (p < 0.1), ** (p < 0.05), *** (p < 0.01)

Results – LATE by experience

Notes: Own illustration based on NEPS-SC6-ADIAB data. The graph reports regression results for OLS and IV estimations of Abitur on monthly labor earnings over labor market experience. The regressions include district and entry cohort fixed-effects, birth month dummies, and state-specific trends. The vertical bars denote the 90% confidence interval based on standard errors clustered at the municipality level.

MTEs and Unobserved Heterogeneity

MTE-curve shows relationship between individual-specific returns and **unobserved resistance** to academic track education

- Identifies range of heterogeneity in returns to education (extend of heterogeneity)
- Detects selection pattern into upper secondary schooling

MTEs and Unobserved Heterogeneity

MTE-curve shows relationship between individual-specific returns and **unobserved resistance** to academic track education

- Identifies range of heterogeneity in returns to education (extend of heterogeneity)
- Detects selection pattern into upper secondary schooling

Idea:

- Observed and unobserved components in gains and costs of education
- ▶ Individuals select into academic track education if *expected gains* ≥ *costs*
- ⇒ Rearranging yields: Individuals are indifferent if probability for having Abitur (based on observables) equals their unobserved resistance (restricted to unit interval)
- ⇒ With a marginal increase in this probability (induced by the instrument) additional marginal individuals choose academic track education

MTEs and Unobserved Heterogeneity

MTE-curve shows relationship between individual-specific returns and **unobserved resistance** to academic track education

- Identifies range of heterogeneity in returns to education (extend of heterogeneity)
- Detects selection pattern into upper secondary schooling

Idea:

- Observed and unobserved components in gains and costs of education
- ▶ Individuals select into academic track education if *expected gains* ≥ *costs*
- ⇒ Rearranging yields: Individuals are indifferent if probability for having Abitur (based on observables) equals their unobserved resistance (restricted to unit interval)
- ⇒ With a marginal increase in this probability (induced by the instrument) additional marginal individuals choose academic track education

Estimation: Joint approach with linear MTE specification

First Stage	МТЕ	
Abitur	Monthly labor earnings [Ø in first 10 years]	
0.1252*** (0.0394)		
	1,827.99 (1,739.15)	
	-2,834.66 (2,871.86)	
9.05		
3,270	3,270	
	First Stage Abitur 0.1252*** (0.0394) 9.05 3,270	

Notes: Own calculations based on NEPS-SC6-ADIAB data. Column 1 reports average marginal effects from a probit selection model. Regressions also include district and entry cohort fixed-effects, birth month dummies and state-specific trends. Standard errors in parentheses are clustered at the municipality level and in column 2, bootstrapped with 200 repetitions. * ($\rho < 0.1$), ** ($\rho < 0.05$), *** ($\rho < 0.01$)

Results – MTE

Notes: Own illustration based on NEPS-SC6-ADIAB data. The figure presents the regression results of a linear MTE estimation of Abitur on monthly labor earnings. Regressions also include district and entry cohort fixed-effects, birth month dummies and state-specific trends. The dashed lines give the 90% confidence interval based on bootstrapped standard errors with 200 repetitions clustered at the municipality level.

Results – MTE

Notes: Own illustration based on NEPS-SC6-ADIAB data. Regressions also include district and entry cohort fixed-effects, birth month dummies and state-specific trends. 90% confidence intervals are based on bootstrapped standard errors with 200 repetitions clustered at the municipality level.

Results – MTE

Notes: Own illustration based on NEPS-SC6-ADIAB data. Regressions also include district and entry cohort fixed-effects, birth month dummies and state-specific trends. 90% confidence intervals are based on bootstrapped standard errors with 200 repetitions clustered at the municipality level.

Employer Learning Interpretation

Common employer learning model: Time-constant component of productivity, competitive labor markets and asymmetric information [Farber and Gibbons, 1996; Altonji and Pierret, 2001]

 \Rightarrow Employers learn about persistent productivity factors over time and adjust wages according to expected productivity

Employer Learning Interpretation

- **Common employer learning model**: Time-constant component of productivity, competitive labor markets and asymmetric information [Farber and Gibbons, 1996; Altonji and Pierret, 2001]
- \Rightarrow Employers learn about persistent productivity factors over time and adjust wages according to expected productivity
- **Necessity**: If low resistance individuals have higher (productivity enhancing) abilities than high resistance individuals, heterogeneity in returns to Abitur should also increase over experience
- \Rightarrow But **no sufficiency**: Different returns to skill and/or employer learning can be a driver

Employer Learning Interpretation

Common employer learning model: Time-constant component of productivity, competitive labor markets and asymmetric information [Farber and Gibbons, 1996; Altonji and Pierret, 2001]

 \Rightarrow Employers learn about persistent productivity factors over time and adjust wages according to expected productivity

Necessity: If low resistance individuals have higher (productivity enhancing) abilities than high resistance individuals, heterogeneity in returns to Abitur should also increase over experience

⇒ But **no sufficiency**: Different returns to skill and/or employer learning can be a driver

Conditions to proof employer learning with MTEs:

- Assumptions: Productivity does not decrease with experience and no negative effect of Abitur on either skills or employer learning
- Decreasing returns for high resistance individuals over experience can only be driven by employer learning returns for low resistance individuals

We find average **returns** to the highest German schooling degree (Abitur) of **over 70%** within the first 10 years after labor market entry (14% per additional year of education).

Positive returns first appear after 2 completed years in the labor market, revealing a **weak** signaling value of Abitur.

We document substantial heterogeneity in the returns from year 3 onwards, detecting **selection into gains**.

Zero or negative returns for parts of the distribution make **further incentives** for academic track education **unlikely to pay off**.

Increasing heterogeneity indicates that **employers learn** about their employees productivity (under certain assumptions).

- Altonji, J. G. and Pierret, C. R. (2001). Employer learning and statistical discrimination. <u>The Quarterly Journal of</u> <u>Economics</u>, 116(1):313–350.
- Aryal, G., Bhuller, M., and Lange, F. (2022). Signaling and employer learning with instruments. <u>American Economic</u> Review, 112(5):1669–1702.
- Bauer, T. K. and Haisken-DeNew, J. P. (2001). Employer learning and the returns to schooling. <u>Labour Economics</u>, 8(2):161–180. First World Conference of Labour Economists, EALE-SOLE.
- Birkelund, J. F. and van de Werfhorst, H. G. (2022). Long-term labor market returns to upper secondary school track choice: Leveraging idiosyncratic variation in peers' choices. <u>Social Science Research</u>, 102:102629.
- Carneiro, P., Heckman, J. J., and Vytlacil, E. (2011). Estimating marginal returns to education. <u>American Economic</u> <u>Review</u>, 101(6):2754–2781.
- Carneiro, P., Lokshin, M., and Umapathi, N. (2017). Average and marginal returns to upper secondary schooling in indonesia. Journal of Applied Econometrics, 32(1):16–36.
- Clark, D. and Del Bono, E. (2016). The long-run effects of attending an elite school: Evidence from the united kingdom. American Economic Journal: Applied Economics, 8(1):150–176.
- Dustmann, C., Puhani, P. A., and Schönberg, U. (2017). The long-term effects of early track choice. <u>The Economic</u> Journal, 127(603):1348–1380.

- Farber, H. S. and Gibbons, R. (1996). Learning and wage dynamics. <u>The Quarterly Journal of Economics</u>, 111(4):1007–1047.
- Kamhöfer, D. A., Schmitz, H., and Westphal, M. (2019). Heterogeneity in marginal non-monetary returns to higher education. Journal of the European Economic Association, 17(1):205–244.
- Lange, F. (2007). The speed of employer learning. Journal of Labor Economics, 25(1):1–35.
- Matthewes, S. H. and Ventura, G. (2022). On track to success? CEPA Discussion Papers (58).
- Nybom, M. (2017). The distribution of lifetime earnings returns to college. Journal of Labor Economics, 35(4):903–952.
- Robinson, P. M. (1988). Root-n-consistent semiparametric regression. Econometrica, 56(4):931–954.

Academic track school openings

Own illustration based on self-collected school information.

Returns to Upper Secondary Schooling

Descriptives- Means per degree

	Without Abitur	With Abitur
Secondary school entry	1975	1978
Month of birth	6	6
Age start working	20.798	24.396
University degree	0.018	0.489
Years of education	13.103	16.535
Repeated year in primary school	0.010	
Raised by single parent	0.065	0.044
Raised by patchwork family	0.052	0.021
Firstborn	0.296	0.342
Nr siblings	1.995	1.458
Nr older siblings	1.430	1.178
Father born in Germany	0.923	0.916
Number of observations	2344	1125

Notes: Own calculations based on NEPS-SC6-ADIAB data. The table shows means of the variables for individuals with and without the academic track degree (Abitur). Values might be missing due to data protection rules.

Descriptives- Descriptives of Instruments

	Statistics			
	Mean	SD	Min	Max
Background information				
Distance to 1st nearest school	3.427	4.339	0.1	35.3
Number of schools in municipality	5.2	10.283	0	65
Employed instruments:				
Academic track in municipality	0.633	0.482	0	1
Index (Z_l)	0.703	0.426	0	1.194

Notes: Own calculations based on NEPS-SC6-ADIAB data.

Back

Descriptives – Wages per degree

Own illustration based on NEPS-SC6-ADIAB data. The figure shows means for individuals with and without the academic track degree (Abitur) over labor market experience.

Index =
$$\sum_{i=1}^{3} f\left(\frac{x_{ji}}{5}\right)$$

with $f(\cdot)$ indicating the density function of $\mathcal{N}(0, 1)$ and x_{ji} the distance in km for individual *i* to its first, second and third (j = 1, 2, 3) nearest acad. track school. The denominator serves as a bandwidth of 5 km.

E.g.: Schools in 1km distance enter with 0.39, whereas schools that are 5km away are valued lower with 0.24. Schools that are 10 or more km away enter the equation with only a small value of 0.05 or less. (Individuals with more schools nearby have a greater index than those living farther away.)

	Outcome			
	Age start working	University degree	Years of education	
IV Abitur	5.80*** (2.01)	0.55*** (0.18)	4.17*** (0.99)	
Baseline outcome w/o Abitur	20.80	0.02	13.10	
Ν	3,469	3,467	3,446	

Notes: Own calculations based on NEPS-SC6-ADIAB data. Regressions also include district and entry cohort fixed-effects, birth month dummies, and state-specific trends. Standard errors in parentheses are clustered on the municipality level. Baseline: Average outcome for individuals without Abitur. * (p < 0.1), ** (p < 0.05), *** (p < 0.01)

Back

Results – First Stage F-statistic

Notes: Own illustrations based on NEPS-SC6-ADIAB data. The figure reports the F-statistic from a linear first stage regression of the instrument on the treatment (Abitur) over labor market experience. The regressions also include district and entry cohort fixed-effects, birth month dummies and state-specific trends.

Results – Common Support

Notes: Own illustration based on NEPS-SC6-ADIABAT data. This graph depicts the estimated density of the propensity score separately for individuals with and without Abitur.

Anna Krumme

Results – First Stage Chi-square statistic

Notes: Own illustrations based on NEPS-SC6-ADIAB data. The figure reports the chi-squared statistics from seperate probit regressions of both instruments on the treatment (Abitur) over labor market experience. The regressions also include district and entry cohort fixed-effects, birth month dummies and state-specific trends.

Results – Returns of high resistance individuals

Notes: Own illustration based on NEPS-SC6-ADIAB data. The figure shows monetary returns to academic track education for individuals with low resistance to treatment, i.e. with propensity score of 1. Regressions include district and entry cohort fixed-effects, birth month dummies and state-specific trends. 90% confidence intervals are based on bootstrapped standard errors with 200 repetitions clustered at the municipality level.

- Additionally control for ex ante differences in municipalities within districts (dummy for academic track availability in birth municipality before 1940)
 - Weaker first stage but increased credibility of exogeneity assumption
 - Very similar results
- We show that the parametric estimation of the MTE outcome regression can approximate a nonparametric fit by applying H\u00e4rdle & Mammen's (1993) specification test
- MTE estimation with binary instrument yields similar results with a slightly stronger first stage <u>Comparison graph</u>

Robustness Checks – MTE Binary Instrument

Notes: Own illustration based on NEPS-SC6-ADIAB data. The figure presents the regression results of linear MTE estimations of Abitur on monthly labor earnings. Regressions also include district and entry cohort fixed-effects, birth month dummies and state-specific trends.

Robustness Checks – MTE Binary Instrument

Notes: Own illustration based on NEPS-SC6-ADIAB data. The figure presents the estimated slope parameters of linear MTE estimations of Abitur on monthly labor earnings over labor market experience. Regressions also include district and entry cohort fixed-effects, birth month dummies, and state-specific trends. 90% confidence intervals are based on bootstrapped standard errors with 200 repetitions clustered at the municipality level.