Model 0000000 Data, Calibration and Model Fit 000000

Reforms of the Tax-Transfer System

Low-Income Families, Maternal Labor Supply, and Welfare Reform

Viola Garstenauer TU Wien Nawid Siassi TU Wien

EEA, Rotterdam August 28, 2024

- United States: Female LFP has risen from just 48% in 1968 to 76% in 2019
- While the gap between female and male participation rates has become considerably smaller, it still remains large for married people

- United States: Female LFP has risen from just 48% in 1968 to 76% in 2019
- While the gap between female and male participation rates has become considerably smaller, it still remains large for married people
- Low-income married couples with children:
 - 61% participation by married mothers
 - 95% participation by married fathers

- United States: Female LFP has risen from just 48% in 1968 to 76% in 2019
- While the gap between female and male participation rates has become considerably smaller, it still remains large for married people
- Low-income married couples with children:
 - 61% participation by married mothers
 - 95% participation by married fathers
- Low-income families: Adding second income of secondary earner will often push the couple out of eligibility region for means-tested transfers
- Formal child care can be very expensive and disallow dual-earner families

- United States: Female LFP has risen from just 48% in 1968 to 76% in 2019
- While the gap between female and male participation rates has become considerably smaller, it still remains large for married people
- Low-income married couples with children:
 - 61% participation by married mothers
 - 95% participation by married fathers
- Low-income families: Adding second income of secondary earner will often push the couple out of eligibility region for means-tested transfers
- Formal child care can be very expensive and disallow dual-earner families
- Are there easily implementable reforms within the current tax-transfer system that can alleviate participation costs for secondary earners?

This Paper

- Build a dynamic structural life-cycle model where married couples with children face uninsurable idiosyncratic labor market and child care cost risk
- Extensive and intensive margin of labor supply; Consumption-saving choice; Female human capital; Implement U.S. tax-transfer system in great detail

This Paper

- Build a dynamic structural life-cycle model where married couples with children face uninsurable idiosyncratic labor market and child care cost risk
- Extensive and intensive margin of labor supply; Consumption-saving choice; Female human capital; Implement U.S. tax-transfer system in great detail
- Calibrate model using 2018-2020 CPS data and quantify participation costs

This Paper

- Build a dynamic structural life-cycle model where married couples with children face uninsurable idiosyncratic labor market and child care cost risk
- Extensive and intensive margin of labor supply; Consumption-saving choice; Female human capital; Implement U.S. tax-transfer system in great detail
- Calibrate model using 2018-2020 CPS data and quantify participation costs
- Main findings on mothers' employment:
 - Expanding tax credits for child care expenditures: +6.2pp
 - Introducing a secondary-earner EITC deduction: +6.0pp
 - Joint reform: +12.7pp
- Reforms are self-financing (Female human capital matters!) and increase welfare

Motivation 00● Model 0000000 Data, Calibration and Model Fit 000000

Reforms of the Tax-Transfer System

Literature

Theoretical and quantitative:

• Hannusch (2022), Guner, Kaygusuz and Ventura (2020,2023), Borella, de Nardi and Yang (2023), Ortigueira and Siassi (2022), Bick and Fuchs-Schündeln (2017,2018), Bick (2016)

Empirical:

• Blundell, Costa-Dias, Meghir and Shaw (2016), Eissa and Hoynes (2004), Meyer (2010), Blundell and Shephard (2011), Chetty, Friedman and Saez (2013)

Data, Calibration and Model Fit

Reforms of the Tax-Transfer System

Demographics

- Time is discrete
- Population of interest: Married couples with 1, 2 or 3 dependent children

• Life cycle:
$$s = \underbrace{1, \dots, 47}_{\text{Working age}}, \underbrace{48, \dots, 62}_{\text{Retirement}}$$

 $\bullet\,$ Couples enter with newborn child at biological age of 20 (s=1) and die together for certain at an age of 82

Data, Calibration and Model Fit

Reforms of the Tax-Transfer System

Demographics

- Time is discrete
- Population of interest: Married couples with 1, 2 or 3 dependent children

• Life cycle:
$$s = \underbrace{1, \dots, 47}_{\text{Working age}}, \underbrace{48, \dots, 62}_{\text{Retirement}}$$

- $\bullet\,$ Couples enter with newborn child at biological age of 20 (s=1) and die together for certain at an age of 82
- Two exogenous stochastic fertility draws, at $\tilde{s}_1 = 4$ and $\tilde{s}_2 = 9$
- Children live with their parents until they reach age 18, at which they leave the household and can no longer be claimed as dependents
- Retired couples receive benefit b

Motivation 000

Model o●ooooo Data, Calibration and Model Fit

Reforms of the Tax-Transfer System

Preferences

$$U(c, l_f, l_m; k) = \frac{\left(\frac{c}{\psi(k)}\right)^{1-\sigma} - 1}{1-\sigma} + \varphi \frac{(1-l_f)^{1-\zeta} - 1}{1-\zeta} - \nu_f \mathbb{1}_{l_f > 0} - \nu_m \mathbb{1}_{l_m > 0}$$

- Couple decides together on consumption *c*, hours worked of female *l_f* and of male *l_m*
- Equivalence scales ψ(k) to account for household size depending on composition of children k

Motivation 000

Model o●ooooo Data, Calibration and Model Fit

Reforms of the Tax-Transfer System

Preferences

$$U(c, l_f, l_m; k) = \frac{\left(\frac{c}{\psi(k)}\right)^{1-\sigma} - 1}{1-\sigma} + \varphi \frac{(1-l_f)^{1-\zeta} - 1}{1-\zeta} - \nu_f \mathbb{1}_{l_f > 0} - \nu_m \mathbb{1}_{l_m > 0}$$

- Couple decides together on consumption *c*, hours worked of female *l_f* and of male *l_m*
- Equivalence scales $\psi(k)$ to account for household size depending on composition of children k
- We model labor supply:
 - Females: Intensive and extensive margin
 - Males: Extensive margin (Data: Less than 10% work part time)
- Can save in risk-free asset a at exogenous interest rate r

Model oo●oooo Data, Calibration and Model Fit

Reforms of the Tax-Transfer System $_{\rm OOOOOOO}$

Earnings

• Couple's labor income:

$$e \equiv h I_f z_f w + \omega(s) I_m z_m w,$$

Model oo●oooo Data, Calibration and Model Fit

Reforms of the Tax-Transfer System

Earnings

• Couple's labor income:

$$e \equiv h I_f z_f w + \omega(s) I_m z_m w,$$

• Females: human capital h, law of motion:

 $h' = D(h, l_f) = \exp\left[\ln(h) + \alpha \mathbb{1}(l_f > 0) - \delta(1 - \mathbb{1}(l_f > 0))\right]$

• Males: deterministic age-specific component $\omega(s)$

Model oo●oooo Data, Calibration and Model Fit

Reforms of the Tax-Transfer System

Earnings

• Couple's labor income:

$$e \equiv h I_f z_f w + \omega(s) I_m z_m w,$$

• Females: human capital h, law of motion:

 $h' = D(h, I_f) = \exp\left[\ln(h) + \alpha \mathbb{1}(I_f > 0) - \delta(1 - \mathbb{1}(I_f > 0))\right]$

- Males: deterministic age-specific component $\omega(s)$
- For each individual, labor productivity depends on an idiosyncratic stochastic component *z*, where

$$\ln z'_g = \ln z_g + \epsilon, \qquad \text{ with } \epsilon \sim N(0, \sigma^2_{\epsilon,g}), \ g \in \{f, m\}$$

• Exogenous wage per efficiency unit, w, constant over time

Model ○○○●○○○ Data, Calibration and Model Fit 000000

Reforms of the Tax-Transfer System $_{\rm OOOOOOO}$

Child Care Costs

Model ○○○●○○○ Data, Calibration and Model Fit 000000

Reforms of the Tax-Transfer System $_{\rm OOOOOOO}$

Child Care Costs

• Child care cost function:

$$\Gamma(I_f, I_m, k, \eta) = \max\{\eta, 0\} \times \mathbb{1}_{\{I_m > 0 \land I_f > 0\}}$$

Model ooo●ooo Data, Calibration and Model Fit 000000

Reforms of the Tax-Transfer System

Child Care Costs

• Child care cost function:

$$\Gamma(I_f, I_m, k, \eta) = \max\{\eta, 0\} \times \mathbb{1}_{\{I_m > 0 \land I_f > 0\}}$$

- $\eta \sim \textit{N}(\mu_i, \sigma_i)$ with prob u_i , and is set to zero with prob $1 \nu_i$
- Distinguish between families with
 - At least one child below the age of 5 (i = y)
 - Youngest child between 5 and 12 years of age (i = o)
- Redraw η when: (i) A child is born; (ii) A child in the household turns 5

Taxes and Transfers

- We include these U.S. tax-transfer programs:
 - 1 Income and payroll taxes
 - 2 Earned Income Tax Credit (EITC)
 - 3 Child Tax Credit (CTC)
 - 4 Child and Dependent Care Tax Credit (CDCTC)
 - 5 Temporary Assistance for Needy Families (TANF)
 - 6 Supplemental Nutrition Assistance Program (SNAP)
 - 7 Supplemental Nutrition Program for Women, Infants and Children (WIC)
- Embed them in great detail, including all the kinks and non-convexities
- Net transfer function $TT(a, e, I_f, I_m, k, \eta)$

Model 0000000 Data, Calibration and Model Fit $_{\rm OOOOOO}$

Reforms of the Tax-Transfer System

Bellman equations for couples with children

$$v^{s}(a, z_{f}, z_{m}, h, k, \eta) = \max_{c, l_{f}, l_{m}, a'} \left\{ U(c, l_{f}, l_{m}; k) + \beta \mathbb{E} \Big[v^{s+1}(a', z_{f}', z_{m}', h', k', \eta') \Big] \right\}$$

subject to

$$\begin{aligned} c + \Gamma(l_f, l_m, k, \eta) + a' &= e + (1 + r)a + TT(a, e_f, e_m, k, \eta), \\ e &= hz_f w l_f + \omega(s) z_m w l_m, \\ \text{Laws of motion for } h', z'_f, z'_m, k' \text{ and } \eta', \\ l_f \in [0, 1], \ l_m \in \{0, \overline{l}\}, \text{ and } a' \geq 0. \end{aligned}$$

Model 0000000 Data, Calibration and Model Fit •00000 Reforms of the Tax-Transfer System

Data

- March Supplement of Current Population Survey 2018-2020
- Married couples without a college degree and with one to three children
- After sample selection: 6,048 married couples

Model 0000000 Data, Calibration and Model Fit •00000 Reforms of the Tax-Transfer System

Data

- March Supplement of Current Population Survey 2018-2020
- Married couples without a college degree and with one to three children
- After sample selection: 6,048 married couples

	Mothers	Fathers
Employment rate	60.6%	94.8%
Avg annual hours worked*	1,718	2,125
Avg annual earnings* (\$)	30,311	49,119
Avg hourly wages* (\$)	16.56	21.48

* Conditional on working.

• Externally calibrated parameters

Internally calibrated parameters

Model 0000000 Data, Calibration and Model Fit •00000 Reforms of the Tax-Transfer System

Data

- March Supplement of Current Population Survey 2018-2020
- Married couples without a college degree and with one to three children
- After sample selection: 6,048 married couples

	Mothers	Fathers
Employment rate	60.6%	94.8%
Avg annual hours worked*	1,718	2,125
Avg annual earnings* (\$)	30,311	49,119
Avg hourly wages* (\$)	16.56	21.48

* Conditional on working.

• Targets: Employment rates, hours worked, hourly earnings, evolution of wages by age, child care expenditures, wealth

• Externally calibrated parameters

Internally calibrated parameters

Model 0000000 Data, Calibration and Model Fit

Reforms of the Tax-Transfer System

Table 3: Model fit- Employment and earnings

	Data	Model		Data	Model
A. Mothers'	EMPLOYME	мт (%)			
1 child 2 children 3 children	67.60 60.51 50.80	66.06 60.24 39.69	y children† o children†	53.09 65.42	53.89 65.39

 $\rm NOTES:$ † Here, y refers to couples with at least one small child (between 0 and 4 years), and o refers to couples with children who are all at least 5 years old. All statistics for earnings are conditional on working.

Model 0000000 Data, Calibration and Model Fit

Reforms of the Tax-Transfer System

Table 3: Model fit- Employment and earnings

	Data	Model		Data	Model
A. Mothers' i	EMPLOYME	мт (%)			
1 child 2 children 3 children	67.60 60.51 50.80	66.06 60.24 39.69	y children† o children†	53.09 65.42	53.89 65.39
B. EARNINGS (\$)				
Mothers			Fathers		
Average	29,886	29,554	Average	49,119	44,409
p25	16,495	16,808	p25	29,109	31,767
p75	39,289	38,348	p75	61,910	54,651
Households					
Average	64,954	60,008			
p25	36,000	40,692			
p75	85,000	75,642			

 $\rm NOTES:$ † Here, y refers to couples with at least one small child (between 0 and 4 years), and o refers to couples with children who are all at least 5 years old. All statistics for earnings are conditional on working.

Model 0000000 Data, Calibration and Model Fit

Reforms of the Tax-Transfer System $_{\rm OOOOOOO}$

Table 4: Model fit-	Child	care	costs
---------------------	-------	------	-------

	At least one	child under 5	All children aged 5-12		
	Data	Model	Data	Model	
Share paying child care* (%)	38.1		17.7		
Child care paid [†] (\$) Average* Median p25 p75	7,054 5,206 3,000 9,395		4,519 3,068 1,293 5,893		

 * Calibration target. † Conditional on paying child care.

Elasticities

Model 0000000 Data, Calibration and Model Fit

Reforms of the Tax-Transfer System $_{\rm OOOOOOO}$

	At least one child under 5			All children aged 5-12			
	Data	Model		Data	Model		
Share paying child care* (%)	38.1	37.3		17.7	17.3		
Child care paid [†] (\$) Average* Median p25 p75	7,054 5,206 3,000 9,395	7,025 5,000 3,000 9,000		4,519 3,068 1,293 5,893	4,323 4,000 1,000 6,000		

Table 4: Model fit- Child care costs

 * Calibration target. † Conditional on paying child care.

Elasticities

(Dis-)Incentives for Employment

• Participation tax rate for secondary earner:

$$PTR = \frac{TT(a, e_f, e_m, k, \eta) - TT(a, 0, e_m, k, \eta)}{e_f}$$

as induced by the design of the tax-transfer system (higher taxes, lower transfers)

(Dis-)Incentives for Employment

• Participation tax rate for secondary earner:

$$PTR = \frac{TT(a, e_f, e_m, k, \eta) - TT(a, 0, e_m, k, \eta)}{e_f}$$

as induced by the design of the tax-transfer system (higher taxes, lower transfers)

• To measure actual participation cost, add child care costs:

$$PTR_{ccc} = \frac{TT(a, e_f, e_m, k, \eta) - TT(a, 0, e_m, k, \eta) + \Gamma(l_f, l_m, k, \eta)}{e_f}$$

Model 0000000 Data, Calibration and Model Fit

Reforms of the Tax-Transfer System

(Dis-)Incentives for Employment

Average participation tax rate: 24.8 %

Model 0000000 Data, Calibration and Model Fit $_{\texttt{OOOOO}}$

Reforms of the Tax-Transfer System

(Dis-)Incentives for Employment

Data, Calibration and Model Fit

Reforms of the Tax-Transfer System •000000

Policy Analysis

• R1: Full deductibility of child care costs

- Child and Dependent Care Tax Credit (CDCTC)
- Benchmark: 20-35% of child care costs (upper limit 6000 \$) are deductible
- Reform: 100% of child care costs (no upper limit) are deductible

Data, Calibration and Model Fit

Reforms of the Tax-Transfer System •000000

Policy Analysis

• R1: Full deductibility of child care costs

- Child and Dependent Care Tax Credit (CDCTC)
- Benchmark: 20-35% of child care costs (upper limit 6000 \$) are deductible
- Reform: 100% of child care costs (no upper limit) are deductible

• R2: Secondary-earner deduction

- Earned Income Tax Credit (EITC)
- Benchmark: Family income is considered for eligibility/credit
- Reform: Discard secondary earner's income for eligibility/credit

Data, Calibration and Model Fit

Reforms of the Tax-Transfer System •000000

Policy Analysis

• R1: Full deductibility of child care costs

- Child and Dependent Care Tax Credit (CDCTC)
- Benchmark: 20-35% of child care costs (upper limit 6000 \$) are deductible
- Reform: 100% of child care costs (no upper limit) are deductible

• R2: Secondary-earner deduction

- Earned Income Tax Credit (EITC)
- Benchmark: Family income is considered for eligibility/credit
- Reform: Discard secondary earner's income for eligibility/credit

• R3: Combination of R1 and R2

Model 0000000 Data, Calibration and Model Fit 000000

Reforms of the Tax-Transfer System ${\scriptstyle 0 \bullet 0 0 0 0 0}$

R1: Expanding Child Care Tax Credit

Table 7a: Full deductibility of child care expenses through CDCTC

	Bench	Reform		
Mothers' employment (%)	60.8	67.0		
y children (0-4)	53.9	64.1		
o children (5-18)	65.4	68.9		
1 child	66.1	71.7		
2 children	60.2	66.5		
3 children	39.7	48.3		

Model 0000000 Data, Calibration and Model Fit 000000

Reforms of the Tax-Transfer System ${\scriptstyle 0 \bullet 0 0 0 0 0}$

R1: Expanding Child Care Tax Credit

Table 7a: Full deductibility of child care expenses through CDCTC

	Bench	Reform	
Mothers' employment (%)	60.8	67.0	
y children (0-4)	53.9	64.1	
o children (5-18)	65.4	68.9	
1 child	66.1	71.7	
2 children	60.2	66.5	
3 children	39.7	48.3	
Fathers' employment (%)	94.8	95.8	
Dual-earner couples (%)	55.6	62.8	
Mothers' avg hours	1 700	1 725	
Household earnings (\$)	60.008	62 820	
Mothers' avg wage (\$)	16.2	16.7	
Conder wage gap (%)	22.5	21.6	
Gender wage gap (%)	23.5	21.0	

Model 0000000 Data, Calibration and Model Fit 000000

Reforms of the Tax-Transfer System ${\scriptstyle 0 \bullet 0 0 0 0 0}$

R1: Expanding Child Care Tax Credit

Table 7a: Full deductibility of child care expenses through CDCTC

	Bench	Reform		Bench	Reform
Mothers' employment (%) y children (0-4) o children (5-18) 1 child 2 children 3 children	60.8 53.9 65.4 66.1 60.2 39.7	67.0 64.1 68.9 71.7 66.5 48.3	CDCTC recip (%) CDCTC per HH (\$) EITC recip (%) EITC per HH (\$) SNAP* recip (%) SNAP* per HH (\$)	10.9 666 34.9 2,604 20.4 1,411	17.4 4,881 30.6 2,670 18.0 1 471
Fathers' employment (%) Dual-earner couples (%) Mothers' avg hours Household earnings (\$) Mothers' avg wage (\$) Gender wage gap (%)	94.8 55.6 1,700 60,008 16.3 23.5	95.8 62.8 1,725 62,829 16.7 21.6	Taxes paid per HH (\$)	9,110	9,307

Model 0000000 Data, Calibration and Model Fit 000000

Reforms of the Tax-Transfer System ${\scriptstyle 0 \bullet 0 0 0 0 0}$

R1: Expanding Child Care Tax Credit

Table 7a: Full deductibility of child care expenses through CDCTC

	Bench	Reform		Bench	Reform
Mothers' employment (%)	60.8	67.0	CDCTC recip (%)	10.9	17.4
y children (0-4)	53.9	64.1	CDCTC per HH (\$)	666	4,881
o children (5-18)	65.4	68.9	EITC recip (%)	34.9	30.6
1 child	66.1	71.7	EITC per HH (\$)	2,604	2,670
2 children	60.2	66.5	SNAP* recip (%)	20.4	18.0
3 children	39.7	48.3	SNAP* per HH (\$)	1,411	1,471
Fathers' employment (%)	94.8	95.8	Taxes paid per HH (\$)	9,110	9,307
Dual-earner couples (%)	55.6	62.8	Average PTR (%)	24.8	20.9
Mothers' avg hours	1,700	1,725	Paying child care y (%)	37.3	50.5
Household earnings (\$)	60,008	62,829	Paying child care $o(\%)$	17.3	22.2
Mothers' avg wage (\$)	16.3	16.7	Avg child care y (\$)	7,025	8,832
Gender wage gap (%)	23.5	21.6	Avg child care $o(\$)$	4,323	4,934

Model 0000000 Data, Calibration and Model Fit $_{\rm OOOOOO}$

Reforms of the Tax-Transfer System ${\scriptstyle \bigcirc} \bullet {\scriptstyle \bigcirc} \circ \circ {\scriptstyle \bigcirc} \circ$

R2: Expanding Earned Income Tax Credit

	Bench	Reform	Bench	Reform
Mothers' employment (%)	60.8	66.8		
y children (0-4)	53.9	59.6		
o children (5-18)	65.4	71.7		
1 child	66.1	70.3		
2 children	60.2	67.4		
3 children	39.7	50.8		
Fathers' employment (%)	94.8	95.8		
Dual-earner couples (%)	55.6	62.6		
Mothers' avg hours	1,700	1,684		
Household earnings (\$)	60,008	61,499		
Mothers' avg wage (\$)	16.3	16.1		
Gender wage gap (%)	23.5	23.8		

Table 7b: Secondary-earner deduction for EITC

Motivation 000

Data, Calibration and Model Fit $_{\rm OOOOOO}$

Reforms of the Tax-Transfer System ${\scriptstyle \bigcirc} \bullet {\scriptstyle \bigcirc} \circ \circ {\scriptstyle \bigcirc} \circ$

R2: Expanding Earned Income Tax Credit

	Bench	Reform		Bench	Reform
Mothers' employment (%)	60.8	66.8	CDCTC recip (%)	10.9	14.6
y children (0-4)	53.9	59.6	CDCTC per HH (\$)	666	699
o children (5-18)	65.4	71.7	EITC recip (%)	34.9	58.0
1 child	66.1	70.3	EITC per HH (\$)	2,604	2,789
2 children	60.2	67.4	SNAP* recip (%)	20.4	17.2
3 children	39.7	50.8	SNAP* per HH (\$)	1,411	1,357
Fathers' employment (%)	94.8	95.8	Taxes paid per HH (\$)	9,110	9,098
Dual-earner couples (%)	55.6	62.6	Average PTR (%)	24.8	18.1
Mothers' avg hours	1,700	1,684	Paying child care y (%)	37.3	44.3
Household earnings (\$)	60,008	61,499	Paying child care $o(\%)$	17.3	19.6
Mothers' avg wage (\$)	16.3	16.1	Avg child care y (\$)	7,025	7,721
Gender wage gap (%)	23.5	23.8	Avg child care o (\$)	4,323	4,629

Table 7b: Secondary-earner deduction for EITC

Data, Calibration and Model Fit

Reforms of the Tax-Transfer System $_{\text{OOO} \bullet \text{OOO}}$

Participation tax rate (in %)

Data, Calibration and Model Fit

Reforms of the Tax-Transfer System 0000000

Participation tax rate (in %)

Hourly wage (in \$)

Data, Calibration and Model Fit

Reforms of the Tax-Transfer System $_{\text{OOO} \bullet \text{OOO}}$

Participation tax rate (in %)

Hourly wage (in \$)

Reforms of the Tax-Transfer System $_{\texttt{OOOO} \bullet \texttt{OO}}$

R3: Combined Reform

	Benchmark	СDСТС	Reform EITC	Both
Mothers' employment (%)	60.8	67.0	66.8	73.5
y children (0-4)	53.9	64.1	59.6	70.8
o children (5-18)	65.4	68.9	71.7	75.3
Fathers' employment (%)	94.8	95.8	95.8	96.5
Dual carper counter (%)	55.6	62.8	62.6	70.0
Mothers' avg wage (\$)	16.3	16.6	16.1	16.5
Gender wage gap* (%)	23.5	21.6	23.8	22.0
Average PTR (%)	24.8	20.9	18.1	14.4
Taxes paid per HH (\$)	9,110	9,307	9,098	9,287

Table 7: Policy Analysis

* CDCTC: Full deductibility of child care costs. EITC: Secondary-earner deduction.

Model 000000 Data, Calibration and Model Fit

Reforms of the Tax-Transfer System $_{\texttt{OOOOOOO}}$

Welfare Analysis

Concluding Remarks

- It is well understood that the design of the tax-transfer system has important implications for family labor supply
- In this paper, we quantify to what extent easily-implementable reforms of existing tax credits can promote maternal labor supply
- Expanding tax credits for child care and earned income can be self-financing, welfare-improving, and highly effective at raising mothers' employment rates
- Future work could address: General equilibrium effects, endogenous fertility, marital formation/dissolution, child outcomes (e.g. skill formation)

Fertility Process

Transfer programs

Externally calibrated parameters

Description	Param.	Value	Description	Param.	Value
Real interest rate	r	0.025	Male full-time hours	Ī	0.38
Risk aversion	σ	1.5	Male productivity	$\omega(s)$	CPS
Non-market time	ζ	3	Depr. human capital	δ	0.009
Equivalence scale	ψ_{0}	1.414	Child arrival prob. at $ ilde{s}_1$	q_1	0.45
Equivalence scale	ψ_1	1.899	Prob 2nd child at \tilde{s}_2	q_2	0.55
Equivalence scale	ψ_2	2.158	Prob 3rd child at \tilde{s}_2	q 3	0.66
Equivalence scale	ψ_3	2.404			

Calibration

Internally calibrated parameters

Description	Param.	Value	Moment	Target	Model
Discount factor	β	0.997	Average wealth	82.2	80.7
Utility weight	φ	0.0810	Average hours	0.314	0.311
Participation cost	$\nu_{f,1}$	0.0660	Empl f (kids)	0.606	0.608
Participation cost	$\nu_{f,0}$	0.0287	Empl f (no k.)	0.680	0.679
Participation cost	ν_m	0.0540	Empl m	0.948	0.948
Wage rate	W	63.2	Avg hourly wage	19.4	19.4
Hum cap growth	α	0.0245	Wage growth	0.026	0.026
Initial product.	$(\sigma^f_{\epsilon,0},\sigma^m_{\epsilon,0})$	(0.19,0.43)	IQR wages 20-22	(4.4,8.1)	(4.3,6.0)
Random walk	$(\sigma_{\epsilon}^{f}, \sigma_{\epsilon}^{m})$	(0.09, 0.09)	IQR wages 35-37	(10,15)	(10,15)
Inf. child care	$(\kappa_{\rm v},\kappa_{\rm o})$	(0.05,0.68)	Frac child care	(0.4,0.2)	(0.4,0.2)
Mean CC distr.	(μ_{γ},μ_{o})	(12.5,4.1)	Avg child care	(7.1,4.5)	(7.0,4.3)
Std CC distr.	(σ_y, σ_o)	(12,4.5)	IQR child care	(6.4,4.6)	(6.0,5.0)
Pension benefit	Ь	39.0	AIME formula	-	

Fertility process

Share of Parents with One, Two and Three Children

Parents' mean age	20-23		24-27		28-32		33-37	
	Data	Model	Data	Model	Data	Model	Data	Model
1 Child (%)	68	89	50	55	25	25	21	25
2 Children (%)	26	11	38	45	47	45	45	45
3 Children (%)	7	0	12	0	28	30	34	30

Child Care Cost Elasticity

- Elasticities of female employment with respect to child care prices
- Empirical literature: Morrissey (2017) reports range from -0.025 to -1.1
- Relevant population in most studies: Mothers with child(ren) below age of 6
- Model elasticity: -0.74
- Comparability partially limited by selected population: Anderson and Levine (1999) find that less educated mothers respond more elastically

Labor Supply Elasticities of Mothers

	Positive w	age change	Negative w	Negative wage change			
	Long run	Short run	Long run	ng run Short run			
All mothers	0.77	1.02	0.82	0.40			
y^{\dagger} children o^{\dagger} children	0.91 0.69	1.05 0.98	0.85 0.79	0.50 0.33			
1 child 2 children 3 children	0.75 0.79 0.86	0.99 1.06 1.10	0.72 0.91 1.02	0.25 0.51 0.76			

Table 5: Extensive-margin labor supply elasticities of mothers

NOTES: † Here, y refers to married couples with at least one small child (between 0 and 4 years), and o refers to married couples with children who are all at least 5 years old.

Total Hours Elasticities of Mothers

	Positive w	age change	Negative w	Negative wage change		
	Long run	Short run	Long run Short run			
All mothers	0.86	1.06	0.77	0.31		
y^{\dagger} children o^{\dagger} children	1.11 0.71	1.22 0.91	0.76 0.77	0.20 0.38		
1 child 2 children 3 children	0.89 0.83 0.84	1.09 1.05 1.02	0.70 0.83 0.95	0.13 0.39 0.76		

Table A2: Total hours elasticities of mothers

NOTES: † Here, y refers to married couples with at least one small child (between 0 and 4 years), and o refers to married couples with children who are all at least 5 years old.

Labor Supply Elasticities of Fathers

	Positive w	age change	Negative w	Negative wage change		
	Long run	Short run	Long run	Short run		
All fathers	0.25	0.17	0.22	0.22		
y^{\dagger} children o^{\dagger} children	0.42 0.10	0.29 0.08	0.40 0.09	0.38 0.11		
1 child 2 children 3 children	0.26 0.20 0.30	0.16 0.16 0.24	0.20 0.24 0.26	0.20 0.26 0.24		

Table A3: Extensive-margin labor supply elasticities of fathers

NOTES: † Here, y refers to married couples with at least one small child (between 0 and 4 years), and o refers to married couples with children who are all at least 5 years old.

(Dis-)Incentives for Employment

Table 6: Decomposition of married mothers' participation tax rates

	All		
Overall	24.8		
Income and payroll tax EITC SNAP + TANF + WIC CTC + CDCTC	$\begin{array}{rrrr} + & 19.0 \\ + & 6.4 \\ + & 2.5 \\ - & 3.0 \end{array}$		

NOTES: Adding up the numbers can lead to small deviations due to rounding.

▶ Back

(Dis-)Incentives for Employment

Table 6: Decomposition of married mothers' participation tax rates

		All	1	child	2 cł	nildren	3 cł	nildren
Overall		24.8		23.7		26.2		25.1
Income and payroll tax EITC SNAP + TANF + WIC CTC + CDCTC	++++	19.0 6.4 2.5 3.0	++++	19.0 4.6 2.0 1.8	+ + + -	19.0 8.3 2.6 3.6	+ + + -	19.2 9.6 3.3 7.1

NOTES: Adding up the numbers can lead to small deviations due to rounding.

Back

Welfare Analysis

All three reforms imply welfare gains for entering couples:

- 1 Reform 1: +0.30 percent
- 2 Reform 2: +0.93 percent
- 3 Reform 3: +1.33 percent

(measured in terms of lifetime consumption)
Back