Strategic Informed Trading and the Value of Private Information

Michail Anthropelos, University of Piraeus joint work with Scott Robertson (Boston University)

> EEA-ESEM at Rotterdam August 2024

Fact: In many financial markets, there are investors who possess market power and asymmetric information.

- It is well-documented that large financial institutions possess the power to affect markets (Koijen and Yogo [2019], Rostek and Yoon [2023]).
- These large investors are also known to invest capital to acquire information (Kacperczyk and Pagnotta [2019]).

Price impact and private information make them "insiders"

- The rest of the market knows → Insiders' signal is partially revealed to uniformed traders through the equilibrium prices.
- In this paper: An insider strategically chooses the signal she reveals to the market, a fact that is recognized by the uniformed traders.

- equilibrium price
- information transmission
- traders' welfare

Fact: In many financial markets, there are investors who possess market power and asymmetric information.

- It is well-documented that large financial institutions possess the power to affect markets (Koijen and Yogo [2019], Rostek and Yoon [2023]).
- These large investors are also known to invest capital to acquire information (Kacperczyk and Pagnotta [2019]).

Price impact and private information make them "insiders"

- The rest of the market knows → Insiders' signal is partially revealed to uniformed traders through the equilibrium prices.
- In this paper: An insider strategically chooses the signal she reveals to the market, a fact that is recognized by the uniformed traders.

- equilibrium prices
- information transmission
- traders' welfare

Fact: In many financial markets, there are investors who possess market power and asymmetric information.

- It is well-documented that large financial institutions possess the power to affect markets (Koijen and Yogo [2019], Rostek and Yoon [2023]).
- These large investors are also known to invest capital to acquire information (Kacperczyk and Pagnotta [2019]).

Price impact and private information make them "insiders".

- ullet The rest of the market knows o Insiders' signal is partially revealed to uniformed traders through the equilibrium prices.
- In this paper: An insider strategically chooses the signal she reveals to the market, a fact that is recognized by the uniformed traders.

- equilibrium prices
- information transmission
- traders' welfare

Fact: In many financial markets, there are investors who possess market power and asymmetric information.

- It is well-documented that large financial institutions possess the power to affect markets (Koijen and Yogo [2019], Rostek and Yoon [2023]).
- These large investors are also known to invest capital to acquire information (Kacperczyk and Pagnotta [2019]).

Price impact and private information make them "insiders".

- ullet The rest of the market knows o Insiders' signal is partially revealed to uniformed traders through the equilibrium prices.
- In this paper: An insider strategically chooses the signal she reveals to the market, a fact that is recognized by the uniformed traders.

- equilibrium prices
- information transmission
- traders' welfare

Fact: In many financial markets, there are investors who possess market power and asymmetric information.

- It is well-documented that large financial institutions possess the power to affect markets (Koijen and Yogo [2019], Rostek and Yoon [2023]).
- These large investors are also known to invest capital to acquire information (Kacperczyk and Pagnotta [2019]).

Price impact and private information make them "insiders".

- ullet The rest of the market knows o Insiders' signal is partially revealed to uniformed traders through the equilibrium prices.
- In this paper: An insider strategically chooses the signal she reveals to the market, a fact that is recognized by the uniformed traders.

- equilibrium prices
- information transmission
- traders' welfare

Fact: In many financial markets, there are investors who possess market power and asymmetric information.

- It is well-documented that large financial institutions possess the power to affect markets (Koijen and Yogo [2019], Rostek and Yoon [2023]).
- These large investors are also known to invest capital to acquire information (Kacperczyk and Pagnotta [2019]).

Price impact and private information make them "insiders".

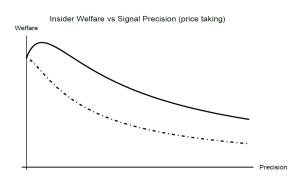
- ullet The rest of the market knows o Insiders' signal is partially revealed to uniformed traders through the equilibrium prices.
- In this paper: An insider strategically chooses the signal she reveals to the market, a fact that is recognized by the uniformed traders.

- equilibrium prices
- information transmission
- a traders' welfare

Fact: In many financial markets, there are investors who possess market power and asymmetric information.

- It is well-documented that large financial institutions possess the power to affect markets (Koijen and Yogo [2019], Rostek and Yoon [2023]).
- These large investors are also known to invest capital to acquire information (Kacperczyk and Pagnotta [2019]).

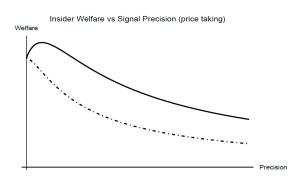
Price impact and private information make them "insiders".


- ullet The rest of the market knows o Insiders' signal is partially revealed to uniformed traders through the equilibrium prices.
- In this paper: An insider strategically chooses the signal she reveals to the market, a fact that is recognized by the uniformed traders.

- equilibrium prices
- information transmission
- traders' welfare

Welfare and Signal Precision

Is it always true that the private information (even costless) is beneficial?


- ▶ Paradoxically, not. On the contrary, in several models insider welfare may decrease with the signal precision!
- ► For example, in price-taking equilibrium of Grossman and Stiglitz [1980], we may have:

Welfare and Signal Precision

Is it always true that the private information (even costless) is beneficial?

- ▶ Paradoxically, not. On the contrary, in several models insider welfare may decrease with the signal precision!
- ► For example, in price-taking equilibrium of Grossman and Stiglitz [1980], we may have:

We adjust the single period CARA-normal setting

- by allowing an insider to internalize her price impact while maintaining
- the presence of price-taking uniformed traders and liquidity providers
- and consider a linear impact equilibrium.

- We establish existence of the price impact (PI) equilibrium (by getting the unique positive root of a certain cubic equation).
- On information transmission: Market signal becomes fuzzier (as in Kacperczyk et al. [2023]) and equilibrium price less reactive to the public information (as in Lou and Rahi [2023]).
- On insider's welfare: Under insider's price impact, better information always increases her welfare. While, absent a private signal, internalizing price impact always improves her welfare too.
- On the effect of private signal: Price impact may reduce the insider's welfare!
- On uniformed traders' welfare: If being at the same side of trade with the insider, their welfare increases due to price impact with and without private information.

We adjust the single period CARA-normal setting

- by allowing an insider to internalize her price impact while maintaining
- the presence of price-taking uniformed traders and liquidity providers
- and consider a linear impact equilibrium.

- We establish existence of the price impact (PI) equilibrium (by getting the unique positive root of a certain cubic equation).
- On information transmission: Market signal becomes fuzzier (as in Kacperczyk et al. [2023]) and equilibrium price less reactive to the public information (as in Lou and Rahi [2023]).
- On insider's welfare: Under insider's price impact, better information always increases her welfare. While, absent a private signal, internalizing price impact always improves her welfare too.
- On the effect of private signal: Price impact may reduce the insider's welfare
- On uniformed traders' welfare: If being at the same side of trade with the insider, their welfare increases due to price impact with and without private information.

We adjust the single period CARA-normal setting

- by allowing an insider to internalize her price impact while maintaining
- the presence of price-taking uniformed traders and liquidity providers
- and consider a linear impact equilibrium.

- We establish existence of the price impact (PI) equilibrium (by getting the unique positive root of a certain cubic equation).
- On information transmission: Market signal becomes fuzzier (as in Kacperczyk et al. [2023]) and equilibrium price less reactive to the public information (as in Lou and Rahi [2023]).
- On insider's welfare: Under insider's price impact, better information always increases her welfare. While, absent a private signal, internalizing price impact always improves her welfare too.
- On the effect of private signal: Price impact may reduce the insider's welfare!
- On uniformed traders' welfare: If being at the same side of trade with the insider, their welfare increases due to price impact with and without private information.

We adjust the single period CARA-normal setting

- by allowing an insider to internalize her price impact while maintaining
- the presence of price-taking uniformed traders and liquidity providers
- and consider a linear impact equilibrium.

- We establish existence of the price impact (PI) equilibrium (by getting the unique positive root of a certain cubic equation).
- On information transmission: Market signal becomes fuzzier (as in Kacperczyk et al. [2023]) and equilibrium price less reactive to the public information (as in Lou and Rahi [2023]).
- On insider's welfare: Under insider's price impact, better information always increases her welfare. While, absent a private signal, internalizing price impact always improves her welfare too.
- On the effect of private signal: Price impact may reduce the insider's welfare!
- On uniformed traders' welfare: If being at the same side of trade with the insider, their welfare increases due to price impact with and without private information.

We adjust the single period CARA-normal setting

- by allowing an insider to internalize her price impact while maintaining
- the presence of price-taking uniformed traders and liquidity providers
- and consider a linear impact equilibrium.

- We establish existence of the price impact (PI) equilibrium (by getting the unique positive root of a certain cubic equation).
- On information transmission: Market signal becomes fuzzier (as in Kacperczyk et al. [2023]) and equilibrium price less reactive to the public information (as in Lou and Rahi [2023]).
- On insider's welfare: Under insider's price impact, better information always increases her welfare. While, absent a private signal, internalizing price impact always improves her welfare too.
- On the effect of private signal: Price impact may reduce the insider's welfare!
- On uniformed traders' welfare: If being at the same side of trade with the insider, their welfare increases due to price impact with and without private information.

We adjust the single period CARA-normal setting

- by allowing an insider to internalize her price impact while maintaining
- the presence of price-taking uniformed traders and liquidity providers
- and consider a linear impact equilibrium.

- We establish existence of the price impact (PI) equilibrium (by getting the unique positive root of a certain cubic equation).
- On information transmission: Market signal becomes fuzzier (as in Kacperczyk et al. [2023]) and equilibrium price less reactive to the public information (as in Lou and Rahi [2023]).
- On insider's welfare: Under insider's price impact, better information always increases her welfare. While, absent a private signal, internalizing price impact always improves her welfare too.
- On the effect of private signal: Price impact may reduce the insider's welfare!
- On uniformed traders' welfare: If being at the same side of trade with the insider, their welfare increases due to price impact with and without private information.

A Short List of Related Literature

- ▶ Price-impact equilibria: Vayanos [2001] and Rostek and Weretka [2015], Malamud and Rostek [2017] and Anthropelos and Kardaras [2024] Bergemann et al. [2021]
- ▶ Information acquisition: Vives [2011], Rostek and Weretka [2012] and Vives [2014], Nezafat and Schroder [2023], Kacperczyk et al. [2023], Lou and Rahi [2023].
- ▶ Information sharing: Goldstein et al. [2023] and Indjejikian et al. [2014]).

The Model

There is one period and

- a risky asset with terminal payoff $X \sim N(0,1)$ and supply $\Pi > 0$.
- An insider I who obtains a private signal G taking the form

$$G = X + Z_I;$$
 $Z_I = \frac{1}{\sqrt{p_I}} \mathcal{E}_I,$

where $\mathcal{E}_I \sim N(0,1)$ is independent of X and $p_I > 0$ is the signal precision.

- There is also a mass of price-takers uniformed traders whose representative agent is called U.
- Both I and U have exponential preferences with risk tolerances α_I and α_U .
- Lastly, there are **liquidity providers** (noise traders), denoted by *N*, with exogenous demand

$$Z_N = \frac{1}{\sqrt{p_N}} \mathcal{E}_N,$$

where $\mathcal{E}_N \sim N(0,1)$ is independent of both X and \mathcal{E}_I .

The Model, cont'd

• I and U are endowed with share **initial positions** $\{\pi_{i,0}\}$, which are assumed Pareto optimal absent private information

$$\pi_{i,0} = \alpha_i \widehat{\Pi} \quad i \in \{I, U\}, \qquad \widehat{\Pi} := \frac{\Pi}{\alpha_I + \alpha_U}.$$

ullet Writing the to-be-determined equilibrium price as p, the **terminal wealth** is

$$\mathcal{W}^{\pi_i} := \pi_{i,0} p + \pi_i (X - p); \qquad i \in \{I, U\}.$$

• The equilibrium clearing condition is

$$\Pi = \alpha_I \widehat{\psi}_I + \alpha_U \widehat{\psi}_U + Z_N,$$

where

$$\widehat{\psi}_i := \frac{\widehat{\pi}_i}{\alpha_i}; \qquad i \in \{I, U\}.$$

The Model, cont'd

• I and U are endowed with share **initial positions** $\{\pi_{i,0}\}$, which are assumed Pareto optimal absent private information

$$\pi_{i,0} = \alpha_i \widehat{\Pi} \quad i \in \{I, U\}, \qquad \widehat{\Pi} := \frac{\Pi}{\alpha_I + \alpha_U}.$$

ullet Writing the to-be-determined equilibrium price as p, the **terminal wealth** is

$$\mathcal{W}^{\pi_i} := \pi_{i,0} p + \pi_i (X - p); \qquad i \in \{I, U\}.$$

• The equilibrium clearing condition is

$$\Pi = \alpha_I \widehat{\psi}_I + \alpha_U \widehat{\psi}_U + Z_N,$$

where

$$\widehat{\psi}_i := \frac{\widehat{\pi}_i}{\alpha_i}; \qquad i \in \{I, U\}$$

The Model, cont'd

• I and U are endowed with share **initial positions** $\{\pi_{i,0}\}$, which are assumed Pareto optimal absent private information

$$\pi_{i,0} = \alpha_i \widehat{\Pi} \quad i \in \{I, U\}, \qquad \widehat{\Pi} := \frac{\Pi}{\alpha_I + \alpha_U}.$$

• Writing the to-be-determined equilibrium price as p, the **terminal wealth** is

$$W^{\pi_i} := \pi_{i,0}p + \pi_i(X - p); \qquad i \in \{I, U\}.$$

• The equilibrium clearing condition is

$$\Pi = \alpha_I \widehat{\psi}_I + \alpha_U \widehat{\psi}_U + Z_N,$$

where

$$\widehat{\psi}_i := \frac{\widehat{\pi}_i}{\alpha_i}; \quad i \in \{I, U\}.$$

Equilibrium Construction

We seek a linear impact equilibrium: The insider perceives that if she changes her position from $\pi_{I,0}=\alpha_I\psi_{I,0}$ to $\pi_I=\alpha_I\psi_I$, then the price will be an affine function of her trade combined with the noise trader demand,

$$p_{\iota}(\psi_{I}, Z_{N}) = V + M \left(\psi_{I} - \psi_{I,0} + \frac{Z_{N}}{\alpha_{I}}\right),$$

for constants V, M that are determined in equilibrium. The insider's optimal demand for any fixed M and V:

$$\inf_{\psi \in \mathcal{A}_I} \mathbb{E} \left[e^{-\psi_{I,0} \rho_{\iota}(\psi, Z_N) - \psi(X - \rho_{\iota}(\psi, Z_N))} \middle| \sigma(G, Z_N) \right]$$

The uniformed trader's demand

$$\inf_{\psi \in \sigma(H_{\iota})} \mathbb{E}\left[e^{-\psi(X-p_{\iota}(H_{\iota}))} \middle| \sigma(H_{\iota})\right],$$

where the public signal is

$$H_{\iota} := G + \Lambda_{\iota} Z_N = X + Z_I + \Lambda_{\iota} Z_N.$$

Note that it has the same form as insider's signal G (except with lower precision),

Equilibrium Construction

We seek a linear impact equilibrium: The insider perceives that if she changes her position from $\pi_{I,0}=\alpha_I\psi_{I,0}$ to $\pi_I=\alpha_I\psi_I$, then the price will be an affine function of her trade combined with the noise trader demand,

$$p_{\iota}(\psi_{I}, Z_{N}) = V + M \left(\psi_{I} - \psi_{I,0} + \frac{Z_{N}}{\alpha_{I}}\right),$$

for constants V, M that are determined in equilibrium. The insider's optimal demand for any fixed M and V:

$$\inf_{\psi \in \mathcal{A}_I} \mathbb{E}\left[e^{-\psi_{I,0}p_{\iota}(\psi,Z_N) - \psi(X - p_{\iota}(\psi,Z_N))} \middle| \sigma(G,Z_N)\right].$$

The uniformed trader's demand

$$\inf_{\psi \in \sigma(H_{\iota})} \mathbb{E}\left[e^{-\psi(X-p_{\iota}(H_{\iota}))} \middle| \sigma(H_{\iota})\right],$$

where the public signal is

$$H_{\iota} := G + \Lambda_{\iota} Z_N = X + Z_I + \Lambda_{\iota} Z_N.$$

Note that it has the same form as insider's signal G (except with lower precision),

Equilibrium Construction

We seek a linear impact equilibrium: The insider perceives that if she changes her position from $\pi_{I,0}=\alpha_I\psi_{I,0}$ to $\pi_I=\alpha_I\psi_I$, then the price will be an affine function of her trade combined with the noise trader demand,

$$p_{\iota}(\psi_{I}, Z_{N}) = \mathbf{V} + \mathbf{M} \left(\psi_{I} - \psi_{I,0} + \frac{Z_{N}}{\alpha_{I}} \right),$$

for constants V, M that are determined in equilibrium. The insider's optimal demand for any fixed M and V:

$$\inf_{\psi \in \mathcal{A}_I} \mathbb{E}\left[e^{-\psi_{I,0}p_{\iota}(\psi,Z_N) - \psi(X - p_{\iota}(\psi,Z_N))} \middle| \sigma(G,Z_N)\right].$$

The uniformed trader's demand

$$\inf_{\psi \in \sigma(H_{\iota})} \mathbb{E}\left[e^{-\psi(X-p_{\iota}(H_{\iota}))} \middle| \sigma(H_{\iota})\right],$$

where the public signal is

$$H_{\iota} := G + \Lambda_{\iota} Z_{N} = X + Z_{I} + \Lambda_{\iota} Z_{N}.$$

Note that it has the same form as insider's signal G (except with lower precision).

Equilibrium Existence

Theorem

The equilibrium price is of the form $p_{\iota}(H_{\iota})$, for the price function

$$p_{\iota}(h_{\iota})=p_0+rac{p_I\widehat{y}}{\left(1+p_I
ight)\left(1+2\widehat{y}
ight)}\left(h_{\iota}-p_0
ight),$$

where p_0 is the equilibrium price without private signal and price impact and \widehat{y} is the unique positive solution of a certain cubic. The insider has optimal policy $\widehat{\pi}_{I,\iota} = \widehat{\psi}_{I,\iota}(G, Z_N)/\alpha_I$ where

$$\widehat{\psi}_{I,\iota}(g,z) = rac{1}{1+\widehat{y}} \left(p_I g - (1+p_I) p_\iota(h_\iota(g,z)) - \widehat{y} p_0
ight).$$

The uninformed agent has optimal policy $\widehat{\pi}_{U,\iota} = \widehat{\psi}_{U,\iota}(H_{\iota})/\alpha_U$ where

$$\widehat{\psi}_{U,\iota}(h_\iota) = p_{U,\iota}h_\iota - (1+p_{U,\iota})p_\iota(h_\iota).$$

✓ Since, the uniformed trader recognizes the insider's price impact, the price-taking and price-impact equilibria cannot coincide.

Equilibrium Existence

Theorem

The equilibrium price is of the form $p_{\iota}(H_{\iota})$, for the price function

$$p_{\iota}(h_{\iota})=p_0+rac{p_I\widehat{y}}{\left(1+p_I
ight)\left(1+2\widehat{y}
ight)}\left(h_{\iota}-p_0
ight),$$

where p_0 is the equilibrium price without private signal and price impact and \widehat{y} is the unique positive solution of a certain cubic. The insider has optimal policy $\widehat{\pi}_{I,\iota} = \widehat{\psi}_{I,\iota}(G, Z_N)/\alpha_I$ where

$$\widehat{\psi}_{I,\iota}(g,z) = rac{1}{1+\widehat{y}} \left(p_I g - (1+p_I) p_\iota(h_\iota(g,z)) - \widehat{y} p_0
ight).$$

The uninformed agent has optimal policy $\widehat{\pi}_{U,\iota} = \widehat{\psi}_{U,\iota}(H_{\iota})/\alpha_U$ where

$$\widehat{\psi}_{U,\iota}(h_\iota) = p_{U,\iota}h_\iota - (1+p_{U,\iota})p_\iota(h_\iota).$$

✓ Since, the uniformed trader recognizes the insider's price impact, the price-taking and price-impact equilibria cannot coincide.

Comparison Analysis

Our comparison analysis works in two directions: with and without price impact and with and without asymmetric information. For this, we also consider

- the price-taking equilibrium (where insider doesn't exploit her price impact) and
- the no-signal equilibrium $(p_I \rightarrow 0)$ with and without price impact.

Signals and price sensitivity

- \checkmark Price impact decreases the precision of the public signal: $p_{U,\iota} \leq p_U$.
- ✓ The equilibrium price is less sensitive to the market signal in the price-impact equilibria: The slope of p_t wrt h_t is lower than the slope of p wrt to h.

Hence.

by assuming the insider is a price taker, one overestimates the quality of the public signal and the reactivity of equilibrium prices.

Comparison Analysis

Our comparison analysis works in two directions: with and without price impact and with and without asymmetric information. For this, we also consider

- the price-taking equilibrium (where insider doesn't exploit her price impact) and
- ullet the no-signal equilibrium $(p_I o 0)$ with and without price impact.

Signals and price sensitivity

- ✓ Price impact decreases the precision of the public signal: $p_{U,\iota} \leq p_U$.
- ✓ The equilibrium price is less sensitive to the market signal in the price-impact equilibria: The slope of p_{ι} wrt h_{ι} is lower than the slope of p wrt to h.

Hence,

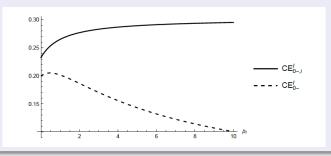
by assuming the insider is a price taker, one overestimates the quality of the public signal and the reactivity of equilibrium prices.

Comparison Analysis on Welfare

Following the standard literature, we calculate and compare the certainty equivalents (CEs) of traders at all equilibria:

For $k \in \{ , \iota \}$ the interim CEs are

$$\begin{aligned} & \text{CE}_{0,k}^{I} = -\alpha_{I} \log \left(\mathbb{E} \left[e^{-(1/\alpha_{I})\widehat{W}_{I,k}} \middle| \sigma(G, H_{k}) \right] \right), \\ & \text{CE}_{0,k}^{U} = -\alpha_{U} \log \left(\mathbb{E} \left[e^{-(1/\alpha_{U})\widehat{W}_{U,k}} \middle| \sigma(H_{k}) \right] \right), \end{aligned}$$

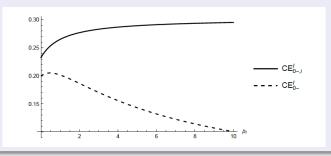

while the ex-ante CEs are

$$\mathrm{CE}_{0-,k}^{j} = -\alpha_{j} \log \left(\mathbb{E} \left[\mathrm{e}^{-(1/\alpha_{j})\widehat{W}_{j,k}} \right] \right); \qquad j \in \{I,U\},$$

where $\widehat{\mathcal{W}}_{i,k}$ denotes the terminal wealth at each equilibrium.

Signal and insider's welfare

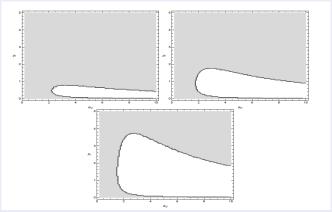
- \checkmark $CE'_{0-,\iota}$ is strictly increasing in the precision p_l (this is not the case for CE'_{0-}).
 - Here is a simple example



Price impact and traders' welfare

- ✓ Price impact benefits uniformed trader: $CE_{0-,\iota}^U \ge CE_{0-}^U$.
- ✓ Both $CE'_{0-,\iota} > CE'_{0-}$ and $CE'_{0-,\iota} < CE'_{0-}$ are possible.

Signal and insider's welfare


- \checkmark $CE'_{0-,\iota}$ is strictly increasing in the precision p_l (this is not the case for CE'_{0-}).
 - Here is a simple example

Price impact and traders' welfare

- ✓ Price impact benefits uniformed trader: $CE_{0-,\iota}^U \ge CE_{0-}^U$.
- ✓ Both $CE'_{0-,\iota} > CE'_{0-}$ and $CE'_{0-,\iota} < CE'_{0-}$ are possible.

Price impact may reduce insider's welfare!

The white region is where $CE'_{0-,\iota} < CE'_{0-}$.

 \checkmark When uninformed is close to risk neutrality and signal has modest quality, then the welfare may decrease.

This holds when insider is sufficiently risk averse and $\alpha_{II}^2 p_N > (1/p_I) + 1$.

Welfare in the absence of private information

$$\lim_{p_l \to 0} \mathrm{CE}_0^I(G, Z_N) \quad < \quad \lim_{p_l \to 0} \mathrm{CE}_{0,\iota}^I(G, Z_N).$$

$$\lim_{p_l \to 0} \mathrm{CE}_0^U(H) \quad < \quad \lim_{p_l \to 0} \mathrm{CE}_{0,\iota}^U(H_\iota)$$

✓ Both traders' interim welfare a.s. increases due to price impact.

Homogeneous case

In fact, assuming no private signal and $\alpha_U = \alpha_I$, we have the following a.s. order of interim CEs

$$CE_{0,\iota}^U > CE_{0,\iota}^I > CE_0^U = CE_0^I.$$

Welfare in the absence of private information

$$\lim_{p_l \to 0} \mathrm{CE}_0^I(G, Z_N) \quad < \quad \lim_{p_l \to 0} \mathrm{CE}_{0,\iota}^I(G, Z_N).$$

$$\lim_{p_l \to 0} \mathrm{CE}_0^U(H) \quad < \quad \lim_{p_l \to 0} \mathrm{CE}_{0,\iota}^U(H_\iota)$$

✓ Both traders' interim welfare a.s. increases due to price impact.

Homogeneous case

In fact, assuming no private signal and $\alpha_U=\alpha_I$, we have the following a.s. order of interim CEs

$$CE_{0,\iota}^{U} > CE_{0,\iota}^{I} > CE_{0}^{U} = CE_{0}^{I}.$$

Qualitative Comments on Equilibrium Structure

Analysis on the prices and allocations on different equilibria indicates the following messages:

- For both the PT and PI equilibria, private signal is expected to increase the insider's demand and price (albeit with a lower change in the PI equilibrium) and decrease the uniformed trader's. demand.
- Price impact with no signal results in a lower (resp. higher) equilibrium position for the insider (resp. uniformed trader) at a better price.
- Due to price impact, a sufficiently low (resp. high) risk tolerant insider is expected to buy less (resp. more) units at a better price, while uniformed trader buys more (resp. less).

- ► The informed trader together with her asymmetric information possesses market power due to her size.
- We model insider's price impact as her revealing a strategically chosen signal to the market.
- We show the existence of equilibrium when the uniformed traders act as price-takers (but they do take into account the insider's strategy).
- At this model, better signal means better welfare for the insider, while price impact is not always a beneficial structure for her.
- ▶ When informed and uniformed traders are at the same side of trading, price impact increases their total welfare from trading.
- ✓ Note that although the main analysis considers one asset and Pareto-allocated initial endowments, the paper develops the model with more assets and general traders' initial positions.

- ► The informed trader together with her asymmetric information possesses market power due to her size.
- We model insider's price impact as her revealing a strategically chosen signal to the market.
- We show the existence of equilibrium when the uniformed traders act as price-takers (but they do take into account the insider's strategy).
- At this model, better signal means better welfare for the insider, while price impact is not always a beneficial structure for her.
- ▶ When informed and uniformed traders are at the same side of trading, price impact increases their total welfare from trading.
- ✓ Note that although the main analysis considers one asset and Pareto-allocated initial endowments, the paper develops the model with more assets and general traders' initial positions.

- ▶ The informed trader together with her asymmetric information possesses market power due to her size.
- ▶ We model insider's price impact as her revealing a strategically chosen signal to the market.

- イロト イ団ト イミト イミト

- ➤ The informed trader together with her asymmetric information possesses market power due to her size.
- ► We model insider's price impact as her **revealing a strategically chosen signal** to the market.
- ▶ We show the **existence** of equilibrium when the uniformed traders act as price-takers (but they do take into account the insider's strategy).
- ▶ At this model, better signal means better welfare for the insider, while price impact is not always a beneficial structure for her.
- ▶ When informed and uniformed traders are at the same side of trading, price impact increases their total welfare from trading.
- ✓ Note that although the main analysis considers one asset and Pareto-allocated initial endowments, the paper develops the model with more assets and general traders' initial positions.

- ➤ The informed trader together with her asymmetric information possesses market power due to her size.
- ► We model insider's price impact as her **revealing a strategically chosen signal** to the market.
- ▶ We show the **existence** of equilibrium when the uniformed traders act as price-takers (but they do take into account the insider's strategy).
- ▶ At this model, better signal means better welfare for the insider, while price impact is not always a beneficial structure for her.
- ▶ When informed and uniformed traders are at the same side of trading, price impact increases their total welfare from trading.
- ✓ Note that although the main analysis considers one asset and Pareto-allocated initial endowments, the paper develops the model with more assets and general traders' initial positions.

- ➤ The informed trader together with her asymmetric information possesses market power due to her size.
- ► We model insider's price impact as her **revealing a strategically chosen signal** to the market.
- ▶ We show the **existence** of equilibrium when the uniformed traders act as price-takers (but they do take into account the insider's strategy).
- ► At this model, better signal means better welfare for the insider, while price impact is not always a beneficial structure for her.
- ▶ When informed and uniformed traders are at the same side of trading, **price impact increases their total welfare from trading**.
- ✓ Note that although the main analysis considers one asset and Pareto-allocated initial endowments, the paper develops the model with more assets and general traders' initial positions.

- ➤ The informed trader together with her asymmetric information possesses market power due to her size.
- ▶ We model insider's price impact as her **revealing a strategically chosen signal** to the market.
- ▶ We show the **existence** of equilibrium when the uniformed traders act as price-takers (but they do take into account the insider's strategy).
- ▶ At this model, better signal means better welfare for the insider, while price impact is not always a beneficial structure for her.
- ▶ When informed and uniformed traders are at the same side of trading, **price** impact increases their total welfare from trading.
- ✓ Note that although the main analysis considers one asset and Pareto-allocated initial endowments, the paper develops the model with more assets and general traders' initial positions.

Thank you for your attention! anthropel@unipi.gr

The latest version of the paper is available at ssrn.