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Motivation: Interval Censored Data

Measuring continuous variables by intervals

- reduce nonresponse / reflect measurement error

[lustration: Wealth and Assets Survey in the UK

- asset holdings by intervals

Why is it relevant?
- widespread?

- distort genuine dependence between variables

1Survey of Consumer Finances, Health&Retirement Survey, .PSID, ...



This Project: Linear Moments

How to estimate single coefficient when
- outcome and covariate interval censored

- linear specification with instruments
Illustration: UK Wealth and Assets Survey
risky;; = Bwealthj + ycontrolsy + «; + €j with E[instrupe;] =0

— risky;; and wealth;; by intervals

— compare estimates /3 across pop. (const. rel. risk aversion?)



Preview of Results: Features

Illustration: compare UK wealth elasticity

Feature:

interval both

fixed effects



Preview of Results: Issues

Illustration: compare UK wealth elasticity

Feature: Technical issue:

interval both nonconvex

one coeff subvector

discrete iv E

fixed effects transformation ‘




Preview of Results: Solutions

Illustration: compare UK wealth elasticity

Feature: Technical issue: Attack:

; BMM
interval both

(new

) —
pofiing support

(new

fixed effects transformation FD vs FO




Preview of Results: Roadmap

Illustration: UK wealth elasticity 1, like Italy unlike Sweden

Feature: Technical issue: Attack:

BMM

one coeff profiling support‘

transformation FD vs FO

discrete instru

fixed effects




Related Literature

Interval Covariate:

Interval Outcome;:

Interval Both:

BMM: Beresteanu, Molchanov, Molinari ('11) convex dual set

my paper: closed-form support function + profiling support
+ regularization 4+ work out panel data application

Moment Inequalities:
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Outline

PART I: IDENTIFICATION

(1) interval both: from nonconvex to convex (dual)

(2) one coeff: from all to subvector (profiling support)

PART II: ESTIMATION

(3) discrete instru: from kinks=nonpivotal to pivotal (regu’tion)

PART III: ILLUSTRATION

(4) fixed-effects: from cross section to panel (FD vs. FO)



PART I: IDENTIFICATION

- Setup

- Identified set:

- Auxiliary set:

- Support function:

- Subvector profiling:

nonconvex
convex

all coeff
one coeff



Setup

Linear specification:

y'=xB+z'v+u

interval censored outcome: y* € [Z’ 7]

interval censored covariate: x* € [5, Y]

- control covariates: z
Lx1
- instrumental variables: E(wu)= 0
Mx1
- data: {X,-a?iaéia?hzia witi, iid

Midpoint is a nonstarter

Challenge #1: characterize observationally equivalent 3
Attack: profiling convex dual set



Identified Set: O,

Observationally equivalent § = (3, ~)
Q) ={0 e R™LE[w(y* —x*B—zy)]= 0
Mx1
yoely,yl,x* € [x,x]}
Identified set may be nonconvex

Why is nonconvex inconvenient?



Auxiliary Dual Set: Sy,

Fix coefficients at 6,

Sy, :={s¢€ RM: s = E[w(y™ — x* B — z714)]

Mx1
Vel X € xR}

Auxiliary dual set is convex (verify)
Compare: from nonconvex ©; to convex Sy,

0, :={fcR': 0 =E[w(y* — x*8 — z7)]

Mx1

Y el ylxT e x X1}



Auxiliary Dual Set as a Support Function: g — dg, (q)

Write convex set as a function

d9,(q) := sup q's, for g € S=sphere in RM
5659*

draw support function
Characterization as infinite moment inequalities (BMM):

0, € ©iff 0 < dp,(q) for each g €S

Characterization using midpoints and half-lenghts (new)

69*(q) = E[qTW(yc — Xy — Z’Y*)] + EHqTWAyH + E”qTWAXﬁ*”

where yc, xc midpoints; Ay, A, half-lengths



Subvector Profiling

Only (3 is relevant

B € ©; iff 0 < 85, o(q) for each g € S such that E(zw ' q) = Lgl

Characterization as constrained optimization (new):

By €O, iff 0 < mindg, o(q) st E(zw'q)= 0
qes X

Compare BMM infinite moment inequalities:

(Bs,7s) €Oy iff 0 < 8, ,,(q) = sup q's for each g€ S
s€Sy,



- Setup

- ldentified set: nonconvex
- Auxiliary set: convex

- Support function:  all coeff

- Subvector profiling: one coeff

PART Il: ESTIMATION

Estimation problem

Asymptotic distribution: nonpivotal
Discrete controls and regularization

- Regularized asymptotic distribution:  pivotal
- Estimation method

- Monte Carlo



Estimation Problem

Interval estimator from inverting test statistic
Alternative 1: 0 in grid R such that §g(dn) > cvy
Alternative 2: 3 in grid R such that 3570(@,) > cvg

Both cvs computationally expensive, even second grid line

Challenge #2: construct test statistic with pivotal distribution

Attack: minimizing directions are binding moments



Asymptotic Distribution

Sample analog

indp(q) ~ Lg := min G hen 0 € 95,
ﬁr;elg 0(q) ~ Ly min (q) when o

where Qy = arg minges dg(q)= set pop. minimizing directions

(a) Q¢ when 0 is (b) Qo when Ois ex- (c) Qg when 0 is kink
smooth posed

Takeaway: indexing binding moments =nonpivotal



Discrete Controls and Regularization

Why nonpivotal?
kink at zero = multiple minimizing directions
= infinitely many binding moments
Discrete instruments responsible for kinks
Fix unique minimizing direction g, by regularization

g = lim argmin dp(q) + kpen(q) such that g, € Q.
k—0 ges

q — pen(k) makes seq. strictily convex programms



Regularized Asymptotic Distribution

Let g, denote a penalized sample minimizing direction
G, 1= arg Teig 89((]) + kq' &, where 5. = Ep[w(ye — xc8 — z7)]

If rate condition on « hold, then (new)

\/ESH(an,n) ~ ./\/(0, avar(q*)) when 0 € 905y

Takeaway: pivotal after standardization



Estimation One Coeff

Penalized sample direction
A . Y Ta o T _
Gn,r 1= argmin 080(q) + kg S s.t. Ep(ziw; q) =0

Test statistic:

Sn(8n )
avar(Gn..)

Tn,n(ﬁ) - \/E
Test inversion:
B in grid R! such that T, .(8) > cvg = normal quantile

- computationally " cheaper”: cv same for every (8
- penalized vs. unpenalized minimand

- (" uniform™) asymptotic validity



Monte Carlo: Races and Horses

Races: three DGPs, only outcome is censored

- Exogenous: binary exogenous covariate (kinks and flats)
- Endogenous: binary instrumental variable (kinks and flats)

- Mixture: discrete-continuous exo. covariate (kinks and smooth)

Horses: four estimators

penalized sample direction (our test)

naive sample analog

subsampling

generalized moment selection (gms)



Monte Carlo: Selected Results

Percentage of Rejections (n = 1, 000) - full parameter inference

Experiment Test Interior Frontier Exterior Time
9 99 1 1.01 11 (100th of s)

Our Test k = 10 0.00 3.80 5.80 7.30 62.50 11.39

Our Test k =1 0.00 4.50 6.50 8.90 65.40 11.39

Our Test kK = 0.1 0.10 6.70 9.60 12.20 67.70 11.39

Exogeneous Naive 0.10 6.80 9.60 12.30 67.80 11.34
Subs 0.00 0.00 0.00 0.00 0.30 92.53

GMS 0.00 1.50 2.10 3.50 39.70 203.44

Our Test k = 10 0.00 3.70 5.40 7.30 59.80 11.35

Our Test k = 1 0.10 4.00 5.50 7.90 61.20 11.35

Our Test kK = 0.1 0.10 5.50 7.60 10.30 63.20 11.35

Endogeneous Naive 0.10 5.50 7.60 10.40 63.20 11.20
Subs 0.00 0.10 0.00 0.00 0.60 115.67

GMS 0.00 1.40 2.20 3.10 39.00 202.25

Our Test k = 10 0.10 6.20 8.90 10.70 67.80 76.19

Our Test k =1 0.80 9.70 12.10 15.70 71.60 76.19

Our Test k = 0.1 0.80 9.40 12.00 14.70 71.10 76.19

Mixture Naive 0.80 9.40 12.00 14.70 71.10 79.95
Subs 0.00 0.10 0.10 0.10 2.90 264.26

GMS 0.00 1.80 2.50 3.50 39.80 247.75

The frontier point is a kink point



- Setup

- ldentified set: nonconvex
- Auxiliary set: convex

- Support function:  all coeff

- Subvector profiling: one coeff

- Estimation problem

- Asympotitic distribution: nonpivotal
- Discrete controls (kinks) and regularization
- Regularized asymptotic distribution: pivotal

- Estimation method
- Monte Carlo

PART Ill: ILLUSTRATION

- Panel Linear Moment Model
- Wealth and Assets Survey
- Empirical Results



Panel Linear Moment Model

E[W,"H(Y} = X5~ Z 'y — 17a)] = 0

Coeff of interest is 3 (if =1 constant relative risk aversion)

- Y log risky asset holdings household i
Tx1

- XF log financial wealth
Tx1

- H such that H11 = 0 and upper-triangular
(T-1)xT

- W lower, upper wealth, age, age-sq, hou'ld size,
Mx(T-1)

time dummies

Same across populations? ltaly=constant, Sweden=decreasing,
UK="?



Wealth and Assets Survey

Biennial panel survey on GB households: 2006/07 to 2014/15

Financial asset holdings (26 cat.) measured by intervals (some
exact)

Aggregate into

- risky asset holdings (add 5 cat.)
- financial wealth (+ 21 other cat.)

Table 1:Sample Descriptive Statistics



Table 1: Sample Descriptive Statistics

average average
Wave riskyy it risky i % Censored wealthy wealthy; % Censored
2006/07 9.90 10.02 16.18% 11.65 11.76 32.36%
2008/09 9.68 9.88 22.88% 11.63 11.75 31.92%
2010/11 9.84 9.94 12.09% 11.76 11.81 19.82%
2012/13 9.95 10.03 10.03% 11.98 11.96 17.63%
2014/15 10.06 10.17 10.05% 12.01 12.09 18.80%

Source: UK Wealth and Assets Survey Waves 1 to 5. The sample consists only of households reporting positive
risky assets holdings during the five waves. Risky asset holdings and financial wealth are in log sterling pound scale.
Number of households n = 686.



Results: First Exercise

Table 2: Alternative Estimates for the Financial Wealth Elastiticity of Household Risky Assets Demand

RG] ® @ © @)
POLS POLS FD imp. FD uncen. FD FO

wealth [0.78,1.24]  [0.73,1.11]
age X v v v v v
age? /100 X v v v v v
household size X v v v v '
year 07/08 X v v v v '
year 09/10 X v v ' v v
year 11/12 X v ' ' v '
year 13/14 X v v v v v
Constant v v X X X X

Note: Same specification as in Chiappori and Paiella (2011, Relative Risk Aversion is Constant: Evidence from
Panel Data, JEEA)



Results: Fragility Checks

Table 2: Alternative Estimates for the Financial Wealth Elastiticity of Household Risky Assets Demand

) 2) ® @ © @)
POLS POLS FD imp. FD uncen. FD FO
wealth 1.14 1.15 .99 .86
[110,1.18]  [1.11,1.20]  [90,1.07]  [75,.97]  [0.78,1.24]  [0.73,1.11]
age X v v v v '
age? /100 X v v v v v
ho'hold size X v ' ' v v
year 07/08 X v v v v v
year 09/10 X v v v v v
year 11/12 X v v v v v
year 13/14 X v ' v v v
Constant v v X X X X




CONCLUSIONS

Motivation: interval censored outcome and covariate
Question (how to):  estimate one coefficient in linear moment

- point estimators are invalid
- valid interval estimator by inverting m-type test statistic

- tractable computation by leveraging linearity

lllustration: UK Wealth and Assets Panel Data



