Linear Models with Interval Censored Variables

Christian Bontemps Thierry Magnac David Pacini chistian.bontemps@tse-fr.eu
 thierry.magnac@tse-fr.eu
 david.pacini@bristol.ac.uk

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

27 August 2024

Motivation: Interval Censored Data

Measuring continuous variables by intervals

- reduce nonresponse / reflect measurement error

Illustration: Wealth and Assets Survey in the UK

- asset holdings by intervals

Why is it relevant?

- widespread¹
- distort genuine dependence between variables

¹Survey of Consumer Finances, Health&Retirement Survey, PSID,... = oqc

This Project: Linear Moments

How to estimate single coefficient when

- outcome and covariate interval censored
- linear specification with instruments

Illustration: UK Wealth and Assets Survey

$$risky_{it} = \beta wealth_{it} + \gamma controls_{it} + \alpha_i + \epsilon_{it} \text{ with } \mathbb{E}[instru_{it}\epsilon_{it}] = 0$$

- riskyit and wealthit by intervals
- compare estimates β across pop. (const. rel. risk aversion?)

Preview of Results: Features

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Illustration: compare UK wealth elasticity

Feature:

interval both

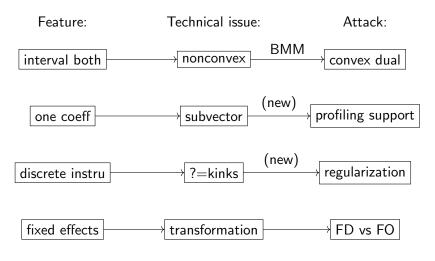


discrete iv

Preview of Results: Issues

Illustration: compare UK wealth elasticity

interval both nonconvex



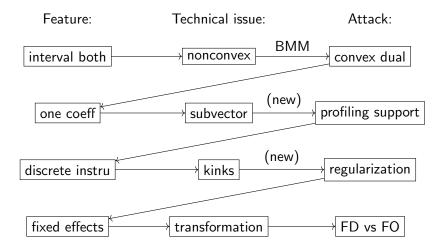

Preview of Results: Solutions

Illustration: compare UK wealth elasticity

Preview of Results: Roadmap

Illustration: UK wealth elasticity 1, like Italy unlike Sweden

Related Literature

Interval Covariate:

. . .

. . .

. . .

Interval Outcome:

Interval Both: BMM: Beresteanu, Molchanov, Molinari ('11) convex dual set my paper: closed-form support function + profiling support + regularization + work out panel data application

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Moment Inequalities:

Related Literature

Interval Covariate:

Hsiao ('83); Manksi and Tamer ('02)

Interval Outcome:

Stewart('83); Beresteanu and Molinari ('08); Bontemps, Magnac, Maurin ('11)

Interval Both:

Beresteanu, Molchanov, Molinari ('11); my paper

Moment Inequalities:

Andrews and co. ('10,'13); Cho and Russell ('18); Gafarov ('19); reviews by Canay and co. ('17, '24)

Outline

PART I: IDENTIFICATION

- (1) interval both: from nonconvex to convex (dual)
- (2) one coeff: from all to subvector (profiling support)

PART II: ESTIMATION

(3) discrete instru: from kinks=nonpivotal to pivotal (regu'tion)

PART III: ILLUSTRATION

(4) fixed-effects: from cross section to panel (FD vs. FO)

PART I: IDENTIFICATION

- Setup
- Identified set: nonconvex
- Auxiliary set: convex
- Support function: all coeff
- Subvector profiling: one coeff

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Setup

Linear specification:

$$y^{\star} = x^{\star}\beta + z^{\top}\gamma + u$$

- interval censored outcome:
- interval censored covariate:
- control covariates:
- instrumental variables:
- data:

$$y^{\star} \in [\underline{y}, \overline{y}]$$

$$x^{\star} \in [\underline{x}, \overline{x}]$$

$$\mathbb{E}(wu) = \underset{M \times 1}{0}$$

$$\{\underline{y}_{i}, \overline{y}_{i}, \underline{x}_{i}, \overline{x}_{i}, z_{i}, w_{i}\}_{i=1}^{n} \text{ iid}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Midpoint is a nonstarter

Identified Set: Θ_I

Observationally equivalent $\theta = (\beta, \gamma)$

$$\Theta_{I} := \{ \theta \in \mathbb{R}^{1+L} : \mathbb{E}[w(y^{\star} - x^{\star}\beta - z\gamma)] = \underset{M \times 1}{0}$$
$$, y^{\star} \in [\underline{y}, \overline{y}], x^{\star} \in [\underline{x}, \overline{x}] \}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Identified set may be nonconvex

Why is nonconvex inconvenient?

Auxiliary Dual Set: S_{θ_*}

Fix coefficients at θ_{\star}

$$\begin{split} \mathcal{S}_{\theta_{\star}} &:= \{ s \in \mathbb{R}^{M} : \underset{M \times 1}{s} = \mathbb{E}[w(y^{\star} - x^{\star}\beta_{\star} - z\gamma_{\star})] \\ &, y^{\star} \in [\underline{y}, \overline{y}], x^{\star} \in [\underline{x}, \overline{x}] \} \end{split}$$

Auxiliary dual set is convex (verify)

 $\theta_{\star} \in \Theta_{I} \text{ iff } 0 \in S_{\theta_{\star}}$

Compare: from nonconvex Θ_I to convex S_{θ_*}

$$\Theta_{I} := \{ \theta \in \mathbb{R}^{1+L} : \underset{M \times 1}{0} = \mathbb{E}[w(y^{\star} - x^{\star}\beta - z\gamma)]$$
$$, y^{\star} \in [\underline{y}, \overline{y}], x^{\star} \in [\underline{x}, \overline{x}] \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Auxiliary Dual Set as a Support Function: $q \mapsto \delta_{\theta_{\star}}(q)$

Write convex set as a function

$$\delta_{ heta_{\star}}(q) := \sup_{s \in S_{ heta_{\star}}} q^{ op} s, ext{ for } q \in \mathbb{S} ext{=sphere in } \mathbb{R}^M$$

draw support function

Characterization as infinite moment inequalities (BMM):

$$heta_{\star} \in \Theta_{I}$$
 iff $0 \leq \delta_{ heta_{\star}}(q)$ for each $q \in \mathbb{S}$

Characterization using midpoints and half-lenghts (new)

$$\delta_{\theta_{\star}}(q) = \mathbb{E}[q^{\top}w(y_c - x_c\beta_{\star} - z\gamma_{\star})] + \mathbb{E}[|q^{\top}w\Delta_y|] + \mathbb{E}[|q^{\top}w\Delta_x\beta_{\star}|]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where y_c, x_c midpoints; Δ_y, Δ_x half-lengths

Subvector Profiling

Only β is relevant

 $\beta_{\star} \in \Theta_{I}$ iff $0 \leq \delta_{\beta_{\star},0}(q)$ for each $q \in \mathbb{S}$ such that $\mathbb{E}(zw^{\top}q) = \underset{L \times 1}{0}$

Characterization as constrained optimization (new):

$$eta_{\star}\in \Theta_I ext{ iff } 0\leq \min_{q\in \mathbb{S}}\delta_{eta_{\star},0}(q) \quad ext{s.t. } \mathbb{E}(zw^{ op}q)= egin{smallmatrix}0\L imes 1\end{pmatrix}$$

Compare BMM infinite moment inequalities:

$$(eta_\star,\gamma_\star)\in \Theta_I ext{ iff } 0\leq \delta_{eta_\star,\gamma_\star}(q)=\sup_{s\in S_{ heta_\star}}q^ op s ext{ for each } q\in \mathbb{S}$$

- Setup
- Identified set: nonconvex
- Auxiliary set: convex
- Support function: all coeff
- Subvector profiling: one coeff

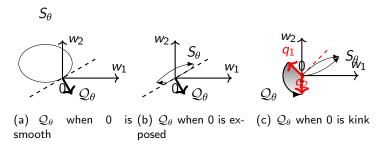
PART II: ESTIMATION

- Estimation problem
- Asymptotic distribution: nonpivotal
- Discrete controls and regularization
- Regularized asymptotic distribution: pivotal

- Estimation method
- Monte Carlo

Estimation Problem

Interval estimator from inverting test statistic Alternative 1: θ in grid \mathbb{R}^{1+L} such that $\hat{\delta}_{\theta}(\hat{q}_n) \ge cv_{\theta}$ Alternative 2: β in grid \mathbb{R}^1 such that $\hat{\delta}_{\beta,0}(\hat{q}_n) \ge cv_{\beta}$ Both cvs computationally expensive, even second grid line


Challenge #2: construct test statistic with pivotal distribution Attack: minimizing directions are binding moments

Asymptotic Distribution

Sample analog

$$\sqrt{n}\min_{q\in\mathbb{S}}\hat{\delta}_{ heta}(q)\rightsquigarrow \mathbb{L}_{ heta}:=\min_{q\in\mathcal{Q}_{ heta}}\mathbb{G}(q)$$
 when $0\in\partial S_{ heta}$

where $Q_{\theta} = \arg \min_{q \in S} \delta_{\theta}(q) = \text{set pop. minimizing directions}$

Takeaway: indexing binding moments =nonpivotal

< □ > < □ > < 三 > < 三 > < 三 > のへぐ

Discrete Controls and Regularization

Why nonpivotal? kink at zero = multiple minimizing directions = infinitely many binding moments

Discrete instruments responsible for kinks

Fix unique minimizing direction q_{\star} by regularization

 $q_\star = \lim_{\kappa o 0} rg\min_{q \in \mathbb{S}} \delta_ heta(q) + \kappa extsf{pen}(q)$ such that $q_\star \in \mathcal{Q}_\star$

 $q \rightarrow pen(k)$ makes seq. strictily convex programms

Regularized Asymptotic Distribution

Let $\hat{q}_{n,\kappa}$ denote a penalized sample minimizing direction

$$\hat{q}_{n,\kappa} := \arg\min_{q \in \mathbb{S}} \hat{\delta}_{\theta}(q) + \kappa q^{\top} \hat{s}_{c}$$
, where $\hat{s}_{c} = \mathbb{E}_{n}[w(y_{c} - x_{c}\beta - z\gamma)]$

If rate condition on κ hold, then (new)

$$\sqrt{n}\hat{\delta}_{ heta}(\hat{q}_{n,\kappa}) \rightsquigarrow \mathcal{N}\Big(0, \textit{avar}(q_{\star})\Big)$$
 when $0 \in \partial S_{ heta}$

Takeaway: pivotal after standardization

Estimation One Coeff

Penalized sample direction

$$\hat{q}_{n,\kappa} := rg\min_{q} \hat{\delta}_{eta,0}(q) + \kappa q^{ op} \hat{s}_c ext{ s.t. } \mathbb{E}_n(z_i w_i^{ op} q) = 0$$

Test statistic:

$${\cal T}_{n,\kappa}(eta) = \sqrt{n} rac{\hat{\delta}_n(\hat{q}_{n,\kappa})}{\widehat{avar}(\hat{q}_{n,\kappa})}$$

Test inversion:

eta in grid \mathbb{R}^1 such that $T_{n,\kappa}(eta) \geq c v_eta =$ normal quantile

- computationally "cheaper": cv same for every β
- penalized vs. unpenalized minimand
- ("uniform") asymptotic validity

Monte Carlo: Races and Horses

Races: three DGPs, only outcome is censored

- Exogenous: binary exogenous covariate (kinks and flats)
- Endogenous: binary instrumental variable (kinks and flats)
- Mixture: discrete-continuous exo. covariate (kinks and smooth)

Horses: four estimators

- penalized sample direction (our test)
- naive sample analog
- subsampling
- generalized moment selection (gms)

Monte Carlo: Selected Results

Experiment	Test	Interior		Frontier	Exte	Time	
		.9	.99	1	1.01	1.1	(100th of s)
	Our Test $\kappa = 10$	0.00	3.80	5.80	7.30	62.50	11.39
	Our Test $\kappa = 1$	0.00	4.50	6.50	8.90	65.40	11.39
	Our Test $\kappa = 0.1$	0.10	6.70	9.60	12.20	67.70	11.39
Exogeneous	Naive	0.10	6.80	9.60	12.30	67.80	11.34
	Subs	0.00	0.00	0.00	0.00	0.30	92.53
	GMS	0.00	1.50	2.10	3.50	39.70	203.44
	Our Test $\kappa = 10$	0.00	3.70	5.40	7.30	59.80	11.35
	Our Test $\kappa = 1$	0.10	4.00	5.50	7.90	61.20	11.35
	Our Test $\kappa = 0.1$	0.10	5.50	7.60	10.30	63.20	11.35
Endogeneous	Naive	0.10	5.50	7.60	10.40	63.20	11.20
	Subs	0.00	0.10	0.00	0.00	0.60	115.67
	GMS	0.00	1.40	2.20	3.10	39.00	202.25
	Our Test $\kappa = 10$	0.10	6.20	8.90	10.70	67.80	76.19
	Our Test $\kappa = 1$	0.80	9.70	12.10	15.70	71.60	76.19
	Our Test $\kappa = 0.1$	0.80	9.40	12.00	14.70	71.10	76.19
Mixture	Naive	0.80	9.40	12.00	14.70	71.10	79.95
	Subs	0.00	0.10	0.10	0.10	2.90	264.26
	GMS	0.00	1.80	2.50	3.50	39.80	247.75

Percentage of Rejections (n = 1,000) - full parameter inference

The frontier point is a kink point

- Setup
- Identified set: nonconvex
- Auxiliary set: convex
- Support function: all coeff
- Subvector profiling: one coeff
- Estimation problem
- Asympotitic distribution:
- Discrete controls (kinks) and regularization
- Regularized asymptotic distribution: pivotal
- Estimation method
- Monte Carlo

PART III: ILLUSTRATION

- Panel Linear Moment Model

nonpivotal

- Wealth and Assets Survey
- Empirical Results

Panel Linear Moment Model

$$\mathbb{E}[W_i^{\top}H(Y_i^{\star}-X_i^{\star}\beta-Z_i^{\top}\gamma-\mathbf{1}_T\alpha_i)]=0$$

Coeff of interest is β (if =1 constant relative risk aversion)

-
$$Y_i^{\star}$$
 log risky asset holdings household *i*
 $T \times 1$

-
$$X_i^{\star}$$
 log financial wealth $T \times 1$

-
$$\underset{(\mathcal{T}-1)\times\mathcal{T}}{H}$$
 such that $H1_{\mathcal{T}}=0$ and upper-triangular

- W_i lower, upper wealth, age, age-sq, hou'ld size, $M \times (T-1)$ time dummies

Same across populations? Italy=constant, Sweden=decreasing, UK=?

Wealth and Assets Survey

Biennial panel survey on GB households: 2006/07 to 2014/15

Financial asset holdings (26 cat.) measured by intervals (some exact)

Aggregate into

- risky asset holdings (add 5 cat.)
- financial wealth (+ 21 other cat.)

Table 1:Sample Descriptive Statistics

- -

- ロ ト - 4 回 ト - 4 □

average				average			
Wave	risky _{Lit}	risky _{Uit}	% Censored	wealth _{Lit}	wealth _{Uit}	% Censored	
2006/07	9.90	10.02	16.18%	11.65	11.76	32.36%	
2008/09	9.68	9.88	22.88%	11.63	11.75	31.92%	
2010/11	9.84	9.94	12.09%	11.76	11.81	19.82%	
2012/13	9.95	10.03	10.03%	11.98	11.96	17.63%	
2014/15	10.06	10.17	10.05%	12.01	12.09	18.80%	

Table 1: Sample Descriptive Statistics

Source: UK Wealth and Assets Survey Waves 1 to 5. The sample consists only of households reporting positive risky assets holdings during the five waves. Risky asset holdings and financial wealth are in log sterling pound scale. Number of households n = 686.

Results: First Exercise

	(1) POLS	(2) POLS	(3) FD imp.	(4) FD uncen.	(6) FD	(7) FO
wealth					[0.78,1.24]	[0.73,1.11]
age	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
age ² /100	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
household size	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
year 07/08	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
year 09/10	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
year 11/12	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
year 13/14	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Constant	\checkmark	\checkmark	x	×	×	x

Table 2: Alternative Estimates for the Financial Wealth Elastiticity of Household Risky Assets Demand

Note: Same specification as in Chiappori and Paiella (2011, Relative Risk Aversion is Constant: Evidence from Panel Data, JEEA)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Results: Fragility Checks

	(1)	(2)	(3)	(4)	(6)	(7)		
	POLS	POLS	FD imp.	FD uncen.	FD	FO		
wealth	1.14	1.15	.99	.86				
	[1.10, 1.18]	[1.11, 1.20]	[.90, 1.07]	[.75,.97]	[0.78,1.24]	[0.73,1.11]		
age	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
age ² /100	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
ho'hold size	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
year 07/08	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
year 09/10	x	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
year 11/12	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
year 13/14	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Constant	\checkmark	\checkmark	×	x	X	×		

Table 2: Alternative Estimates for the Financial Wealth Elastiticity of Household Risky Assets Demand

CONCLUSIONS

Motivation: interval censored outcome and covariate Question (how to): estimate one coefficient in linear moment

- point estimators are invalid
- valid interval estimator by inverting m-type test statistic
- tractable computation by leveraging linearity

Illustration: UK Wealth and Assets Panel Data