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Motivation: Interval Censored Data

Measuring continuous variables by intervals

- reduce nonresponse / reflect measurement error

Illustration: Wealth and Assets Survey in the UK

- asset holdings by intervals

Why is it relevant?

- widespread1

- distort genuine dependence between variables

1Survey of Consumer Finances, Health&Retirement Survey, PSID,...



This Project: Linear Moments

How to estimate single coefficient when

- outcome and covariate interval censored

- linear specification with instruments

Illustration: UK Wealth and Assets Survey

riskyit = βwealthit + γcontrolsit + αi + ϵit with E[instruitϵit ] = 0

– riskyit and wealthit by intervals

– compare estimates β across pop. (const. rel. risk aversion?)



Preview of Results: Features

Illustration: compare UK wealth elasticity

Feature:
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discrete iv

fixed effects



Preview of Results: Issues

Illustration: compare UK wealth elasticity

Feature:

interval both

one coeff

discrete iv

fixed effects

Technical issue:

nonconvex

subvector

?

transformation



Preview of Results: Solutions

Illustration: compare UK wealth elasticity
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Preview of Results: Roadmap

Illustration: UK wealth elasticity 1, like Italy unlike Sweden
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Related Literature

Interval Covariate:

...

Interval Outcome:

...

Interval Both:
BMM: Beresteanu, Molchanov, Molinari (’11) convex dual set
my paper: closed-form support function + profiling support

+ regularization + work out panel data application

Moment Inequalities:

...
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Outline

PART I: IDENTIFICATION

(1) interval both: from nonconvex to convex (dual)

(2) one coeff: from all to subvector (profiling support)

PART II: ESTIMATION

(3) discrete instru: from kinks=nonpivotal to pivotal (regu’tion)

PART III: ILLUSTRATION

(4) fixed-effects: from cross section to panel (FD vs. FO)



PART I: IDENTIFICATION

- Setup
- Identified set: nonconvex
- Auxiliary set: convex
- Support function: all coeff
- Subvector profiling: one coeff



Setup

Linear specification:

y⋆ = x⋆β + z⊤γ + u

- interval censored outcome: y⋆ ∈
[
y , y

]
- interval censored covariate: x⋆ ∈

[
x , x

]
- control covariates: z

L×1

- instrumental variables: E(wu) = 0
M×1

- data: {y
i
, y i , x i , x i , zi ,wi}ni=1 iid

Midpoint is a nonstarter

Challenge #1: characterize observationally equivalent β
Attack: profiling convex dual set



Identified Set: ΘI

Observationally equivalent θ = (β, γ)

ΘI := {θ ∈ R1+L : E[w(y⋆ − x⋆β − zγ)] = 0
M×1

, y⋆ ∈ [y , y ], x⋆ ∈ [x , x ]}

Identified set may be nonconvex

Why is nonconvex inconvenient?



Auxiliary Dual Set: Sθ⋆

Fix coefficients at θ⋆

Sθ⋆ := {s ∈ RM : s
M×1

= E[w(y⋆ − x⋆β⋆ − zγ⋆)]

, y⋆ ∈ [y , y ], x⋆ ∈ [x , x ]}

Auxiliary dual set is convex (verify)

θ⋆ ∈ ΘI iff 0 ∈ Sθ⋆

Compare: from nonconvex ΘI to convex Sθ⋆

ΘI := {θ ∈ R1+L : 0
M×1

= E[w(y⋆ − x⋆β − zγ)]

, y⋆ ∈ [y , y ], x⋆ ∈ [x , x ]}



Auxiliary Dual Set as a Support Function: q 7→ δθ⋆(q)

Write convex set as a function

δθ⋆(q) := sup
s∈Sθ⋆

q⊤s, for q ∈ S=sphere in RM

draw support function

Characterization as infinite moment inequalities (BMM):

θ⋆ ∈ ΘI iff 0 ≤ δθ⋆(q) for each q ∈ S

Characterization using midpoints and half-lenghts (new)

δθ⋆(q) = E[q⊤w(yc − xcβ⋆ − zγ⋆)] + E[|q⊤w∆y |] + E[|q⊤w∆xβ⋆|]

where yc , xc midpoints; ∆y ,∆x half-lengths



Subvector Profiling

Only β is relevant

β⋆ ∈ ΘI iff 0 ≤ δβ⋆,0(q) for each q ∈ S such that E(zw⊤q) = 0
L×1

Characterization as constrained optimization (new):

β⋆ ∈ ΘI iff 0 ≤ min
q∈S

δβ⋆,0(q) s.t. E(zw⊤q) = 0
L×1

Compare BMM infinite moment inequalities:

(β⋆, γ⋆) ∈ ΘI iff 0 ≤ δβ⋆,γ⋆(q) = sup
s∈Sθ⋆

q⊤s for each q ∈ S



- Setup
- Identified set: nonconvex
- Auxiliary set: convex
- Support function: all coeff
- Subvector profiling: one coeff

PART II: ESTIMATION

- Estimation problem
- Asymptotic distribution: nonpivotal
- Discrete controls and regularization
- Regularized asymptotic distribution: pivotal
- Estimation method
- Monte Carlo



Estimation Problem

Interval estimator from inverting test statistic

Alternative 1: θ in grid R1+L such that δ̂θ(q̂n) ≥ cvθ

Alternative 2: β in grid R1 such that δ̂β,0(q̂n) ≥ cvβ

Both cvs computationally expensive, even second grid line

Challenge #2: construct test statistic with pivotal distribution

Attack: minimizing directions are binding moments



Asymptotic Distribution

Sample analog

√
nmin

q∈S
δ̂θ(q)⇝ Lθ := min

q∈Qθ

G(q) when 0 ∈ ∂Sθ

where Qθ = argminq∈S δθ(q)= set pop. minimizing directions

w1

w2

Sθ

Qθ
0

(a) Qθ when 0 is
smooth

w1

w2
Sθ

Qθ
0

(b) Qθ when 0 is ex-
posed

0 w1

w2

Sθ
q1

q2
Qθ

(c) Qθ when 0 is kink

Takeaway: indexing binding moments =nonpivotal



Discrete Controls and Regularization

Why nonpivotal?
kink at zero = multiple minimizing directions

= infinitely many binding moments

Discrete instruments responsible for kinks

Fix unique minimizing direction q⋆ by regularization

q⋆ = lim
κ→0

argmin
q∈S

δθ(q) + κpen(q) such that q⋆ ∈ Q⋆

q → pen(k) makes seq. strictily convex programms



Regularized Asymptotic Distribution

Let q̂n,κ denote a penalized sample minimizing direction

q̂n,κ := argmin
q∈S

δ̂θ(q) + κq⊤ŝc , where ŝc = En[w(yc − xcβ − zγ)]

If rate condition on κ hold, then (new)

√
nδ̂θ(q̂n,κ)⇝ N

(
0, avar(q⋆)

)
when 0 ∈ ∂Sθ

Takeaway: pivotal after standardization



Estimation One Coeff

Penalized sample direction

q̂n,κ := argmin
q

δ̂β,0(q) + κq⊤ŝc s.t. En(ziw
⊤
i q) = 0

Test statistic:

Tn,κ(β) =
√
n

δ̂n(q̂n,κ)

âvar(q̂n,κ)

Test inversion:

β in grid R1 such that Tn,κ(β) ≥ cvβ = normal quantile

- computationally ”cheaper”: cv same for every β

- penalized vs. unpenalized minimand

- (”uniform”) asymptotic validity



Monte Carlo: Races and Horses

Races: three DGPs, only outcome is censored

- Exogenous: binary exogenous covariate (kinks and flats)

- Endogenous: binary instrumental variable (kinks and flats)

- Mixture: discrete-continuous exo. covariate (kinks and smooth)

Horses: four estimators

- penalized sample direction (our test)

- naive sample analog

- subsampling

- generalized moment selection (gms)



Monte Carlo: Selected Results

Percentage of Rejections (n = 1, 000) - full parameter inference

Experiment Test Interior Frontier Exterior Time
.9 .99 1 1.01 1.1 (100th of s)

Our Test κ = 10 0.00 3.80 5.80 7.30 62.50 11.39
Our Test κ = 1 0.00 4.50 6.50 8.90 65.40 11.39

Our Test κ = 0.1 0.10 6.70 9.60 12.20 67.70 11.39
Exogeneous Naive 0.10 6.80 9.60 12.30 67.80 11.34

Subs 0.00 0.00 0.00 0.00 0.30 92.53
GMS 0.00 1.50 2.10 3.50 39.70 203.44

Our Test κ = 10 0.00 3.70 5.40 7.30 59.80 11.35
Our Test κ = 1 0.10 4.00 5.50 7.90 61.20 11.35

Our Test κ = 0.1 0.10 5.50 7.60 10.30 63.20 11.35
Endogeneous Naive 0.10 5.50 7.60 10.40 63.20 11.20

Subs 0.00 0.10 0.00 0.00 0.60 115.67
GMS 0.00 1.40 2.20 3.10 39.00 202.25

Our Test κ = 10 0.10 6.20 8.90 10.70 67.80 76.19
Our Test κ = 1 0.80 9.70 12.10 15.70 71.60 76.19

Our Test κ = 0.1 0.80 9.40 12.00 14.70 71.10 76.19
Mixture Naive 0.80 9.40 12.00 14.70 71.10 79.95

Subs 0.00 0.10 0.10 0.10 2.90 264.26
GMS 0.00 1.80 2.50 3.50 39.80 247.75

The frontier point is a kink point



- Setup
- Identified set: nonconvex
- Auxiliary set: convex
- Support function: all coeff
- Subvector profiling: one coeff

- Estimation problem
- Asympotitic distribution: nonpivotal
- Discrete controls (kinks) and regularization
- Regularized asymptotic distribution: pivotal
- Estimation method
- Monte Carlo

PART III: ILLUSTRATION

- Panel Linear Moment Model
- Wealth and Assets Survey
- Empirical Results



Panel Linear Moment Model

E[W⊤
i H(Y ⋆

i − X ⋆
i β − Z⊤

i γ − 1Tαi )] = 0

Coeff of interest is β (if =1 constant relative risk aversion)

- Y ⋆
i

T×1

log risky asset holdings household i

- X ⋆
i

T×1

log financial wealth

- H
(T−1)×T

such that H1T = 0 and upper-triangular

- Wi
M×(T−1)

lower, upper wealth, age, age-sq, hou’ld size,

time dummies

Same across populations? Italy=constant, Sweden=decreasing,
UK=?



Wealth and Assets Survey

Biennial panel survey on GB households: 2006/07 to 2014/15

Financial asset holdings (26 cat.) measured by intervals (some
exact)

Aggregate into

- risky asset holdings (add 5 cat.)

- financial wealth (+ 21 other cat.)

Table 1:Sample Descriptive Statistics
- -



Table 1: Sample Descriptive Statistics

average average
Wave riskyLit riskyUit % Censored wealthLit wealthUit % Censored
2006/07 9.90 10.02 16.18% 11.65 11.76 32.36%
2008/09 9.68 9.88 22.88% 11.63 11.75 31.92%
2010/11 9.84 9.94 12.09% 11.76 11.81 19.82%
2012/13 9.95 10.03 10.03% 11.98 11.96 17.63%
2014/15 10.06 10.17 10.05% 12.01 12.09 18.80%

Source: UK Wealth and Assets Survey Waves 1 to 5. The sample consists only of households reporting positive
risky assets holdings during the five waves. Risky asset holdings and financial wealth are in log sterling pound scale.

Number of households n = 686.



Results: First Exercise

Table 2: Alternative Estimates for the Financial Wealth Elastiticity of Household Risky Assets Demand

(1) (2) (3) (4) (6) (7)
POLS POLS FD imp. FD uncen. FD FO

wealth [0.78,1.24] [0.73,1.11]

age ✗ ✓ ✓ ✓ ✓ ✓
age2/100 ✗ ✓ ✓ ✓ ✓ ✓

household size ✗ ✓ ✓ ✓ ✓ ✓
year 07/08 ✗ ✓ ✓ ✓ ✓ ✓
year 09/10 ✗ ✓ ✓ ✓ ✓ ✓
year 11/12 ✗ ✓ ✓ ✓ ✓ ✓
year 13/14 ✗ ✓ ✓ ✓ ✓ ✓
Constant ✓ ✓ ✗ ✗ ✗ ✗

Note: Same specification as in Chiappori and Paiella (2011, Relative Risk Aversion is Constant: Evidence from
Panel Data, JEEA)



Results: Fragility Checks

Table 2: Alternative Estimates for the Financial Wealth Elastiticity of Household Risky Assets Demand

(1) (2) (3) (4) (6) (7)
POLS POLS FD imp. FD uncen. FD FO

wealth 1.14 1.15 .99 .86
[1.10,1.18] [1.11,1.20] [.90,1.07] [.75,.97] [0.78,1.24] [0.73,1.11]

age ✗ ✓ ✓ ✓ ✓ ✓
age2/100 ✗ ✓ ✓ ✓ ✓ ✓
ho’hold size ✗ ✓ ✓ ✓ ✓ ✓
year 07/08 ✗ ✓ ✓ ✓ ✓ ✓
year 09/10 ✗ ✓ ✓ ✓ ✓ ✓
year 11/12 ✗ ✓ ✓ ✓ ✓ ✓
year 13/14 ✗ ✓ ✓ ✓ ✓ ✓
Constant ✓ ✓ ✗ ✗ ✗ ✗



CONCLUSIONS

Motivation: interval censored outcome and covariate

Question (how to): estimate one coefficient in linear moment

- point estimators are invalid

- valid interval estimator by inverting m-type test statistic

- tractable computation by leveraging linearity

Illustration: UK Wealth and Assets Panel Data


