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1. Introduction

Factor models are one of the fundamental tools in finance, used to uncover the relationship
between asset returns and underlying factors:

fier1 = Ot + Biefeyr + € py1-

Factor models traditionally perform factor (fi+1) and beta (8;,+) learning in a linear manner,
which does not capture the non-linear dynamics of financial markets.

Our paper, Collin-Dufresne, Filipovi¢, and Ulrych (2024), proposes an innovative approach to
enhance factor models by incorporating non-linearity through (low-rank) kernel functions.

Utilize a reproducing kernel Hilbert space (RKHS) with the associated reproducing kernel as
hypothesis space for modeling factor loadings, and employ cross-sectional ridge regression to
directly learn factors (i.e., factor portfolios).

The proposed framework improves the accuracy and predictive power of factor models in asset
pricing.



2. Kernel Factors

Let x;; € X denote the characteristics of assets i € Z;, where X’ denotes the set of observable
asset characteristics.

Let m > 1 represent the number of factors.

Excess returns of assets i € Z; are, in vector notation, given as

rev1 = g(xe)Feg1 + €441

Objective: Learn the factor loading function g = (g1, .. .,8m) : X — R¥>™ = R™ and factors
Fi+1 € R™ by a cross-sectional ridge regression, similar as in Kelly et al. (2019).

As hypothesis space for g we select R™-valued reproducing kernel Hilbert space (RKHS)
G = H ® R™ with operator-valued reproducing kernel K(x,x’) = k(x,x")Im on X.



2. Alternating Kernel Ridge Regression

® We then solve the regularized optimization problem

min £ ’F +)\ 2+)\ F 2 : 1
geg,FeRmxT{ (g F)+ Mllgllg + X2l Fli2} (1)

for an error function £ : G x R™*T — R4 and some penalty parameters A, A\, > 0.

® Using the (weighted) mean squared error function, (1) can be equivalently written as

T-1
. 2 2 2
i i— 8 iF o[ F } A s 2
;nelg{ Fﬂ'e'ﬁw{éz wei(rev1,i — 8(xei) Fer1)” + Xl Ferallz p + 1|g|g} (2)

which reflects the alternating kernel ridge regression algorithm for solving it.

® This is a generalization of the linear alternating least-squares approach of Kelly et al. (2019)
towards non-linear factor loadings.



2. Cross-Sectional Ridge Regression

® For a given function g € G and for each t =0,..., T — 1, we solve the cross-sectional ridge
regression:
: T
M {(’t+1 - g(xt)Ft+1) Qt("t+1 - g(xt)FtH) + >\2||Ft+1||§}~ (3)
t+1

® The solution to (3) is unique and, for each t, explicitly given by
£ T -1 T
Fei1= (g(xt) :g(x:) + >\2’m) g(xt) £2:reiq,

reflecting that I:_t+1 is a factor portfolio.



2. Time-Series Kernel Ridge Regression

® Conversely, for given factors F1 € R™, solving the outer optimization of (2) for g amounts
to time-series kernel ridge regression:

T-1
216'8 { Z ("t+1 - g(Xt)Ft+1)TQt(’t+1 - g(xt)FtH) =+ /\lgé} (4)
t=0

® By the representer theorem, this would lead to a ridge regression of dimension M = EtT:_Ol M,
which is too computationally costly.

® Following Filipovi¢ et al. (2023), we compute a low-rank approximation of the kernel function
d
kO, x) =) ¢i(x)(x),
j=1

for the orthonormal functions ¢(-) = (¢1(-), .-, ¢a4(:)) in H.



2. Low-Rank Approximation

® Accordingly, we replace the full hypothesis space G by the subspace G¢ spanned by ¢;(-)v;, for
vi e R"and j=1,...,d. Any g in this subspace is of the form

d
g()=3 ¢j()y, vy eERT, (3)
=1
and problem (4) becomes quadraticin v = [vi;...; v4] € R9™.

e Differentiating the objective function (4) in v yields the FOC with the unique solution:

T— 1 T-1
V= (( ) 2 P(xt)) © (Ft+1Ft—:L1)> + Alldm) (Z ) 2 ® Ft+1)"t+1)
t=0

t=



3. Kernel Selection

Analyzed kernels:
;
> Linear: k(x,y) =1+ >
> Quadratic: k(x,y)=(1+ %)2

_lIx=yl3
> Gaussian: k(x,y) =e 27

Extend the approach by including industry classification as an additional characteristic,
encoded by a € {1,..., A}

At any t and for any asset i/, the original characteristics x; ; are thus extended to (x: ;, ar,i)-

A simple separable approach for incorporating industries:

1, a=b

> k((x,a),(y,b)) = k(x,y)ks(a, b), with k,(a, b) = {p else

for p € [0,1].



3. Empirical Analysis
Conducted an Out-of-Sample (OOS) analysis of the proposed smart kernel factor model.

Analyzed US stocks from January 1965 to December 2019 with monthly cross-sections and 94
characteristics per stock.

Rank-normalized all characteristics into the interval (—1,1) for each month ¢t.

Incorporated industry classifications (A = 11) based on Standard Industrial Classification (SIC)
two-digit codes.

Utilized a training period of 10 years, followed by hyperparameter validation on the subsequent
5 years.

Performed a rolling window out-of-sample backtest with 10 years of training and 1 year of
testing.
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3. Empirical Analysis
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3. Empirical Performance

, where \;_1

o R2 —1_ Z(m)eOos(r,-,t—g(x,-,t,l)l-a,)Z R2 —1_ Z(ht)eoos(n,r—é(xi,tfl)jxr—l)Z
Total > (€00 7t ’ Pred >(i.0c00s Mt

is the prevailing sample average of F up to month t — 1.

e Comparison of OOS RZ _ and R3_, for different methods and m = 5 factors:

Method (m = 5) R%’otal (%) RI%red (%)
1/N Portfolio 8.80 0.02
Kelly et al. 14.11 <0
Linear Kernel (d = 94) 14.13 0.65
Quadratic Kernel (d = 200) 14.42 0.22
Gaussian Kernel (d = 200) 14.38 0.36
Linear with Industry (d = 95) 14.20 0.74
Quadratic with Industry (d = 200) 14.43 0.11

Gaussian with Industry (d = 200) 14.40 0.06
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3. Gaussian Kernel: Validation & Effect of Industry
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4. Conclusion

® This paper presents a novel approach for learning factors and factor loadings in a non-linear
manner using kernel-based methodology.

® We extend existing linear-learning-based approaches by introducing:
@ Non-linear dependence on characteristics, allowing for greater flexibility in modeling factor
relationships. Notably, our linear kernel specification nests Kelly et al. (2019).
@® Regularization, allowing for more factors and improving OOS performance in terms of explained
variation (R?).

© Additional characteristics, such as industries, potentially enhancing model accuracy.
® A preliminary empirical analysis demonstrates that our kernel-based extension outperforms

current linear-learning-based models in terms of OOS R?, demonstrating the effectiveness of
non-linear learning and regularization.

® An interpretable approach with fast computation speed = practical applicability!



Thank you for your attention!
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Appendix: Low-Rank Approximation

We assume that the kernel matrix K := k(X, X ") admits a low-rank approximation K ~ LLT
for some M x d-matrix L and such that there exists a bi-orthogonal M x d matrix B with

> KB =1L,

» B'L=1y and

» Im B = span{ex,,...,er,},
for some pivot indices {ex,,...,er,} C{1,..., M}. Thatis, only d rows of B are different
from zero.

Matrices B and L can be computed recursively, see Filipovi¢ et al. (2023).

This yields the low-rank approximation of the kernel function
d

k(X)) ¢i(x)i(x'),
j=1

for the orthonormal functions ¢(-) = (¢1(-), ..., da(:)) in H given by ¢(-) = BT k(-, X).
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