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1. Introduction
• Factor models are one of the fundamental tools in finance, used to uncover the relationship

between asset returns and underlying factors:

ri,t+1 = αi,t + βi,t ft+1 + ϵi,t+1.

• Factor models traditionally perform factor (ft+1) and beta (βi,t) learning in a linear manner,
which does not capture the non-linear dynamics of financial markets.

• Our paper, Collin-Dufresne, Filipović, and Ulrych (2024), proposes an innovative approach to
enhance factor models by incorporating non-linearity through (low-rank) kernel functions.

• Utilize a reproducing kernel Hilbert space (RKHS) with the associated reproducing kernel as
hypothesis space for modeling factor loadings, and employ cross-sectional ridge regression to
directly learn factors (i.e., factor portfolios).

• The proposed framework improves the accuracy and predictive power of factor models in asset
pricing.
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2. Kernel Factors

• Let xt,i ∈ X denote the characteristics of assets i ∈ It , where X denotes the set of observable
asset characteristics.

• Let m ≥ 1 represent the number of factors.

• Excess returns of assets i ∈ It are, in vector notation, given as

rt+1 = g(xt)Ft+1 + ϵt+1.

• Objective: Learn the factor loading function g = (g1, . . . , gm) : X → R1×m ∼= Rm, and factors
Ft+1 ∈ Rm by a cross-sectional ridge regression, similar as in Kelly et al. (2019).

• As hypothesis space for g we select Rm-valued reproducing kernel Hilbert space (RKHS)
G = H⊗ Rm with operator-valued reproducing kernel K (x , x ′) = k(x , x ′)Im on X .
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2. Alternating Kernel Ridge Regression

• We then solve the regularized optimization problem

min
g∈G, F∈Rm×T

{
E(g ,F ) + λ1∥g∥2G + λ2∥F∥22

}
, (1)

for an error function E : G × Rm×T → R>0 and some penalty parameters λ1, λ2 > 0.

• Using the (weighted) mean squared error function, (1) can be equivalently written as

min
g∈G

{ T−1∑
t=0

min
Ft+1∈Rm

{∑
i∈It

ωt,i

(
rt+1,i − g(xt,i )Ft+1

)2
+ λ2∥Ft+1∥22

}
+ λ1∥g∥2G

}
, (2)

which reflects the alternating kernel ridge regression algorithm for solving it.

• This is a generalization of the linear alternating least-squares approach of Kelly et al. (2019)
towards non-linear factor loadings.
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2. Cross-Sectional Ridge Regression

• For a given function g ∈ G and for each t = 0, . . . ,T − 1, we solve the cross-sectional ridge
regression:

min
Ft+1∈Rm

{(
rt+1 − g(xt)Ft+1

)⊤
Ωt

(
rt+1 − g(xt)Ft+1

)
+ λ2∥Ft+1∥22

}
. (3)

• The solution to (3) is unique and, for each t, explicitly given by

F̂t+1 =
(
g(xt)⊤Ωtg(xt) + λ2Im

)−1
g(xt)⊤Ωtrt+1,

reflecting that F̂t+1 is a factor portfolio.
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2. Time-Series Kernel Ridge Regression

• Conversely, for given factors Ft+1 ∈ Rm, solving the outer optimization of (2) for g amounts
to time-series kernel ridge regression:

min
g∈G

{ T−1∑
t=0

(
rt+1 − g(xt)Ft+1

)⊤
Ωt

(
rt+1 − g(xt)Ft+1

)
+ λ1∥g∥2G

}
. (4)

• By the representer theorem, this would lead to a ridge regression of dimension M =
∑T−1

t=0 Mt ,
which is too computationally costly.

• Following Filipović et al. (2023), we compute a low-rank approximation of the kernel function

k(x , x ′) ≈
d∑

j=1

ϕj(x)ϕj(x
′),

for the orthonormal functions ϕ(·) = (ϕ1(·), . . . , ϕd(·)) in H.
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2. Low-Rank Approximation

• Accordingly, we replace the full hypothesis space G by the subspace Gϕ spanned by ϕj(·)vj , for
vj ∈ Rm and j = 1, . . . , d . Any g in this subspace is of the form

g(·) =
d∑

j=1

ϕj(·)vj , vj ∈ Rm, (5)

and problem (4) becomes quadratic in v = [v1; . . . ; vd ] ∈ Rdm.

• Differentiating the objective function (4) in v yields the FOC with the unique solution:

v̂ =

(( T−1∑
t=0

(
ϕ(xt)⊤Ωtϕ(xt)

)
⊗ (Ft+1F

⊤
t+1)

)
+ λ1Idm

)−1( T−1∑
t=0

(
(ϕ(xt)⊤Ωt)⊗ Ft+1

)
rt+1

)
.
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3. Kernel Selection

• Analyzed kernels:

▶ Linear: k(x , y) = 1 + xT y
l2

▶ Quadratic: k(x , y) = (1 + xT y
l2

)2

▶ Gaussian: k(x , y) = e
−

∥x−y∥22
2l2

• Extend the approach by including industry classification as an additional characteristic,
encoded by a ∈ {1, . . . ,A}.

• At any t and for any asset i , the original characteristics xt,i are thus extended to (xt,i , at,i ).

• A simple separable approach for incorporating industries:

▶ k̄((x , a), (y , b)) = k(x , y)ka(a, b), with ka(a, b) =

{
1, a = b
ρ, else

for ρ ∈ [0, 1].
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3. Empirical Analysis

• Conducted an Out-of-Sample (OOS) analysis of the proposed smart kernel factor model.

• Analyzed US stocks from January 1965 to December 2019 with monthly cross-sections and 94
characteristics per stock.

• Rank-normalized all characteristics into the interval (−1, 1) for each month t.

• Incorporated industry classifications (A = 11) based on Standard Industrial Classification (SIC)
two-digit codes.

• Utilized a training period of 10 years, followed by hyperparameter validation on the subsequent
5 years.

• Performed a rolling window out-of-sample backtest with 10 years of training and 1 year of
testing.
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3. Empirical Analysis
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3. Empirical Performance

• R2
Total = 1−

∑
(i,t)∈OOS (ri,t−ĝ(xi,t−1)F̂t)

2∑
(i,t)∈OOS r2i,t

, R2
Pred = 1−

∑
(i,t)∈OOS (ri,t−ĝ(xi,t−1)λ̂t−1)

2∑
(i,t)∈OOS r2i,t

, where λ̂t−1

is the prevailing sample average of F̂ up to month t − 1.

• Comparison of OOS R2
Total and R2

Pred for different methods and m = 5 factors:

Method (m = 5) R2
Total (%) R2

Pred (%)

1/N Portfolio 8.80 0.02

Kelly et al. 14.11 < 0

Linear Kernel (d = 94) 14.13 0.65
Quadratic Kernel (d = 200) 14.42 0.22
Gaussian Kernel (d = 200) 14.38 0.36

Linear with Industry (d = 95) 14.20 0.74
Quadratic with Industry (d = 200) 14.43 0.11
Gaussian with Industry (d = 200) 14.40 0.06
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3. Gaussian Kernel: Validation & Effect of Industry
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4. Conclusion

• This paper presents a novel approach for learning factors and factor loadings in a non-linear
manner using kernel-based methodology.

• We extend existing linear-learning-based approaches by introducing:

1 Non-linear dependence on characteristics, allowing for greater flexibility in modeling factor
relationships. Notably, our linear kernel specification nests Kelly et al. (2019).

2 Regularization, allowing for more factors and improving OOS performance in terms of explained
variation (R2).

3 Additional characteristics, such as industries, potentially enhancing model accuracy.

• A preliminary empirical analysis demonstrates that our kernel-based extension outperforms
current linear-learning-based models in terms of OOS R2, demonstrating the effectiveness of
non-linear learning and regularization.

• An interpretable approach with fast computation speed =⇒ practical applicability!



12/12

Thank you for your attention!
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Appendix: Low-Rank Approximation

• We assume that the kernel matrix K := k(X ,X⊤) admits a low-rank approximation K ≈ LL⊤

for some M × d-matrix L and such that there exists a bi-orthogonal M × d matrix B with
▶ KB = L,
▶ B⊤L = Id , and
▶ ImB = span{eπ1 , . . . , eπd },

for some pivot indices {eπ1 , . . . , eπd
} ⊆ {1, . . . ,M}. That is, only d rows of B are different

from zero.

• Matrices B and L can be computed recursively, see Filipović et al. (2023).

• This yields the low-rank approximation of the kernel function

k(x , x ′) ≈
d∑

j=1

ϕj(x)ϕj(x
′),

for the orthonormal functions ϕ(·) = (ϕ1(·), . . . , ϕd(·)) in H given by ϕ(·) := B⊤k(·,X ).
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