Kernel Conditional Factor Models

Pierre Collin-Dufresne^{1,2} Damir Filipović^{1,2} **Urban Ulrych**^{1,2} ¹École Polytechnique Fédérale de Lausanne ²Swiss Finance Institute

EEA-ESEM 2024

Erasmus School of Economics, Rotterdam

Version: August 2024

1. Introduction

• *Factor models* are one of the fundamental tools in finance, used to uncover the relationship between *asset returns* and *underlying factors*:

$$\mathbf{r}_{i,t+1} = \alpha_{i,t} + \beta_{i,t} \mathbf{f}_{t+1} + \epsilon_{i,t+1}.$$

- Factor models traditionally perform factor (f_{t+1}) and beta $(\beta_{i,t})$ learning in a linear manner, which does not capture the non-linear dynamics of financial markets.
- Our paper, Collin-Dufresne, Filipović, and Ulrych (2024), proposes an innovative approach to enhance factor models by *incorporating non-linearity* through *(low-rank) kernel functions.*
- Utilize a reproducing kernel Hilbert space (RKHS) with the associated reproducing kernel as *hypothesis space* for modeling *factor loadings*, and employ *cross-sectional ridge regression* to directly learn *factors* (i.e., factor portfolios).
- The proposed framework *improves* the *accuracy* and *predictive power* of factor models in asset pricing.

2. Kernel Factors

- Let x_{t,i} ∈ X denote the *characteristics* of assets i ∈ I_t, where X denotes the set of observable asset characteristics.
- Let $m \ge 1$ represent the number of factors.
- *Excess returns* of assets $i \in I_t$ are, in vector notation, given as

$$\mathbf{r}_{t+1} = g(\mathbf{x}_t)F_{t+1} + \epsilon_{t+1}.$$

- Objective: Learn the factor loading function $g = (g_1, \ldots, g_m) : \mathcal{X} \to \mathbb{R}^{1 \times m} \cong \mathbb{R}^m$, and factors $F_{t+1} \in \mathbb{R}^m$ by a cross-sectional ridge regression, similar as in Kelly et al. (2019).
- As hypothesis space for g we select \mathbb{R}^m -valued reproducing kernel Hilbert space (RKHS) $\mathcal{G} = \mathcal{H} \otimes \mathbb{R}^m$ with operator-valued reproducing kernel $K(x, x') = k(x, x')I_m$ on \mathcal{X} .

2. Alternating Kernel Ridge Regression

• We then solve the *regularized optimization problem*

$$\min_{g \in \mathcal{G}, F \in \mathbb{R}^{m \times T}} \left\{ \mathcal{E}(g, F) + \lambda_1 \|g\|_{\mathcal{G}}^2 + \lambda_2 \|F\|_2^2 \right\},\tag{1}$$

for an error function $\mathcal{E} : \mathcal{G} \times \mathbb{R}^{m \times T} \to \mathbb{R}_{>0}$ and some penalty parameters $\lambda_1, \lambda_2 > 0$.

• Using the (weighted) mean squared error function, (1) can be equivalently written as

$$\min_{g \in \mathcal{G}} \left\{ \sum_{t=0}^{T-1} \min_{F_{t+1} \in \mathbb{R}^m} \left\{ \sum_{i \in \mathcal{I}_t} \omega_{t,i} (r_{t+1,i} - g(x_{t,i})F_{t+1})^2 + \lambda_2 \|F_{t+1}\|_2^2 \right\} + \lambda_1 \|g\|_{\mathcal{G}}^2 \right\},$$
(2)

which reflects the alternating kernel ridge regression algorithm for solving it.

• This is a *generalization* of the linear alternating least-squares approach of Kelly et al. (2019) towards *non-linear factor loadings*.

2. Cross-Sectional Ridge Regression

• For a given function $g \in G$ and for each t = 0, ..., T - 1, we solve the *cross-sectional ridge regression*:

$$\min_{F_{t+1}\in\mathbb{R}^m}\left\{\left(\boldsymbol{r}_{t+1}-g(\boldsymbol{x}_t)F_{t+1}\right)^{\top}\boldsymbol{\Omega}_t\left(\boldsymbol{r}_{t+1}-g(\boldsymbol{x}_t)F_{t+1}\right)+\lambda_2\|F_{t+1}\|_2^2\right\}.$$
(3)

• The solution to (3) is *unique* and, for each *t*, *explicitly* given by

$$\hat{F}_{t+1} = \left(g(\boldsymbol{x}_t)^\top \boldsymbol{\Omega}_t g(\boldsymbol{x}_t) + \lambda_2 \boldsymbol{I}_m\right)^{-1} g(\boldsymbol{x}_t)^\top \boldsymbol{\Omega}_t \boldsymbol{r}_{t+1},$$

reflecting that \hat{F}_{t+1} is a *factor portfolio*.

2. Time-Series Kernel Ridge Regression

Conversely, for given factors F_{t+1} ∈ ℝ^m, solving the outer optimization of (2) for g amounts to time-series kernel ridge regression:

$$\min_{g \in \mathcal{G}} \left\{ \sum_{t=0}^{T-1} \left(\mathbf{r}_{t+1} - g(\mathbf{x}_t) F_{t+1} \right)^\top \boldsymbol{\Omega}_t \left(\mathbf{r}_{t+1} - g(\mathbf{x}_t) F_{t+1} \right) + \lambda_1 \|g\|_{\mathcal{G}}^2 \right\}.$$
(4)

- By the *representer theorem*, this would lead to a ridge regression of dimension $M = \sum_{t=0}^{T-1} M_t$, which is too *computationally costly*.
- Following Filipović et al. (2023), we compute a low-rank approximation of the kernel function

$$k(x,x') \approx \sum_{j=1}^d \phi_j(x)\phi_j(x'),$$

for the orthonormal functions $\phi(\cdot) = (\phi_1(\cdot), \ldots, \phi_d(\cdot))$ in \mathcal{H} .

2. Low-Rank Approximation

• Accordingly, we replace the full hypothesis space \mathcal{G} by the subspace \mathcal{G}_{ϕ} spanned by $\phi_j(\cdot)v_j$, for $v_j \in \mathbb{R}^m$ and j = 1, ..., d. Any g in this subspace is of the form

$$g(\cdot) = \sum_{j=1}^{d} \phi_j(\cdot) v_j, \quad v_j \in \mathbb{R}^m,$$
(5)

and problem (4) becomes *quadratic* in $\boldsymbol{v} = [v_1; \ldots; v_d] \in \mathbb{R}^{dm}$.

• Differentiating the objective function (4) in \mathbf{v} yields the FOC with the *unique solution*:

$$\hat{\boldsymbol{\nu}} = \left(\left(\sum_{t=0}^{T-1} \left(\phi(\boldsymbol{x}_t)^\top \Omega_t \phi(\boldsymbol{x}_t) \right) \otimes \left(F_{t+1} F_{t+1}^\top \right) \right) + \lambda_1 I_{dm} \right)^{-1} \left(\sum_{t=0}^{T-1} \left(\left(\phi(\boldsymbol{x}_t)^\top \Omega_t \right) \otimes F_{t+1} \right) \boldsymbol{r}_{t+1} \right).$$

3. Kernel Selection

- Analyzed kernels:
 - Linear: $k(x, y) = 1 + \frac{x^T y}{l^2}$

• Quadratic:
$$k(\mathbf{x}, \mathbf{y}) = (1 + \frac{\mathbf{x}^T \mathbf{y}}{l^2})^2$$

• Gaussian:
$$k(\mathbf{x}, \mathbf{y}) = e^{-\frac{\|\mathbf{x}-\mathbf{y}\|_2^2}{2l^2}}$$

- Extend the approach by *including industry classification* as an additional characteristic, encoded by *a* ∈ {1,...,*A*}.
- At any t and for any asset i, the original characteristics $x_{t,i}$ are thus extended to $(x_{t,i}, a_{t,i})$.
- A simple separable approach for *incorporating industries*:

•
$$\bar{k}((\mathbf{x}, \mathbf{a}), (\mathbf{y}, \mathbf{b})) = k(\mathbf{x}, \mathbf{y})k_{a}(\mathbf{a}, \mathbf{b}), \text{ with } k_{a}(\mathbf{a}, \mathbf{b}) = \begin{cases} 1, & \mathbf{a} = \mathbf{b} \\ \rho, & \text{else} \end{cases}$$
 for $\rho \in [0, 1].$

3. Empirical Analysis

- Conducted an *Out-of-Sample* (OOS) *analysis* of the proposed smart kernel factor model.
- Analyzed *US stocks* from January 1965 to December 2019 with *monthly cross-sections* and 94 characteristics per stock.
- Rank-normalized all characteristics into the interval (-1, 1) for each month t.
- Incorporated *industry classifications* (A = 11) based on Standard Industrial Classification (SIC) two-digit codes.
- Utilized a *training period* of 10 years, followed by *hyperparameter validation* on the subsequent 5 years.
- Performed a *rolling window out-of-sample backtest* with 10 years of training and 1 year of testing.

3. Empirical Analysis

3. Empirical Performance

•
$$R_{Total}^2 = 1 - \frac{\sum_{(i,t) \in OOS} (r_{i,t} - \hat{g}(x_{i,t-1})\hat{F}_t)^2}{\sum_{(i,t) \in OOS} r_{i,t}^2}, \qquad R_{Pred}^2 = 1 - \frac{\sum_{(i,t) \in OOS} (r_{i,t} - \hat{g}(x_{i,t-1})\hat{\lambda}_{t-1})^2}{\sum_{(i,t) \in OOS} r_{i,t}^2}, \text{ where } \hat{\lambda}_{t-1}$$
is the prevailing sample average of \hat{F} up to month $t - 1$.

• Comparison of OOS R_{Total}^2 and R_{Pred}^2 for different methods and m = 5 factors:

Method ($m = 5$)	R ² _{Total} (%)	R ² _{Pred} (%)
1/N Portfolio	8.80	0.02
Kelly et al.	14.11	< 0
Linear Kernel ($d = 94$) Quadratic Kernel ($d = 200$) Gaussian Kernel ($d = 200$)	14.13 14.42 14.38	0.65 0.22 0.36
Linear with Industry $(d = 95)$ Quadratic with Industry $(d = 200)$ Gaussian with Industry $(d = 200)$	14.20 14.43 14.40	0.74 0.11 0.06

3. Gaussian Kernel: Validation & Effect of Industry

4. Conclusion

- This paper presents a novel approach for learning *factors* and *factor loadings* in a *non-linear* manner using *kernel-based methodology*.
- We *extend* existing linear-learning-based approaches by introducing:
 - **1** *Non-linear dependence* on characteristics, allowing for greater flexibility in modeling factor relationships. Notably, our linear kernel specification *nests* Kelly et al. (2019).
 - **2** Regularization, allowing for more factors and improving OOS performance in terms of explained variation (R^2) .
 - **3** Additional characteristics, such as *industries*, potentially enhancing model accuracy.
- A preliminary *empirical analysis* demonstrates that our kernel-based extension *outperforms* current linear-learning-based models in terms of OOS R², demonstrating the *effectiveness* of *non-linear learning* and *regularization*.
- An *interpretable* approach with *fast* computation speed \implies *practical* applicability!

Thank you for your attention!

References I

- P. Collin-Dufresne, D. Filipović, and U. Ulrych. Smart kernel factors. Work in Progress, 2024.
- D. Filipović, M. Multerer, and P. Schneider. Kernel conditional distribution machines. *Working Paper*, 2023.
- B. T. Kelly, S. Pruitt, and Y. Su. Characteristics are covariances: A unified model of risk and return. *Journal of Financial Economics*, 134(3):501–524, 2019.

Appendix: Low-Rank Approximation

- We assume that the kernel matrix K := k(X, X^T) admits a *low-rank approximation* K ≈ LL^T for some M × d-matrix L and such that there exists a bi-orthogonal M × d matrix B with
 - $\blacktriangleright KB = L,$
 - $\blacktriangleright B^{\top}L = I_d$, and
 - $\blacktriangleright \quad \mathsf{Im} \, \boldsymbol{B} = \mathsf{span} \{ e_{\pi_1}, \ldots, e_{\pi_d} \},$

for some pivot indices $\{e_{\pi_1}, \ldots, e_{\pi_d}\} \subseteq \{1, \ldots, M\}$. That is, only *d* rows of *B* are different from zero.

- Matrices **B** and **L** can be computed recursively, see Filipović et al. (2023).
- This yields the *low-rank approximation* of the *kernel function*

$$k(x,x') pprox \sum_{j=1}^{d} \phi_j(x) \phi_j(x'),$$

for the orthonormal functions $\phi(\cdot) = (\phi_1(\cdot), \dots, \phi_d(\cdot))$ in \mathcal{H} given by $\phi(\cdot) \coloneqq \mathbf{B}^\top k(\cdot, \mathbf{X})$.