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Filtering: Tracking latent states in
real-time using noisy measurements
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Motivation

Applications
• Finance: Volatility modelling

• Climate science: Earthquake detection, sea ice cover sizing

Related literature
• Filtering using the score, i.e. gradient of log-likelihood (Harvey,
2013; Creal et al., 2013; Artemova et al., 2022).

• > 300 academic articles on explicit score-driven (ESD) filters
available on www.gasmodel.com.

• 1 on implicit score-driven (ISD) filters (Lange et al., 2024).

• Related to Stochastic Gradient Descent (SGD), used for training
neural networks, e.g. implicit SGD (Toulis & Airoldi, 2017).
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Contributions

Contributions
1. Derive performance guarantees, i.e. (non-)asymptotic MSE

bounds for score-driven filters,

• while making almost no assumptions on the true state process
the filter aims to track over time.

2. Reveal that implicit score-driven filters are more stable than
explicit score-driven filters;

• ESD filters may overshoot or diverge to infinity without a
certain regularity condition (Lipschitz gradient).
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Problem setting

• Observe data vector yt at times t = 1, . . . ,T from true
conditional observation density p†(yt |θ†

t ).

• True latent state vector θ†
t .

• Researcher-postulated density p(yt |θt).

• Objective: Track true density p†(yt |θ) at true path {θ†
t} by

postulated density p(yt |θt) at filtered path {θt|t}, {θt|t−1}.
• Loss function: MSEt|t := E[∥θt|t −θ⋆

t ∥2], where θ⋆
t pseudo-truth.
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Filtering multivariate states using the score

• Implicit score-driven (ISD) filter, {θim
t|t} and {θim

t+1|t}.
• Explicit score-driven (ESD) filter, {θex

t|t} and {θex
t+1|t}.

• Given initializations θj
0|0 ∈ Rd , with j ∈ {im, ex}, ∀t ∈ N:

prediction step: θj
t|t−1 = (Id −Φ) ω + Φθj

t−1|t−1, j ∈ {im, ex} (1)

implicit-gradient update: θim
t|t = θim

t|t−1 + Ht ∇ℓ(yt | θim
t|t) (2)

explicit-gradient update: θex
t|t = θex

t|t−1 + Ht ∇ℓ(yt | θex
t|t−1) (3)
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Reformulation as optimization-based filters

• Trade-off between improving goodness of fit and maintaining
stability over time

• Reformulate gradient-based updates (2) and (3) in terms of an
optimization framework:

θim
t|t = argmax

θ∈Rd

{
ℓ (yt | θ)−

1

2

∥∥∥θ − θim
t|t−1

∥∥∥2
Pt

}
, (4)

θex
t|t = argmax

θ∈Rd

ℓ(yt | θex
t|t−1) + (θ − θex

t|t−1)
′ ∇ℓ(yt | θex

t|t−1)︸ ︷︷ ︸
≈ℓ(yt |θ)

−
1

2

∥∥∥θ − θex
t|t−1

∥∥∥2
Pt

 . (5)
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We distinguish four different cases

Assumption

1. ISD filter: ℓ(yt |θ) is strongly concave.

2. ESD filter: ℓ(yt |θ) is strongly concave + Lipschitz c. gradient.

(a) Misspecification: Pseudo-truth θ⋆
t exists and is unique, and

the increments {θ⋆
t − θ⋆

t−1} have a finite second moment.

(b) Correct specification: Observation density is correctly
specified. State equation is linear, Gaussian with known
coefficients.
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Deriving error bounds
Linear system of inequalities to bound {MSEt|t}t≥1, {MSEt|t−1}t≥1:

filtering-error bound : MSEt|t ≤a MSEt|t−1 + b︸︷︷︸
noise

, (6)

prediction-error bound: MSEt+1|t ≤c MSEt|t + d︸︷︷︸
drift

. (7)

Finite-sample MSE bounds, if ac < 1:

MSEt|t ≤ atc t−1 MSE1|0︸ ︷︷ ︸
initialisation

+
1− atc t

1− a c
b︸ ︷︷ ︸

noise

+
1− at−1c t−1

1− a c
a d︸ ︷︷ ︸

drift

, (8)

Asymptotic MSE bounds, if ac < 1:

lim sup
t→∞

MSEt|t ≤ b + a d

1− a c
. (9)
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Asymptotic MSE bounds in four scenarios
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When is the bound tight?

Example

Consider data generated from a local level model. Suppose we are
correctly specified, then the ISD filter asymptotic MSE bound

lim sup
t→∞

MSEt ≤
σ⋆2
ε + σ⋆2

η σ⋆4
ε γ2

2γσ⋆2
ε + 1

.

is minimized for a learning rate

η̂ := γ̂−1 =
2(

σ⋆2
η + σ⋆2

η

√
4σ⋆2

ε + σ⋆2
η

) =: P̄ ,

where P̄ is the steady-state Kalman filter covariance for the local
level model in Durbin & Koopman (2012). Since the Kalman filter is
optimal in the MSE sense, the bound cannot be improved.
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New hyperparameter tuning strategy

Choosing update- and prediction parameters optimally
• We propose to select ωj , Φj , H j for j ∈ {ex, im} to minimize
(upper bound on) the asymptotic MSE.

• This strategy provides an alternative to maximum likelihood:

1. Does not require many observations.
2. Requires less parameters to be ‘determined’.
3. Has analytical expressions available.
4. Provides strong (worst-case) asymptotic performance.

• Similar to Toulis & Airoldi (2017).
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Simulation: Time-varying Poisson

• Simulate state space model:

• Observation equation is Poisson with time-varying rate:

yt ∼ p†(yt |θ†t ) = λ†yt
t exp(−λ†

t)/yt!, λ†
t = exp(θ†t )

• State equation is linear Gaussian AR(1):

θ†t = ω† +ϕ†θ†t−1 + ηt , ηt ∼ i.i.d.N(0, σ2
η), ϕ† < 1,T = 5000

• Goal is to track {θ†t} using ISD and ESD1,2,3 filter

1. Identity scaling
2. Inverse square root Fisher scaling
3. Inverse Fisher scaling
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ISD filter outperforms ESD filter
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(a) ESD (ζ = 0) overshoots downward
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(b) ESD (ζ = 1/2) diverges to infinity
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(c) ESD (ζ = 1) overshoots upward
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(d) ISD filter performs relatively well
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Discussion

Summary
• Performance guarantees for ISD and ESD filters

• Minimal assumptions on the DGP

• ESD filters require more regularity conditions

• ISD filters are slightly more computationally expensive

• ISD filters have sharper MSE bounds

What else did we do in the paper?
• Show how to filter non-stationary latent states.

• Show how to compute the implicit-gradient update.

• Show Kalman filter is a special case of ISD ánd ESD filters.
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Thank you!

Simon Donker van Heel
donkervanheel@ese.eur.nl
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