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Imagine you are a policymaker...

▶ Policy goal: Aggregate capacity of solar panel

installations in your country.

▶ Policy tool: Subsidy for rooftop solar panels to

households and firms.

▶ Problem: ≈ 1% of German government

spending; benefits the wealthy.

▶ Attempted solution: Nonlinear subsidy with

several kink points.



Research Questions and Challenge

Research Questions

▶ Is the nonlinear subsidy in Germany effective at reducing costs?

▶ What is the most cost-efficient nonlinear subsidy scheme?

Challenge:

▶ Adopters react at the participation and the intensive margin simultaneously.

▶ The literature (Saez, 2010) exploits kinks to estimate intensive margin.



Contributions of this Paper

Methodological Contribution:

▶ Exploit kinks to estimate intensive and participation margin simultaneously.

▶ Semi-nonparametric estimator with data-driven specification.

▶ Ignoring participation ⇒ downward bias in intensive margin estimate.

Applied Contribution:

▶ Evaluation of German subsidy programme.



Adopters’ Behavior Details

▶ Heterogeneous, profit maximizing adopters i .

πi = max
q

β iS(q)− c i
v (q)− c i

f

participate if πi ≥ 0

▶ Choose capacity q and participation.

▶ S(q) := subsidy

▶ c i
v (q) := all variable economic and non-economic costs

▶ c i
f := all fixed economic and non-economic costs



Empirical Strategy: Exploit Kink

qK

Sk (q)

s1

s2 < s1

q

The Kinked Subsidy-Function

sl := linear marginal subsidy rate,

qK := kink point,

r := relative change in marginal subsidy.



Theoretical Effect of Kink: Intensive Margin Details

s2 < s1 ⇒ left shift ∆q above kink point qK .

qK

Sk (q)

s1

s2

q

The Kinked Subsidy

qK

fk (q)

q

B ∝ ∆q

Distribution of Adoptions

B

∆q



Theoretical Effect of Kink: Intensive & Participation Margin Details

Loss in subsidy ∆S ⇒ loss in profit ∆π ⇒ loss in participation ∆f .

qK

Sk (q)

s1

s1 < s2

q

The Kinked Subsidy

∆S

qK

fk (q)

q

B

∆f ⇐ ∆π

- Counterfactual

- Only Intensivel

- Both Marginslll

Distribution of Adoptions



The Effect in the Data

Histogram of Adoptions in 2004
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The Effect in the Data Graphs

Histogram of Adoptions in 2004
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Histogram of Adoptions in 2003
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Assumptions Details Intuition

Assumptions

▶ The intensive and participation margin elasticity are locally constant.

▶ The counterfactual distribution fl(.) is locally representable by a convergent

power series (i.e., is real analytic):

ln fl(q|γ) =
∞∑

p=0

γp

(
ln

q
qK

)p

∀q ∈ (q,q).



Observed Distribution Identification Simulation Rank Condition Summary Empirics Conclusion

Unknowns: fl(.|γ) := counterfactual; ϵ := intensive elasticity; η := participation elasticity.

Proposition

The distribution fk and the bunching mass B under the kinked subsidy Sk is:

fk (q) = fl(q|γ), for q < qK ; (1)

B =

∫ qK r−ϵ

qK
R(ql)

ηfl(ql |γ)dql , at q = qK ; (2)

fk (q) = fl(qr−ϵ|γ)r−ϵ R(qr−ϵ)η, for q > qK . (3)

Known: r := relative change in marginal subsidy; R(.) := relative change in profit.



Estimation Results Bunching Conclusion
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Estimation Specification Conclusion

▶ Local nonlinear least square:

min
ϵ̂,η̂,γ̂P

1
N

N∑
j=1

(
̂ln f (qj)− ln fk (qj |ϵ̂, η̂, γ̂P)

)2
.

▶ Semi-nonparametric Sieve Estimator (Chen 2007):

ln fl(q) =
P∑

p=0

γp

(
ln

q
qK

)p

P → ∞ for sample size → ∞.

▶ Minimize estimate of mean squared error to select bandwidth and P.

▶ Standard errors: nonparametric bootstrap.



Comparison to classic estimators Details Biases Conclusion

Classic bunching estimator (Chetty et al., 2011):

▶ Ignores participation margin: 12 % downward bias in intensive margin.

▶ Implicitly relies on parametric functional form assumption on counterfactual

distribution (Blomquist and Newey 2017): 11 % downward bias.

▶ Selection of specification is not based on MSE: 18 times larger standard error.

Regression kink design:

▶ Ignoring intensive margin: 5% upward bias in participation margin.

▶ ⇒ RKD is not applicable. Simultaneous estimation is necessary.



Robustness to Smoothness Assumption Bias Conclusion

▶ Placebo test on untreated data:
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▶ Estimator of specification bias using untreated data. No evidence of

specification bias.



Results Years 2004-2008 Plots

Capacity Epsilon (SD) Kappa (SD)

30 kWp 4.37 (0.13) 2.31 (0.06)

100 kWp 4.63 (0.84) 0.00 (0.02)

Epsilon := intensive elasticity; Kappa:= participation semi-elasticity; SD:= standard errors.

▶ Isoelastic intensive margin response.

▶ Participation margin semi-elasticity decreases in capacity.



Summary of the Empirical Approach Conclusion

Advantages

▶ Identification relies on quasi-experimental variation created by kink.

▶ No need for additional exogenous variation, instruments, control variables,

panel data, covariates.

▶ Estimation only uses easily observable distribution of adopters.

Potential Disadvantage

▶ Local estimates. Solution: estimates from more than one kink point.



Summary Counterfactual Details

4 Counterfactual Exercises:

1. Optimal linear subsidy: current subsidy is 0.14 % less costly.

2. Optimal nonlinear subsidy: saves 3 times more (0.45 % ∼ 45 mil. € per year).

3. Thought experiment, no participation: 8 % cost reduction.

4. Wrongly ignore participation: 3 % cost increase.

Take away:

▶ Government’s strategy reduces costs, but can be improved.

▶ Due to participation, only moderate cost reduction; no sliver bullet.

▶ Considering both margins crucial when designing optimal policy.



Literature
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▶ Contribution: evaluation of nonlinear solar subsidies.



Conclusion

Summary:

▶ Methodology to simultaneously estimate intensive and participation margin

using kinks in an incentive scheme.

▶ Evaluation of the German subsidy for solar panels.

Methodology More Generally Applicable:

▶ Generalizable to discontinuities.

▶ Kinks/discontinuities + intensive & participation margin are widespread.

▶ Similar problems: taxation, subsidies and transfers, product pricing.

▶ Costly deployment subsidies have moved to the forefront of climate action.



Thank you!



Appendix



German Subsidy for Solar Panels Assumptions

▶ Subsidy for rooftop solar panels for households and firms.

▶ From 2000 to 2003 net present value of subsidy linear in capacity.

▶ From 2004 net present value piecewise linear in capacity.

▶ Kink points: 30 kWp (5% drop in marginal rate) and 100 kWp (1% drop).

30 kWp.........................................100 kWp

.......................................................................................

.......



Histogram of Adoptions Assumptions Estimation

Histogram of Adoptions in 2004
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Histograms of Adoptions 2005 Assumptions

Histogram of Adoptions in 2005
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Data Assumptions

▶ Administrative data from transmission system operators.

▶ Contains all solar panel installations in Germany.

▶ Installation date, capacity, subsidy payment.

▶ I use years 2000-2008.



German Subsidy for Solar Panels Assumptions

Distribution Aggregate Capacity

Interval Relative Capacity

< 10 kWp 30 %

10 to 30 kWp 40 %

30 to 100 kWp 20 %

>100kWp 10 %



Adopters’ Behaviour: Extensions Back

▶ Heterogeneous, profit maximizing adopters i .

πi = max
q

β iS(q)− c i
v (q)

participate if πi ≥ c i
f

β i := individual specific discounting and productivity.

▶ The variable cost is convex because:
▶ Opportunity and aesthetic cost of space on the roof are convex.
▶ Price of solar panels is convex in their efficiency, i.e., their capacity per area.

▶ Fixed cost c i
f contains opportunity cost of adopting in a different period.



Illustration, Optimization Problem Back

Marginal cost is equal to marginal subsidy (FOC) ⇒ bunching & left shift in density.

qK

sl

r sl

S′
k (q)

c′
i (q)

q

Marginal Subsidy and Marginal Cost Curves

qK

fk (q)

q

B

∆q

FOC: S′(q)︸ ︷︷ ︸
marginal subsidy

− c′
i (q)︸ ︷︷ ︸

marginal cost

= 0

∆f ⇐ ∆π



Mechanism Only Intensive Margin Back

Marginal cost equal marginal subsidy (FOC) ⇒ bunching & left shift in distribution.

qK

sl

S′
k (q)

c′
i (q)

q

Optimal Choices

qK

fk (q)

q

B

Distribution, Only Intensive Margin

∆f ⇐ ∆π



Identification Only Intensive Margin Back

Bunching mass B proportional to left shift ∆q of marginal buncher.

qK

sl

S′
k (q)

c′
i (q)

q

∆q

The Marginal Buncher

qK

fk (q)

q

B ∝ ∆q

Distribution, Only Intensive

∆f ⇐ ∆π
B

∆q

- Counterfactual



Mechanism Both Margins Back

Profit loss ∆π causes drop in participation ∆f .

sl

S′
k (q)

c′
i (q)

q

∆π

πk

Profit Loss

qK

fk (q)

q

B

∆f ⇐ ∆π

- Counterfactual

- Only Intensivel

- Both Marginslll

Distribution, Both Margins



Mechanism Both Margins Back

Profit loss ∆π causes drop in participation ∆f .

sl

S′
k (q)

c′
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q

∆π

πk

Profit Loss

qK

fk (q)

q

B

∆f ⇐ ∆π
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- Only Intensivel
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Distribution, Both Margins



Mechanism Both Margins Back

Profit loss ∆π and participation loss ∆f increase in capacity.

sl

S′
k (q)

c′
i (q)

q

∆π

πk

Profit Loss

qK

fk (q)

q

B

∆f ⇐ ∆π

- Counterfactual

- Only Intensivel

- Both Marginslll

Distribution, Both Margins



Assumptions Details: Intensive Margin Back

Assumption (Locally isoelastic cost function)

For agents and quantities close to the kink point the cost function is isoelastic:

ci(q) = θ(i)q1+ 1
ϵ + cf (i). (4)

(θ, cf ) := (variable cost type, fixed cost type); ϵ := intensive elasticity.

For all firms i , define ql(i), ct(i) := choice and total cost under counterfactual.

⇒ θ(i) =
sl

ql(i)
1
ϵ

ϵ

1 + ϵ
and cf (i) = ct(i)− ql(i)

ϵ sl

1 + ϵ
. (5)

⇒ alternative type parameters (ql , ct) with direct economic meaning.



Assumptions Details: Participation Margin Back

Assumption (Locally isoelastic and smooth type-distribution)

1. The conditional CDF of the total cost ct is locally isoelastic:

Ft(ct |ql) = (ct)
η g(ql). (6)

η := participation margin elasticity; g(ql) := normalization term.

2. For an interval [q,q] around the kink point the counterfactual density fl(ql) is

representable by a convergent power series (analytic):

ln fl(q) =
∞∑

p=0

γp

(
ln

q
qK

)p

.

Definition fl(ql) := f (ql |ct ≤ slql).



Alternative Smoothness Assumption Back

Assumption (Smoothness)

The transformation of the counterfactual measure fl(.) is infinitely differentiable on

(q,q) and the derivatives are bounded by∣∣∣∣∣d(p) ln(fl(ql))

d ln(ql)(p)

∣∣∣∣∣ ≤ M
p!

(ln(q)− ln(qK ))p , (7)

where the bound M > 0 denotes a large real number.



Intuition Assumptions Back

Smoothness assumption identifies counterfactual distribution of bunching mass.

qK

fk (q)

q

B

Observable Distribution

∆f ⇐ ∆π

qK

fk (q)

q

Identification ∆q

B

∆q



Intuition Assumptions Back

The shift ∆q identifies the elasticity of the marginal buncher.

qK

sl

S′
k (q)

c′
i (q)

q

∆q

The Marginal Buncher

qK

fk (q)

q

Identification ∆q

B

∆q



Identification Back

Population Criterion

Q(ϵ, η, γ) =

∫ b

b
(ln f o

k (q)− ln fk (q | ϵ, η, γ))2 dF w . (8)

▶ fl(.) real analyticity ⇒ parameter space is (ϵ, η, γ) ∈ R∞.

▶ True (ϵo, ηo, γo) is the unique minimum of Q(.).

▶ Parameter space is compact; Q(.) is continuous.



The Relative Net Change in Subsidy Payment R(.) Back

Define the function R(ql) as the net subsidy of firm ql under the kinked scheme as

a fraction of the subsidy under the linear scheme:

R(ql) =
Sk (qk (ql))−∆c(ql)

Sl(ql)
. (9)

The function R(ql) is:

R(ql) = 1, for ql < qK ; (10)

R(ql) =
qK

ql
+

ϵ

1 + ϵ

1 −
(

qK

ql

) 1+ϵ
ϵ

 , for ql ∈ [qK ,qK r−ϵ]; (11)

R(ql) = (1 − r)
qK

ql
+

ϵ

1 + ϵ

(
1 +

r ϵ+1

ϵ

)
, for ql > qK r−ϵ. (12)



Simulation Exponential Counterfactual Back

ln f o
l (q) = λ0 + e−λ1 ln(q/qK ).
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Simulation Exponential Counterfactual Back

Table: Inferred parameters exponential ln f o
l (.)

Epsilon Bias Epsilon [%] Eta Bias Eta [%]

True Value 0.30000 0.000 3.0000 0.000

P=1 0.36239 20.795 0.3976 -86.747

P=2 0.32369 7.895 2.1423 -28.591

P=3 0.29792 -0.694 3.1557 5.190

P=4 0.30000 0.000 2.9996 -0.012



Simulation Exponential Counterfactual Back

Figure: True and inferred counterfactual, exponential ln fl(.).
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Simulation Normal Counterfactual Back

ln f o
l (q) = λ0 +

1√
2πλ1

e
− 1

2

(
ln(q/qK )

λ1

)2

.
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Simulation Normal Counterfactual Back

Table: Inferred parameters, normal ln fl

Epsilon Bias Epsilon [%] Eta Bias Eta [%]

True Value 0.30000 0.000 3.0000 0.000

P=4 0.19170 -36.101 9.1228 204.093

P=6 0.31168 3.893 2.9096 -3.013

P=8 0.29439 -1.869 2.9933 -0.223

P=10 0.30248 0.827 3.0015 0.050



Simulation Normal Counterfactual Back

Figure: True and inferred counterfactual, normal ln fl .
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Rank Condition Back

Rank Condition: Equation (4) and (5) have a unique intercept in (ϵ, η).

Holds generically. Moreover, each of the following is sufficient:

1. If d ln fl (q)
d ln q < −1.

2. If fl(q) or ln fl(q) is real analytic on the interval [0,q)

3. If order of series expansion P is finite.

4. If fl(.) is real analytic on (0,q) and there exists a P such that

limq↓0
dP f o

l (q)
dqP ̸= 0 or ±∞.

5. If ηo is known; in particular ηo = 0.



Nonparametric Specification Back

▶ Mean squared error: E(η̂(P,n)− η)2 = E(η̂(P,n)− η̃(P))2︸ ︷︷ ︸
Variance

+(η̃(P)− η)2︸ ︷︷ ︸
Bias2

.

η :=parameter; n := sample size; P := order of series; η̃(P) := biased value.

▶ Estimate of Variance⇒ bootstrap

▶ Estimate of Bias ⇒ untreated data.

▶

η̃ − η =

∑∞
p=P γp

1
p! (ln (ρ

−ϵ))
p

lnR(qKρ−ϵ, ϵ)
(13)

▶ Intuition: On untreated data, any effect η̂nt(P) estimates bias from specification.
▶ The bias in η depends only on ϵ and on the un-estimated rest of the parameter

(γP+1, γP+2, ...).



Specification Bias Back

▶ Assume ϵ̂ ≈ ϵo and ln fl(.) is P times differentiable.

▶ Analytic expression of specification bias:

E [η̂ − ηo] =
h(qKρ−ϵo

)
(
ln
(

qKρ−ϵo

qK

))P

lnR(qKρ−ϵo , ϵo)
, (14)

▶ Numerator is the rest of P-th order Taylor approximation.

▶ Assume it is the same in the treated and untreated data.

▶ Simulate intensive margin in untreated data using ϵ̂. η̂ is estimate of bias.

▶ Small and statistically insignificant specification bias.



Estimation 2004-08 at 30 kWp Back
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Estimation 2004-08 at 100 kWp Back
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Robustness 100 kWp Back

Both parameters are insignificant.
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Comparison classic estimates: details Summary

Parameter Unbiased Estimate Biased Estimate Relative Difference in %

ϵ̃1 4.37 3.39 -23

ϵ̃2 4.37 3.87 -12

κ̃ 2.31 2.43 5

Parameter Optimal Estimate P=7

ϵ 4.37 (0.13) 3.78 (0.39)

κ 2.31 (0.06) 3.25 (1.02)



The Government’s Objective Back

Achieve a certain capacity goal at minimal public costs:

min
S

∫
S(q)f (q)dq such that Q ≥ QT ;

Q := aggregate capacity, QT := capacity goal.

▶ Zero welfare weight for rents paid to adopters.

▶ Special case of more general welfare criterion.



Details Welfare Back

Utility function of adopter:

U (S(q)− c(q, θq) + y − T (y)− e(y , θy )) (15)

c(.) := cost of producing capacity q, y := other income, T (.) := income tax,

e(.) := effort cost to produce other income, θ = (θq, θy ) type parameters.

General Welfare Function:

max

∫
Θ

G [S(q)− c(q, θq) + y − T (y)− e(y , θy )] f (θ)dθ + V (Q) (16)

s.t.
∫
Θ

T (y)− S(q)f (θ)dθ = R and Q =

∫
Θ

q f (θ)dθ (17)

G(.) := redistributive preferences; V (.) := valuation of aggregate capacity.



Assumptions and Solution Method Back

Assumption (Global Assumptions)

1. The cost function is isoelastic.

2. The fixed cost follows an independent, Normal distribution.

Solution Method:

▶ Mechanism design approach following Rochet and Stole (2002).



Normal Distribution of Fixed Costs & Implied Semi-Elasticity Back
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The x-axis shows variable profit under the counterfactual subsidy as a function of capacity ql .



Counterfactual: The Optimal Marginal Subsidy Back

Comparison Marginal Subsidies

0 50 100 150 200
Capacity ql

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Marginal Subsidy Rate

Optimal subsidy

Observed subsidy

Optimal linear subsidy

▶ Actual subsidy is 0.14 % less costly than optimal linear subsidy.

▶ Optimal nonlinear saves 3 times more (0.45 % ∼ 45 mil. € per year).



Thought Experiment: No Participation Back

Optimal nonlinear subsidy with and without participation

0 50 100 150 200
Capacity ql

0.90

0.92
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Marginal Subsidy Rate

Both margins

Only intensive margin

Optimal linear subsidy

▶ Without participation margin ⇒ Cost savings are 9% (900 mil. € per year).



Counterfactual: Wrongly Ignoring Participation Back

Optimal nonlinear subsidy with and without participation

0 50 100 150 200
Capacity ql

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Marginal Subsidy Rate

Both margins

Only intensive margin

Optimal linear subsidy

Suppose policymaker wrongly ignores participation:

▶ Cost increase of 3 % instead of cost decrease.

▶ Taking participation into account is key.



Details Optimal Subsidies Back

▶ Denote a subsidy in place by S(q).

▶ Change the marginal subsidy at point q by dS′(q): Ŝ′(q) = S′(q) + dS′(q).

Change in principal’s payoff, only intensive margin:

(V ′(Q)− S′(q))
dq(ϵ)

dS′(q)
f (q) +

∫ ∞

q
(V ′(Q)q̃ − S(q̃))

η(q̃)
S(q̃)

f (q̃)dq̃ −
∫ ∞

q
f (q̃)dq̃

Both margins:

(V ′(Q)− S′(q))
dq(ϵ)

dS′(q)
f (q) +

∫ ∞

q
(V ′(Q)q̃ − S(q̃))

η(q̃)
S(q̃)

f (q̃)dq̃ −
∫ ∞

q
f (q̃)dq̃

In the optimum the above expressions are zero for all q.
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