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Abstract

Poverty prediction models are used to address missing data issues in a variety of
contexts such as poverty profiling, targeting with proxy-means tests, cross-survey im-
putations such as poverty mapping, top and bottom incomes studies, or vulnerability
analyses. Based on the models used by this literature, this paper conducts an exper-
iment by artificially corrupting data clear of missing incomes with different patterns
and shares of missing incomes. It then compares the capacity of classic econometric
and machine learning models to predict poverty under different scenarios with full in-
formation on observed and unobserved incomes, and the true counterfactual poverty
rate. The paper finds that random forest provides more consistent and accurate pre-
dictions under most but not all scenarios. Several tests provide initial indications on
what could explain these results.
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1 Introduction

The poverty rate, defined as the share of poor people in a given population, is an important
indicator of well-being. “End poverty in all its forms everywhere” is the first of the the
UN Sustainable Development Goals (SDGs) and the main instrument to monitor this goal
is the poverty rate. It is used by International Financial Institutions (IFIs) for the global
count of the poor, to classify countries according to their level of well-being, and allocate
global financial resources. Estimates of poverty at the household level are also used by
national and local governments to target populations in need of assistance and are a core
instrument of social protection policies. An accurate estimate of poverty at the population
or household level is a precondition for effective global, national and local welfare policies.

Accurate poverty measurement is not a simple exercise. It is based on sample surveys
that collect information on monetary indicators such as income, consumption or expen-
diture. It is therefore a sample based estimate of the population poverty rate. These
estimates suffer from a variety of measurement errors including sampling errors, misre-
porting on the part of respondents or interviewers, and unit or item non-response. Once
the data are collected, statistical agencies may also apply alterations to the data that can
potentially impair proper statistical estimates such as top coding. No survey is exempted
from at least some of these issues.

Among the various measurement issues described, unit and item non-response are par-
ticularly problematic in income surveys because of the share and type of missing incomes.
The March supplement of the Current Population Survey (CPS) in the United States - the
main instrument to measure poverty and inequality - suffered from a unit non-response rate
that ranged between 4.3% in 1979 to 16.7% in 2018 with a quasi-linear increase over time
(Hlasny and Verme, 2021). If income alone is considered, the rate of item non-response
for the CPS can be as large as 50% depending on the income item considered (Moore
et al., 1997). In 2019, household non-response rates among the 32 European countries
that participated to the EU-SILC project - the main instrument to measure poverty and
inequality in Europe - varied between 3.5% in Turkey to 47.7% in Ireland. These unit non-
response rates have been increasing over time and do not take into account item (income)
non-response.1

This problem does not apply to the US and Europe only but to any country engaged
in the estimation of the poverty rate with incomes. The main global data repositories used
for the measurement of poverty show that, worldwide, income is used to measure poverty
more often than consumption. The Luxembourg Income Study provides net income for
50 countries and consumption for 25; PovCalNet, the World Bank data repository for the
measurement of poverty, provides net income for 73 countries and consumption for 114;
and the UNU-WIDER database provides net income for 163 countries and consumption
for 66. Overall, high and middle-income countries tend to use income to measure poverty

1See EU-SILC comparative reports (Annex 5) available at: https://circabc.europa.eu/faces/jsp/extension
/wai/navigation/container.jsp. No information specific to item non-response is available in these reports.
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while low-income countries tend to use consumption.2

Moreover, it has been shown repeatedly that missing incomes in surveys are typically
Missing Not At Random (MNAR) and that they are concentrated on the tails of the income
distribution (Atkinson et al., 2011; Piketty and Saez, 2003; Lillard et al., 1986, D’Alessio
and Neri, 2015, Bollinger et al., 2019, Rubin and Little, 2020; Hlasny and Verme, 2021).
This implies that any statistics estimated on observed incomes only is biased and that this
bias should be expected to be particularly problematic for measures that are more sensitive
to extreme values such as poverty and inequality. In countries that use incomes to measure
the poverty rate, this rate can be severely biased because of the share and distribution of
missing incomes.

The problem with missing incomes cuts across several fields of the poverty measurement
literature including poverty profiling, top and bottom incomes studies, targeting exercises,
poverty mapping, vulnerability analyses, and various new methods based on big data and
machine learning. The typical case of missing incomes is when some incomes are missing
from the survey of interest. This has been of particular concern for practitioners working on
poverty profiles in statistical agencies or international organizations, and for those scholars
working on top and bottom incomes (Cowell and Victoria-Feser, 1996b, Atkinson et al.,
2011, Jenkins, 2017, Hlasny and Verme, 2021), or vulnerability analyses (Morduch, 1994,
Calvo and Dercon, 2013, Verme et al., 2016). But there are many other cases where poverty
is estimated out-of-survey with data that contain predictors of incomes but not incomes.
This is the case of targeting exercises with proxy-means tests (Coady et al., 2004, Brown
et al., 2018, Glewwe, 1991, Baker and Grosh, 1994) and cross-survey imputation exercises
such as poverty mapping (Elbers et al., 2003, Tarozzi and Deaton, 2009). More recently,
scholars have started to use machine learning methods to estimate various measures of
well-being with alternative data and predictors (Blumenstock et al., 2015, Abelson et al.,
2014, Jean et al., 2016, Mcbride and Nichols, 2018, Andree, 2021, Aiken et al., 2022, Aiken
et al., 2023). Broadly speaking, missing incomes are an issue that affects any global or
country study on poverty or incomes including seminal studies such as Chen and Ravallion
(2010), Sala-i Martin (2006), Piketty and Saez (2003), Burkhauser et al. (2023), Deaton
(2005), and many others.

Statistical biases due to income non-response are well known among statisticians and
economists. Poverty specialists, statistical agencies, and economist more in general tend to
experiment with alternative prediction methods to fill in for missing incomes such as single
and multiple imputations, matching methods, replacing methods using moments of the
income distribution, replacing methods based on various parametric functions, re-weighting
methods based on the estimated probability of non-response, and others. These methods
have been used extensively by the literature quoted above. However, in our knowledge, the
relative performance of the poverty prediction models used by this literature has not been
tested whereas it remains challenging to test the accuracy of each model with empirical

2See https://essd.copernicus.org/preprints/essd-2023-137/.
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data because the true poverty rate of the full distribution of incomes is not known due to
the share and distribution of missing incomes.

Building on the literature cited above, this paper compares the performance of classic
econometric3 and machine learning models in predicting poverty with different missing
observations shares and patterns and against the true poverty rate. This is done by gener-
ating a sample with no missing observations’ bias and corrupting this sample with various
shares and patterns of missing observations that mimic real world data. The performance
of poverty prediction models can then be assessed with complete information on the full
distribution of incomes, the true poverty rate, and the specific missing data patterns. The
paper also provides a framework to compare classic econometric and machine learning
models.

The objective of the paper is to show how different classic econometric and machine
learning models behave for predicting poverty when data, objective function (loss function),
poverty lines, or various parameters and prediction strategies change. We are not striving
to find the ultimate prediction model for the data at hand (which is a dummy data set)
or causal relations, but understand how different prediction models respond to changes
in these features using experimental data derived from real world data. The analysis is
based on income data and the prediction models considered require income predictors to
be observed. Results of this paper are not necessarily valid for other money metrics of
well-being such as consumption or expenditure.

Results show that the quality of poverty predictions and the choice of the optimal pre-
diction model can dependent on the distribution of observed and unobserved incomes, the
poverty line, the choice of objective function and policy preferences, the choice of models’
parameters, and the use or non use of various optimization strategies. However, random
forest models are more robust than other models to variations in these features. This is due
to the better ability of this model to predict incomes in the tails of income distributions
even with basic specifications. Other machine learning models can reach similar results
but only with a full grid search and a substantial cost in terms of computational time.

The paper is organized as follows. The next section describes common missing data
problems. Section 3 outlines how welfare economists have addressed this problem. Section
4 provides a consistent framework that can be used to compare classic econometric and
machine learning models. Section 5 describes the data. Section 6 conducts an experiment
with dummy data to compare the capacity of these models to predict the poverty rate
accurately. Section 7 provides a series of robustness tests by varying data, parameters and
preferences. Section 8 concludes by summarizing the main findings and providing some
initial indications on how these models can be used effectively.

3By “classic econometric” we mean standard OLS and Maximum Likelihood models such as logit or
probit models.
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2 The distribution of missing data

Addressing a missing data issue requires an understanding of the nature of missing data.
Statisticians (Rubin, 1976, Rubin and Little, 2020) distinguish between data Missing Com-
pletely At Random (MCAR), when there is no apparent law that regulates missing data;
Missing At Random (MAR) where missing data of the outcome variable of interest are
correlated with covariates of this outcome but not with the outcome itself (for example,
when only men are not responding to income questions because of their gender, not their
income), and Missing Not At Random (MNAR) where missing data of the outcome vari-
able of interest are correlated with the outcome variable itself (for example, higher income
households are less likely to respond to income questions in surveys because they have
higher incomes).

More formally and following Rubin and Little (2020), let Dij be the complete data
matrix and Mij the indicator matrix representing missing observations where i represent
observations and j represent variables. Then, the distribution of mi conditional on di is
fM |D(mi|di, ϕ) with ϕ being the unknown parameters of the function that relates m to
d. If Mij does not depend on Dij , it is said that missing data are Missing Completely at
Random (MCAR). Let now d(0)i be the components of di that are observed for unit i, and
d(1)i the components of di that are missing for unit i. A less restrictive assumption than
MCAR is that mi depends on di only through the observed components d(0)i. This case
is defined as observations Missing At Random (MAR). Finally, the missing data pattern is
called Missing Not At Random (MNAR) if the distribution of mi depends on di, which is
only partially observed.

In the case of poverty measurement, the problem of non-randomness is particularly
acute when poverty is measured with incomes, a standard practice in high and many
middle-income countries. Missing incomes in surveys are known to be correlated with
income itself in rich and poor countries alike (Atkinson et al., 2011, Hlasny and Verme,
2018a), and there is evidence that income non-responses are either an increasing function
of income or are U-shaped with both lower and upper income households less likely to
respond to questions in surveys (Lillard et al., 1986; Bollinger et al., 2019; D’Alessio and
Faiella, 2002; D’Alessio and Neri, 2015). This fact makes income data MNAR and possibly
also MAR, since some predictors of incomes are also likely to be associated with missing
data. From a statistical standpoint, this is the most complex scenario for proper statistical
estimates because the function that relates mi to yi (the ϕ parameters) is unknown. It is a
scenario where the basic assumptions needed to use popular imputation methods such as
multiple imputations are not met.

In our knowledge, the only strand of the poverty literature that has focused on this
problem is a string of papers that uses a GMM method to estimate the probability of
non-response in sample. This method estimates the function that relates mi to di (the
ϕ parameters) addressing the fundamental missing data problem. Authors who used this
method found income non-responses to be strongly associated with income (Korinek et al.,
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2006; Korinek et al., 2007; Hlasny and Verme, 2018a; Hlasny and Verme, 2018b; Hlasny
and Verme, 2021). When one has a large share of missing incomes and no means to test
their pattern, one should assume that missing incomes are MNAR and that estimating the
poverty rate on observed values only is likely to bias this estimation significantly. Since
the data necessary to estimate the probability of non-response are generally not available
to researchers, it is essential to test how prediction models behave in the presence of non-
response biases.

While the problem of missing incomes is generally discussed in the context of in-survey
imputations, it is equally relevant for out-of-survey imputations as in targeting and cross-
survey imputations for two reasons. One is that the original sample used for modeling
incomes is also likely to suffer from missing incomes as most surveys do, which has impli-
cations for the predicted values out-of-survey. And second, even if all incomes are observed
in the modeling sample, predicting out of sample amounts to predicting missing incomes
for the totality of households (individuals) in the imputation sample. This can also be
regarded as a missing data problem where 100% of incomes are missing.

3 How poverty economists address missing data issues to
predict poverty

There are several strands of the poverty measurement literature that treat the question
of missing incomes with prediction models based on classic econometric methods: The
literature on targeting and proxy-means testing, the literature on cross-survey imputations
such as poverty mapping, the literature on top and bottom incomes, the literature on
vulnerability to poverty, and the in-survey imputation literature. More recently, poverty
economists have experimented with machine learning methods. We briefly review these
strands of the literature in this order.

The literature on proxy-means testing used for targeting makes extensive use of pre-
diction methods to estimate poverty for households where income is non-observed (Coady
et al., 2004, Brown et al., 2018, Glewwe, 1991, Baker and Grosh, 1994). The idea is that
one can predict poverty using a restricted set of observed socio-economic characteristics
avoiding in this way extensive and expensive surveys on income or consumption. In this
case, the prediction model is built on an existing survey representative of the population
of interest. A short survey is then administered to potential beneficiaries to collect data
on key income predictors as identified by the model. This information is, in turn, used
to predict poverty for individual households or assign a score that can rank households
according to their level of well-being. This literature has used standard OLS or Logistic
models for the prediction model. It implicitly assumes that missing data from the sam-
ple used for the prediction model are not problematic and that targeting beneficiaries are
extracted randomly from the same population covered by the prediction model. A proper
discussion of missing data in works on proxy-means testing is rarely seen but the models
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used are poverty prediction models covering households with missing incomes.
Cross-survey imputation methods have been developed to estimate poverty when in-

come or consumption data are missing from the survey of interest but can potentially
be estimated using other surveys representative of the same population and including in-
comes. One example is small areas estimations also referred to as “poverty mapping”.
The idea behind poverty mapping is to use poverty predictors extracted from censuses
to predict poverty at the micro geographical level using the coefficients of a prediction
model estimated with survey data that contain incomes at the macro geographical level
(Elbers et al., 2003, Tarozzi and Deaton, 2009). Although this literature has developed
rather independently of the multiple imputation literature in statistics4, it uses multiple
imputation methods and builds on these methods to specifically address the question of
reduced variance among predicted values in the context of continuous dependent variable
models. Similar imputation methods for the purpose of predicting poverty have also been
used across years (Dang et al., 2019), different types of surveys such as consumption and
labor force surveys (Douidich et al., 2016), or different types of data such as administrative
and survey data (Dang and Verme, 2022). This literature has used continuous (Elbers
et al., 2003) and categorical (Tarozzi and Deaton, 2009) dependent variable models to
predict poverty. As for the proxy-means tests literature, this literature rarely discusses
missing data patterns but addresses the important question of the correct estimation of
the variance of predicted values with OLS models.

The literature on top and bottom incomes has focused on the fact that incomes in the
tails are under represented in surveys and that a correct estimation of inequality or poverty
in any given country needs to address this issue (Atkinson et al., 2011, Jenkins, 2017, Hlasny
and Verme, 2021, Cowell and Victoria-Feser, 1996a, Hlasny et al., 2021). This literature
recognizes that missing observations are an increasing function of income and are, therefore,
MNAR.5 Several methods have been proposed to address this issue ranging from replacing
incomes in the tails with observations extracted from theoretical distribution functions
such as Pareto (Cowell and Victoria-Feser, 1996b, Jenkins, 2017), to replacing top incomes
with data external to the survey such as tax data (Atkinson et al., 2011), to reweighting
observations using the inverse of the probability of non-response estimated from observed
data (Korinek et al., 2007, Korinek et al., 2006, Hlasny and Verme, 2018a). Replacing
observations with theoretical distributions or external data can be effective when missing
observations are almost exclusively on the tails of a distribution but these methods are
less efficient when missing observations are located closer to central values. Reweighting
methods are more indicated to estimate missing observations all along the distribution
and they also have the distinct advantage of estimating the probability of non-response,
which is the function that relates mi to di. However, in order to implement this method,

4Elbers et al. (2003) does not refer to the Rubin or Imbens literature while Tarozzi and Deaton (2009)
refers to several of Rubin’s papers but not to those that specifically addressed the cross-survey imputation
question.

5Interestingly, this literature rarely refers to MNAR data explicitly.
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one has to have non-response rates at a very disaggregated level, an information that
is not always available to researchers. Unlike the proxy-means testing and cross-survey
imputation literature, this literature focuses on the missing data question.

Scholars working on vulnerability to poverty have also used prediction methods to gauge
the probability of poverty in the future by simply estimating this probability with a OLS
or Logit prediction model (Morduch, 1994; Calvo and Dercon, 2013; Verme et al., 2016).
This literature has not been particularly concerned with either missing items as the top
incomes literature or the error term as for the cross-survey imputation literature. However,
it is similar to the case where the cross-survey imputation methods are applied to surveys
administered in different years, with the important difference that predictions are made
in-survey and not out of-of-survey.

All these strands of the literature may also use in-survey single or multiple imputations
to estimate incomes for item non-response in the data used for modeling. This is where
households are captured in the sample but do not reply to the income question. In this
case, one can estimate incomes based on the other socio-economic characteristics observed
with single or multiple imputation methods. This is also a standard practice used by
practitioners working on poverty profiles.

More recently, machine learning methods have been used by economists to predict
poverty with a variety of innovative data such as mobile phone (Blumenstock et al., 2015),
satellite imagery and remote sensing data (Abelson et al., 2014, Jean et al., 2016), or for
targeting the poor (Mcbride and Nichols, 2018; Aiken et al., 2023). A global competition
launched by the World Bank to predict poverty with machine learning algorithms provided
some initial evidence on how these methods can help to improve on classic poverty pre-
diction methods.6 All these studies largely relied on standard ML methods including tree
based methods, elastic nets, and neural networks, or deep learning methods. These are the
ML methods considered by this paper.

4 Baseline Framework for Comparing models

4.1 Three steps’ predictions

As shown in the previous section, one important distinction that the different strands of
the poverty prediction literature share is the distinction between continuous and discrete
(dichotomous) dependent variable models. These two types of models are applicable in
the context of classic econometric and machine learning models lending themselves to be a
useful framework to compare these different approaches to poverty predictions. This section
clarifies the steps required to classify households into poor and non-poor households and
the difference between these two sets of models.

To illustrate these differences, we use a simple OLS model based on a continuous

6See details of this competition on https://www.drivendata.co/blog/poverty-winners/.
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income variable and a logit model based on a categorical binary variable that classifies
the population into poor and non-poor statuses.7 In the remaining of the paper, we refer
to the first model as the ‘income’ (welfare) model and the second model as the ‘poverty’
model, with both models leading to poverty predictions. Predicting household poverty
with these two models requires three steps which we define as ‘Modeling’, ‘Prediction’ and
‘Classification’ and are described as follows:

Step 1 - Modeling
Wi = α+ β1Xi + ηi + ϵi (1)

Pi = δ + γ1Xi + νi + ψi (2)

where i is the unit of observation (usually a household or an individual, household for
short), Wi = income, Pi =poor where Pi =1 if the unit is on or under the poverty line and
Pi = 0 otherwise, X is a vector of household or individual characteristics, ηi and νi are
random errors and ϵi and ψi are model fitting errors.

The second step is the prediction of income or poverty based on the coefficients esti-
mated under the modeling equations:

Step 2 - Prediction
Ŵi = β̂1Xi + η̃i + ϵ̃i (3)

P̂i = γ̂1Xi + ν̃i + ψ̃i (4)

where Ŵi, P̂i are predicted income and poverty and η̃i, ϵ̃i, ν̃i, ψ̃i are the estimated ran-
dom and model fitting errors. Step 2 is the key step for addressing missing data issues.
This is where missing incomes or poverty status are replaced with predicted values.

The third and final step is to divide the population into estimated poor and non-
poor groups. For this purpose, the welfare and poverty models critically differ in several
important respects. Under the income model, the poverty line is used after the second step
to separate the poor from the non-poor. Under the poverty model, the same poverty line
is used to separate the poor from the non poor to construct the poor dichotomous variable
in step 1 based on observed values. Once the probability of being poor is estimated for
missing incomes in Step 2, a probability cut-point is used to separate the poor from the
non poor. Therefore, Step 3 can be described as follows:

Step 3 - Classification

if Ŵi ≤ z : i = poor

else : i = nonpoor
(5)

if P̂i > prob∗ : i = poor

else : i = nonpoor
(6)

where z is the poverty line with Wmin ≤ z ≤Wmax and prob∗ is a probability cutpoint

7Note that one could use an OLS model with a binary dependent variable but this practice is rare.
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with 0 ≤ prob∗ ≤ 1 that can be arbitrary or defined with some form of optimization criteria.
A second important difference between the welfare and poverty models is that the in-

come model is typically estimated with an Ordinary Least Squares (OLS) estimator whereas
the poverty model is estimated with a Logit or Probit maximum likelihood estimator.

A third difference is that the income model produces income predictions whereas the
poverty model produces probabilities of poverty predictions. One can easily turn the mon-
etary predictions from the income model into probability of poverty predictions. In fact,
for each poverty line z = x0, ..., xn the probability of poverty of a household with income
x is 1-F(x). Therefore, we can express both models in terms of probabilities of being poor.
However, in practice, scholars have used income or probability of poverty predictions de-
pending on the model used. This implies that comparisons between the two models can
only be made after the classification step.

Poverty predictions from both models can be improved after Step 2. The OLS income
model produces a distribution of predicted values that is narrower than the true distri-
bution. This is a statistical fact that has important implications for poverty predictions
and that has induced scholars working on cross-survey imputations to propose specific so-
lutions. Poverty predictions from the logit/probit models can also be improved by shifting
the probability threshold in order to optimize the trade-off between different types of errors.
This is done using Receiver-Operating Characteristic (ROC) curves and indexes initially
introduced in clinical medicines but also used by poverty specialists (Wodon, 1997; Verme
and Gigliarano, 2019). These adjustments will be considered further in the paper.

The income and poverty models described above is what we refer to as ‘classic economet-
rics’ models. We also consider three families of machine learning models: Decision Trees,
Regularization, and Neural Networks. In particular, we use Random Forest, Elastic Nets,
and Neural Networks with two hidden layers as representative choices of these families. As
already discussed, these models are the most popular among economists. Regularization
models rely on the same OLS and Logistic models described with the important difference
of ‘regularization’ as a method to shrink parameters. Random forest uses its own classifi-
cation method based on entropy measures used to split the data in groups as homogeneous
as possible and a random selection process for data and variables (bootstrap aggregation)
to obtain optimal out-of-sample predictions. Neural networks can be seen as parametric
functions such as OLS models with a very high number of parameters that are determined
by the trial and error process in-built in the model. Details of these models are discussed
in the calibration section further in the paper.

4.2 Confusion matrix, errors, and objective functions

All poverty prediction models illustrated above will result in true and false predictions that
are best illustrated with a confusion matrix (also known as error matrix or contingency
table with two entries) resulting after Step 3 of the modeling exercise (Table I). The matrix
divides the population into four groups based on whether predictions are correct or not:
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True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN).
The primary objective of any classification exercise is to maximize TP and TN and minimize
FP and FN. Incorrect classifications result in errors Type I and Type II. In the case of
poverty predictions, Type I error refers to non-poor persons who are erroneously predicted
as being poor. This error is also known as False Positive Rate (FPR), inclusion error or
leakage rate and is defined as FP/(FP+TN). Type II error refers to persons who are poor
but are erroneously predicted to be non-poor. This error is also known as False Negative
Rate (FNR), exclusion error or undercoverage rate and is defined as FN/(FN+TP).

[Table I]

To determine the objective function to optimize when predicting poverty, one has to be
clear about what is observed and not observed, the type of error to minimize, and whether
the objective is to optimize the estimation of poverty at the population or household level.

The first observation is that, with survey data, not all incomes are observed which
implies that none of the values in the four cells of the confusion matrix is known. What
is known after the final classification step is the number of predicted poor and predicted
non-poor, or the sums of the two columns of the confusion matrix. In these cases and in
order to test the quality of the prediction models, scholars split the available sample into a
train and test samples, run the model on the train sample and then evaluate how the model
performs on the test sample making the important assumption that the test sample is free
of missing incomes biases. Repeating this exercise several times with samples of different
sizes provides a robustness test for the prediction model. In our case and as explained in
the data section that follows, we start with a sample free of missing incomes biases which
implies that all four cells of the confusion matrix are known.

The next question is the choice of objective function to optimize. Type I and Type II
errors can be regarded as important from the perspective of an administrator of a poverty
reduction program. Minimizing Type II error (exclusion error) is clearly more important
from a poverty perspective. Excluding some of the poor has real consequences for well-
being. But Type I error (inclusion error) may also be considered important if budgets are
constrained, which is a common feature of poverty reduction programs worldwide. Includ-
ing non-poor people is costly and diverts resources from the poor. How much importance
should be given to each objective is, of course, a matter of preferences and the trade-offs
between the two objectives also depend on the relative cost of inclusion or exclusion, which
is case/country specific.

The third question and in the case of poverty predictions, the objective function to
consider is different depending on whether one is interested in estimating the poverty rate
as a population statistics (anonymous case), or estimating the poverty status correctly for
each household (non-anonymous case). If the objective is to predict the poverty rate for the
population, it is not essential to minimize both Type I and Type II errors. It is sufficient
to minimize the difference between the true population poverty rate P and the predicted
poverty rate P̃ :
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min(P − P̃ ) = min[(P̂ + ϵ)− P̂ ] = min(ϵ) (7)

If we refer to the confusion matrix, this is equivalent to maximizing the sum of the true
predictions (max(TN + TP )) or minimizing the sum of the false predictions (min(FN +
FP )) irrespective of the actual TN or TP (FN or FP) values. In econometric terms, this
amounts to minimizing the average model error term for the population (not the idiosyn-
cratic error term which averages zero). In this case, and provided we are conducting an
experiment where we know the true poverty rate, a possible test to evaluate the perfor-
mance of the models is a means difference test between the true and predicted poverty
rates.

However, a means difference test between true and predicted poverty can only be con-
ducted in an experimental context where the true poverty rate is known. In statistics
and with survey data, prediction errors are usually evaluated with a range of indicators.
Popular indicators for linear regression models are Mean Bias Error (MBE), Mean Square
Error (MSE), Mean Absolute Error (MAE), or Root Mean Squared Error (RMSE), while
a common approach to classification problems is to use some form of cross-entropy indi-
cator. These indicators have been used to evaluate poverty prediction models but they
cannot be used to compare continuous and discrete dependent variables models. They are
also designed to evaluate the performance of regression models rather than the capacity
to classify outcomes accurately and they are not measured against the true counterfactual
(the true poverty rate in our case).

Estimating the correct population poverty rate may not be sufficient if one has an
interest in correctly estimating the poverty status of each household included in the sample.
This complicates the objective function and the optimization process as we now have
two elements to maximize (TN and TP) or minimize (FP and FN). We also need to
attribute relative preferences to the two elements unless we consider the two elements
equally valuable. One simple way to do that is to maximize the weighted sum of TP and
TN as

max[a ∗ TP + b ∗ TN ]. (8)

With a and b indicating preferences for TP and TN. In general, one would prefer
to maximize TP and maximize coverage as opposed to maximizing TN and minimizing
leakage. However, budget considerations may also be important and different policy makers
may have different preferences for a and b.

In order to compare continuous and dichotomous dependent variable models and in
order to clarify the weight given by the objective function to the different elements of
the confusion matrix, one has to define the objective function in terms of the elements of
the matrix. Following this strategy, different scholars have developed alternative objective
functions such as the True Positive Rate, sensitivity or recall (TPR=TP/(FN+TP)), the
True Negative Rate or specificity (TNR=TN/(TN+FP)), precision (TP/(TP+FP)) or the
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False Discovery Rate (FP/(TP+FP), and the accuracy ratio ((TP + TN)/N). The differ-
ence between these functions is simply the weight attributed to each of the four elements
in the matrix. In a sense, they are different ways of expressing preferences for different
types of errors. They also require knowledge of all values in the four cells of the confusion
matrix. Throughout the paper, we will focus on max(TP +TN) and max[a∗TP +b∗TN ]
but we will also use these other functions to illustrate whether different preferences may
lead to different choice of prediction model.

5 Data

To observe the true poverty rate and measure the true prediction error, we generate a
dummy data set free of missing data bias starting from real data. We first identified
a publicly available real data set with an exceptionally low unit non-response rate, no
item non-response, and information on non-response rates by geographical areas.8 We
then re-weighted observed incomes using the inverse of the probability of non-response
correcting for any remaining bias due to unit non-response. This methodology is very
well-known among statisticians (Rosenbaum, 1987; Kim and Kim, 2007) and widely used
by economists working on top incomes (Korinek et al., 2007; Hlasny et al., 2021). It
has the distinctive advantage of being able to estimate the function that relates mi to di
(the ϕ parameters), estimate the probability of non-response, and returning a sample of
incomes that is statistically equivalent in mass and representation to the original sample
as intended by survey design. In other words, we start with real data which already have a
very marginal problem with missing incomes, and exploit the availability of non-response
rates by geographical area to re-weight observed incomes and obtain a sample which is
expected to be statistically free from any income bias.

It is possible to think of other choices of data and methods to compare prediction
models but none of these choices, in our view, would be as satisfactory. For example,
one could generate an artificial income distribution using parametric functions that are
well-known to represent incomes well such as the generalized beta distribution with two or
more parameters. However, it would be almost impossible to generate artificially a set of
predictors that could be used in the prediction model and that could approximate real data
behavior. A second possibility is to take real data, superimpose a parametric distribution
on incomes, and then extract missing incomes from this theoretical distribution. This is
possible and a common approach among scholars working on top incomes, but it is unknown
whether the chosen distribution would represent the data at hand well, and it is unknown

8The survey we use is the 2007 round of the Enquête Nationale sur les Niveau de Vie des Ménages
(ENNVM) of Morocco which has a (unit) non-response rate of below 2% given a full sample of 7,200 obser-
vations by design and a final surveyed sample of 7,062 observations. The survey has no item non-response
and is also one of the few surveys for which it was possible to recover unit non-response rates by geograph-
ical areas (regions and urban/rural areas), which is essential to estimate the probability of non-response.
Microdata and meta-data for the survey can be downloaded freely from the web (https://www.hcp.ma).
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the exact location of the missing incomes to extract. An alternative method is to use data
external to the survey to complete the survey data such as tax or social security records, a
method also popular among scholars working on top incomes. This has several problems.
One is that the definitions of income are often different in the two sources of data. A
second is that one should be able, as a minimum, to match the observed survey data with
the respective external data before using external data to replace missing observations in
the survey data. This is something that is very hard to do and something that we have
not seen in published papers. Moreover, tax and social security data are also plagued by
misreporting and under reporting, which carries the risk of introducing new biases.

An additional possibility is to conduct an experiment where non-responding households
are tracked and encouraged to respond. If the survey administrators manage to recover all
missing respondents, one could compare the original and final samples. A similar strategy
has been followed in Blattman et al. (2013) although the authors opted to recover only a
share of the missing respondents in their panel survey. This strategy has the potential to be
an optimal strategy but recovering all non-respondents is very unlikely in practice, the two
surveys cannot be administered at the same time, and incentives to reply to a second round
of interviews may generate behavioral changes. A fifth possibility is simply to compare
models using multiple data sets from different types of countries with different non-response
rates. However, it is usually difficult to obtain from statistical agencies information on
missing incomes, which makes it impossible to know the nature and distribution of missing
incomes. Even where this information is available, with large shares of missing incomes,
it is very hard to trust post-survey corrections with re-weighting or replacing methods.
Finally and critically, with the exception of the case where survey administrators are able
to recover all missing respondents, none of the methods described above dispose of a
true counterfactual, the poverty rate that would have been estimated from the complete
distribution of incomes with no missing values.

As a measure of income, we use the log of income per capita calculated on households
rather than individuals, and without sampling weights. This is done on purpose and for
simplicity to avoid a discussion on adult equivalence scales and the use of survey weights in
regressions, which is beyond the scope of this paper.9 The set of independent variables is
rather standard and includes age, age squared, gender, marital status, skills, occupation and
working sector of the head of the household, and household size and location (urban/rural).
All these variables are used in binary form except for age and household size and they are
all fully observed. This set of independent variables is the same for all models in the paper.

9If the objective is not to estimate population statistics but study causation or prediction accuracy
(as in our case) there are pros and cons in using sample weights and quite a bit of disagreement among
econometricians on whether they should be used. Also, not all machine learning models allow for sampling
weights or, if they do, they are a black box. It is unclear how they enter the algorithms, what effects
they have on predictions, and whether different models treat them differently. As our objective was not
to estimate population statistics for Morocco but compare the performance of prediction models, avoiding
weights is a much cleaner choice.
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Summary statistics for all variables are in Table II.

[Table II]

To compare models’ performance when missing data patterns change, we corrupt our
dummy data set mimicking eight missing data patterns: five MCAR selecting randomly
different shares of missing data (5, 25, 50, 75, and 95%), “MAR pure” meaning that
we randomly selected 50% of the sample conditional on one independent variable that is
not correlated with income (we use working individuals in the secondary sector which we
tested for independence of income), “MAR-MNAR” where we randomly selected 50% of the
sample conditional on a variable which is associated with income (we use household size<5),
and “MNARpure” where we randomly selected 50% of the sample conditional on income
only (we use income>mean income). The most common and relevant case for this paper
is MAR-MNAR whereas MNARpure is a rare case in empirical contexts. The resulting
income distributions are plotted in Figure I. This is, of course, a simple characterization
of MAR and MNAR issues. Models that include a large set of regressors may exhibit
more complex correlation patterns between missing incomes, observed incomes, and other
independent variables.

[Figure I]

Our approach has two additional advantages versus other possible methods that can
be used to compare models. After corrupting the data, the resulting distributions are
different in size and shape. Comparing models’ performance across the eight data sets
generated is, therefore, a test across different missing data patterns, but also a test across
different shapes of the income distribution as if we were comparing different data sets.
Since almost all survey income data contain some degree of missing observations, we are
mimicking - with real data - other types of income distributions found in surveys with
the distinct advantage of knowing the type and distribution of missing values and the
true counterfactual poverty rate. This is something that would not be possible by simply
comparing the prediction models across different real data sets. Moreover, by removing
different shares of observations randomly as we do with MCAR corruption patterns, we
are explicitly creating train and test samples for in-sample and out-of-sample predictions
of different sizes. Therefore, the models’ prediction capacity is tested on out-of-samples of
different sizes as scholars do when the true poverty is not observed.

6 Comparing poverty prediction models

6.1 Baseline comparisons

We compare the performance of classic econometric and machine learning models using
eight models: The welfare and poverty models already described, and random forest, elas-
tic net and neural network models each with continuous and dichotomous (categorical)
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dependent variable. We label these models wcn (Welfare - Continuous), rcn (Random For-
est - Continuous), ecn (Elastic Net - Continuous), ncn (Neural Network - Continuous), pct
(Poverty - Categorical), rct (Random Forest - Categorical), ect (Elastic Net - Categorical)
and nct (Neural Network - Categorical) where ‘w’ stands for welfare, ‘p’ for poverty, ‘r’
for random forest, ‘e’ for elastic net, ‘n’ for neural network, ‘cn’ for continuous and ‘ct’ for
categorical model. This allows us comparing the performance of econometric and machine
learning models and also the performance of continuous and dichotomous dependent vari-
able models. The full results of the baseline OLS and Logit (Step 1) models are provided
in Tables III and IV.

[Tables III and IV]

All models are estimated in Stata with the following commands: ‘regress’ (OLS-wcn),
‘logit’ (Logit-pct), ‘rforest’ (Random Forest - rcn and rct), ‘elasticnet’ (Elastic Net - ecn
and ect), and ‘mlp2’ (Neural Network - ncn and nct). We are predicting all incomes using
the full observed distribution of incomes for the modeling (step 1) equation. For all models,
we use the same poverty line set at median income and the same set of explanatory variables
with no interactions between variables10, we do not use any kind of weight and we do not
use clustering of standard errors or any other estimation options. Alternative specifications
of the models as well as alternative choice of poverty lines and models’ options are discussed
further in the paper.

The baseline models used in this section provide the simplest of the specifications
required by the Stata routines. For the OLS and Logit models specifications are reported
in Tables III and IV. The same set of regressors is used for all models, including machine
learning models. The hyperparameters of the Random forest model are set at 100 iterations
(trees) with a default depth of 0, and a mtry parameter (the number of input variables
at each iteration) equal to the squared root of the number of independent variables. The
main hyperparameters for the Elastic Net model are α = 0 with the number of grid points
set for λ equal to 100. The main hyperparameters for the Nerural Network model are:
1) the number of neurons in the 1st and 2nd hidden layer are set at 100; 2) no bias
term; 3) optimizer is a generic stochastic gradient descent; 4) the loss function is softmax
for categorical dependent variables and MSE for continuous variables; 5) the initializing
variance factor is 1; 6) the max number of restarts is 10; 7) the learning rate of the
optimizer is 0.1; 8) the gradient smoothing term is 1e-8; 9) the first hidden layer dropout
probability is 0; 10) the training batch size is 50 or the entire sample; 11) the maximum
number of iterations is 100; 12) the report loss values at every number of iterations is 0.
The ML models are not optimized. The spirit of Tables V and VI is to present the results
of the default routines offered by the Stata packages to mimic what most non-machine
learning poverty specialist would do when they use ML models. This can be described as

10Some models such as random forest will work in a way that amounts to interacting variables but this
is not done by design with the inclusion of interactions variables among regressors.
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a baseline approach, which is a rather common approach among practitioners due to its
computational speed and simplicity. The fine tuning of machine learning models with a
comprehensive grid search is provided under the model’s calibration section below.

Table V compares these baseline models. The top of the table reports the number
of observations, the true poverty rate set at 50%, predicted poverty rates, the difference
and the t-tests for means difference between the true and predicted poverty rates. We then
report two alternative functions where we give larger preference for TP and TN respectively
(prefTN with a = 1.25 and b = 0.75; prefTP with a = 0.25 and b = 1.25). The rest of
the indicators are the values for the four cells of the confusion matrix and the objective
functions popular across the social sciences including Leakage, Undercoverage, Sensitivity,
Specificity, Precision and Accuracy. As discussed, each indicator gives different weights
to the different cells of the confusion matrix. In parenthesis (min/max), it is indicated
whether the objective function is to be minimized or maximized. The table also reports
the ranking of models based on each objective function (‘1’ is the best model and ‘8’ is the
worse).

[Table V]

The table shows that random forest with categorical variable (rct) outperforms all other
models according to all objective functions with the exception of the difference between
true and predicted poverty rate where random forest with continuous dependent variable
(rcn) comes out on top. Irrespective of the objective function, random forest outperforms
all other models. It is also evident that a simple OLS model with no error term correction
performs rather poorly because of its inability to predict incomes on the tails well.

To better understand what determines these findings, it is useful to plot the distribu-
tions of predicted values in the continuous case and the distributions of predicted probabil-
ities in the dichotomous case. Figure II shows that the different models perform relatively
well in some parts of the distributions but not in others. For the continuous case, all
models tend to better perform around the center of the distribution and much less on the
tails with the OLS and Elastic Net models being particularly poor on the tails and the
Neural Network model being better on the lower tail but very poor on the upper tail. The
only model that performs well around the middle of the distribution and has a relatively
better performance on the tails is the random forest model. For the dichotomous case, we
see similar patterns for all models except the random forest model. This model seems to
be better able to split the poor and non-poor into two clearly distinguishable groups as
opposed to the other models which have a large area of predictions that could easily switch
between poor and non-poor depending on the probability cut-point chosen (an arbitrary
choice of 50% in our case. Other thresholds including optimized thresholds are considered
later in the paper). Again, the random forest model would seem less susceptible to changes
in the distribution of incomes and also to the probability cut point chosen to split the poor
and the non-poor. All this keeping in mind that none of the machine learning model is fine
tuned through grid search.
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[Figure II]

6.2 Missing data shares and patterns with alternative poverty lines

Table VI compares predicted poverty rates across the different models using different miss-
ing data shares and patterns as described in the data section and different poverty lines.
Note that, by imposing different shares and patterns of missing observations, we are also
dictating the partition of observations between in-sample (observed incomes used for train-
ing the model) and out-of-sample (unobserved incomes used for testing the model). We
are also testing, therefore, how models behave when the partition between train and test
samples changes. This is particularly relevant for machine learning models.11 We test these
models against four poverty lines: 5%, 25%, 50%, and 75% of the income distribution. This
captures most of the poverty rates found across the world using the World Bank 2.15, 3.65,
and 6.85 USD 2017 Purchasing Power Parity (PPP) poverty lines.12.

[Table VI]

Random forest with the dichotomous dependent variable (rct) emerges on top for most
but not all estimations. For a poverty line of 25% random forest is unambiguously the
best model, on average across missing data patterns, and performs very well for most of
the other poverty lines. It is also the top performing model for the most common and
problematic of the scenarios (MAR-MNAR) with the exception of when the poverty line
is set at 75%. It is also the case that random forest with continuous variable (rcn) comes
into second place across models overall. However, there is no consistent dominance of
random forest models either across all poverty lines or across all missing data patterns.
For example, with a poverty line of 50%, random forest comes out on top in only half of
the missing data patterns.13 As compared to Table V, Table VI provides the important
additional result that models’ performance can depend on the poverty line and the missing
data pattern.

11There are more sophisticated methods to partition the train and test samples such as “upsampling”.
Given the variety of shares and patterns of missing observations tested in this section, we will not discuss
or use alternative methods.

12See https://pip.worldbank.org/home
13It is important to stress here that ML models are not adapted to the size of train sample. Some models

like neural network require a minimum size for the train sample set whereas other models need to adapt
the choice of parameters to the train sample size. These aspects are ignored here and we should consider
that ML models can be improved as shown further in the paper. For the welfare and poverty models,
we also tested multiple imputations methods as opposed to single imputation (results omitted). Results
do not vary as we should expect. Values predicted with multiple imputation are means across repeated
samples with replacement and these means center around the sample mean obtained with single imputation.
What multiple imputation does is to improve on the estimate of the standard error, which can be larger
or smaller than the standard error obtained with single imputation depending on the specification of the
model. However, it does not improve on the predicted central value.
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Looking at the Cumulative Distribution Functions of predicted values helps us under-
standing the results (Figure III). It is clear that CDFs cut across each other and some
also cut across the original income distribution (left-hand panel). This means that there
is no absolute dominance along the distribution with some models predicting income or
poverty consistently lower or higher than other models or the original income distribution.
Models that may perform better with low poverty lines (high probability thresholds) may
not perform better with high poverty lines (low probability thresholds) and vice-versa.
Predicted values are the further away from the original distribution on the tails explaining
why poverty predictions are far from the true values when we use poverty lines that ap-
proach the 25th or 75th percentile. However, random forest is an exception in this respect
as the CDF of predicted values is the closest of all models to the tails of the true income
distribution in the continuous case. In the dichotomous case, random forest shows the
most extreme curve on the tails indicating that its mass is concentrated closer to 0 and 1
probabilities. This makes classification of observations easier and more accurate with less
observations located around the probability cutpoint.

[Figure III]

7 Models’ calibration

So far, we have been using all models with the most basic specifications and tuning as
provided by the Stata packages we used. In this section, we test how varying models’
specifications and parameters can affect the estimation of poverty.

7.1 Specification of the modeling equation

The set of independent variables and the explanatory power that this set determines may
also be a discriminatory factor for the choice of an optimal prediction model. If an impor-
tant variable is not included into the prediction equation, none of the models will benefit
from this variable. However, machine learning models have the ability to improve on the
use of the existing set of independent variables by including or omitting variables, or inter-
acting them. Therefore, the initial set of independent variables may benefit some models
more than others.

In Table VII we compare the initial set of independent variables we used thus far
(Model1) with three other sets (Models2, Model3 and Model4). Model2 uses the same
variables as model1 but changes the order by placing the continuous dependent variables
at the bottom rather than at the top. Model 3 is a reduced model that includes all original
variables as in Model1 except age and hhsize, two important predictors in our model. This
reduces the R2 of the welfare OLS model from 0.33 to 0.22 and the Pseudo-R2 of the Logit
poverty model from 0.18 to 0.11. Model4 is an even smaller model that keeps only the
variables male, marital status and urban from Model1, which reduces the R2 of the OLS
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model to 0.12 and the Pseudo-R2 of the Logit model to 0.06. We can therefore compare four
models with different orders of the independent variables and different sets of explanatory
variables. The poverty line is set at 50% by design as in Table V.

[Table VII]

A first obvious result is that, with the largest model (Model1), all models tend to
perform better whereas none of the models performs well with the most reduced of the
models (Model4). With the most parsimonious of the models (Model4), differences in
poverty estimations across models almost disappear. With only three variables that explain
little of the outcome variance, there is not much that machine learning models can add to
simple OLS or logit models unless the model that best fits the data is not a linear model.

An additional observation is that with an intermediary set of variables (Model3), the
comparative advantage of random forest models disappears as compared to the more classi-
cal logit model, although it holds up well among the continuous dependent variable models.
With parsimonious models, one may want to stick to a simple logit model. However, ML
models can also be optimized for models with few predictors, which may improve further
on the observed performance of the ML models we considered.

7.2 OLS model (wcn)

The real shortcoming of a linear regression model is its inability to predict incomes on the
tails correctly. This is simply a statistical fact of OLS models which results in distributions
of predicted values that are narrower than the original distributions, particularly if the
explanatory power of the model is low. As surprising as it may seem, this is a problem that
is routinely ignored in empirical works. One strand of the poverty literature that focused
on this problem is the cross-survey imputation literature which proposed to address it by
correcting the error term. In essence, the error term can be split into an idiosyncratic
error term and a model error term. By estimating the model error term using the original
empirical distribution or a theoretical normal distribution, one can add this error back into
the predicted values mimicking in this way the variance of the original distribution. This is
what we do in this section replicating the same technique used in cross-survey imputations.

Results are shown in Table VIII providing corrections using the empirical distribution
for the continuous dependent variable model and the logit model for the categorical depen-
dent variable model. This form of imputation improves results substantially for all poverty
lines bringing estimations much closer to the true values. It also outperforms other (non
optimized) machine learning methods with the exception of random forest with a poverty
line of 50%. In the presence of missing data, particularly when the share of missing data
is very large, and when the true poverty rate is expected to be far from the center of the
distribution, it is essential to use this method when estimating poverty with OLS models.
This simply confirms a fact that is very well known among cross-survey imputation spe-
cialists (Dang et al., 2019). However, one drawback of this method is that it is designed
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to estimate the poverty rate at the population level and does not provide imputations at
the individual or household level. This means that one cannot use the objective functions
derived from the confusion matrix. In other words, one can compare results with other
models using only the predicted poverty rate. For this reason, this method could not be
used to compare the full range of objective functions as we did in Tables V.

[Table VIII]

7.3 Probability threshold for dichotomous dependent variable models
(pct, rct, ect, nct)

It is possible to improve on predictions generated by dichotomous dependent variable mod-
els by optimizing the probability cutpoint used to separate the predicted poor from the
predicted non-poor when households are classified after the prediction step. As probabili-
ties of being poor vary between 0 and 1, most scholars use a cutpoint of 0.5 for simplicity,
which is what we used so far. However, research across the social sciences has shown that
one can use Receiver Operating Characteristics (ROC) curves and the Youden index (de-
fined as y=max(sensitivity+specificity-1), or the max vertical distance between the ROC
curve and the chance line) to optimize the cutpoint (see Verme and Gigliarano, 2019 for a
detailed discussion.). This should be of interest to poverty specialists who value sensitivity
and specificity equally and wish to have a criteria to value the trade-off between these two
objectives.

Table IX shows poverty rates for the four dichotomous dependent variable models, a
range of reasonable cutpoints (between 45 and 55)14, and different poverty lines (5, 25, 50,
and 75%). We see that random forest outperforms all other models resulting in poverty
predictions that are closer to the true poverty rate (5, 25, 50, and 75%) with the exception of
when the poverty rate is set at 50% with a cutpoint of 0.45. If the objective function requires
equal weight to sensitivity and specificity, maximizing the Youden index and finding the
optimal cutpoint can improve poverty prediction for any model, but changing the cutpoint
is not necessarily a discriminant for the choice of optimal model.

[Table IX]

7.4 Fine tuning machine learning models (rcn, rct, ecn, ect, ncn, nct)

Can machine learning models be improved for poverty predictions? The real strength of
machine learning models is the set of parameters that can be tuned to optimize outcomes.
This can be done with a trial and error approach or, more systematically, with a grid
search approach. The latter consists of attributing a range of values to each parameter of
the model, test all possible combinations of parameters, and compare results based on the

14The Youden index results in cutpoints that are very rarely outside these boundaries
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objective function selected. This is the approach followed here. We conduct a grid search for
each of the three machine learning models used in this paper and we compare results using
the accuracy function ((TP+TN)/(TP+FP+TN+FN)*100), which is the most relevant
function for a poverty analysis if the true poverty rate is not known. We split the data
randomly into two equal samples and use sample 1 as training sample and sample 2 as
test sample. The grid search for each model is conducted using the training sample and
predictions are made using the test sample. Results for accuracy in the test sample are
then compared across the three machine learning models. Table X provides the parameters’
range and optimal values found through grid search.

[Table X]

Results (max, mean, and standard deviation of accuracy) are shown in Table XI for
three poverty lines (25, 50 and 75%). It shows that grid search is effective in improving all
models. Random forest remains the best model with a continuous dependent variable and
ranks second with a categorical variable after the neural network model. Overall and for
each poverty line, all three models are able to reach rather high accuracy values (between
70 and 80%) and also converge to a very narrow set of values across models. This means
that all machine learning models are capable of providing good predictions provided that
the parameters are finely tuned. The limits of the prediction capacity of these models seem
to relate to the original input variables rather than the models themselves. The drawback
of this approach is that it is extremely time consuming. While random forest was already
close to optimal with a simple default specification of parameters and a run time of a few
seconds, elastic net and neural network models required a full grid search to reach optimal
results. This exercise eventually run into tens of hours of computing explained by the large
number of parameters that can be tuned, the vast number of values that can be attributed
to each parameter, and the trial and error approach that one needs to follow to find a
sensible range of values for each parameter. Based on these results, random forest remains
the model of choice for poverty predictions, particularly with continuous dependent variable
models.

[Table XI]

8 Concluding Remarks

The paper has provided a comparative analysis of classic econometric and machine learn-
ing models used for the estimation of poverty at the population or household level in the
presence of missing data. We carried out an artificial experiment using a dummy data set
constructed on real data comparing eight different models and testing the robustness of
results to changes in data, parameters and preferences. This strategy allowed us to address
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two important shortcomings of poverty prediction models: Test how different models per-
form with different missing data patterns including MNAR, and compare results with the
true poverty rate. Below we provide some indications that can help practitioners consider
alternative models for poverty predictions. These indications are preliminary, and some
may be explained by a naive use of the models, but they can help to orient practitioners
in the use of these models and scholars to structure future research.

• Missing observations should always be of concern for poverty predictions unless they
are a very low share of observations. Some models are not effective in predicting
poverty even if missing observations are Missing Completely At Random (MCAR).

• Overall and for poverty predictions, no model can be expected to outperform all
other models under any circumstance. The paper showed that models’ relative per-
formance can depend on the original distribution of incomes, the poverty line, models’
parameters, the pattern of missing observations, the objective function and policy
preferences. No model “dominates” others and predict incomes that are closer to the
original distribution of incomes all along the distribution and in all cases tested.

• The random forest model has proved to be the most consistent in predicting poverty
relatively well under almost any condition considered in this paper. This is also con-
sistent with tests conducted on other indicators of deprivation (Andree et al., 2020).
It makes this model the most flexible and a preferred candidate when researchers
lack key information for making a choice among models such as information about
missing data patterns. For these models, it is important to have a sufficiently large
number of iterations (trees) to have stable predictions and a proper depth, which
may vary from case to case and needs to be tested with out-of-sample predictions.

• Simple OLS models are generally ineffective in predicting poverty accurately if the
model error term of predicted values is not adjusted post-estimation and the true
poverty rate is distant from the mean. That is because of the narrow distribution of
predicted values as compared to the original distribution (a statistical fact) and the
incapacity of these models to predict income on the tails well.

• OLS models can be substantially improved if the model error term is adjusted post-
estimation as it is done in the cross-survey imputation literature. The drawback is
that this methodology provides estimates for only the poverty rate estimated at the
population level rather than the individual or household level. As a consequence, it
cannot be used to estimate the objective functions derived from the confusion matrix.

• Dichotomous dependent variable models tend to perform better, on average, than
continuous models. This may be due to the probabilistic nature of predictions and
their ability to fit the tails of an income distribution. However, this superiority should
not be given for granted and does not apply when comparisons are made with OLS
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error adjusted models. Dichotomous dependent variable models can be improved by
searching for the optimal probability cutpoint using ROC curves, but only marginally.

• Baseline elastic net models with no fine tuning underperform relatively to logit and
random forest models. These models are known to perform well with high dimensional
regressors and, with more regressors, we should expect them to improve relatively
to other models. A proper grid search analysis can significantly improve estimations
coming very close but not surpassing random forest models. A proper and compre-
hensive grid search comes with a significant cost on terms of computer time.

• Neural network models are very complex, time consuming and not easy to stabilize.
We found that the baseline version of this model significantly underperforms other
models. However, with a proper and comprehensive grid search one can reach optimal
results that come close to random forest in the continuous dependent variable case,
and surpass random forest in the categorical dependent variable case. However, as
for the elastic net models, this result is achieved at a considerable cost in terms of
computer time.

• In the case of extremely reduced models with few independent variables (say 2-
4 variables), there is not much difference in what model is used. All models will
perform equally poorly. With a large set of independent variables (say more than
15), machine learning models have a comparative advantage in that they can test
alternative reduced models and find the most effective in predicting poverty sparing
researchers a complex and time consuming trial and error process.

• The question of why random forest models perform relatively better than other mod-
els under most circumstances needs to be further studied. RF models are known to
adapt well to non-linear relations which is one of the shortcomings of OLS models.
But explaining the mechanics of this finding is not simple. One hypothesis is that
the two random processes at work, random choice of sample and random choice of
regressors, when combined exhaust the realm of possible predictions which results in
better predictions on the tails.

To conclude, in the absence of complete information on data, parameters and prefer-
ences, and in the absence of a deep understanding of machine learning models, simple logit
models and random forest models should be preferred to simple OLS and other machine
learning models. With time availability and a more in-depth knowledge of machine learn-
ing models, it would be important to try alternative machine learning models. The use of
simple OLS models is not recommended whereas the OLS error adjustment method pro-
posed by the cross-survey literature can be a very effective method to make OLS poverty
predictions robust.

24



References

Abelson, B., k. R. Varshney, and J. Sun (2014). Targeting direct cash transfers to the
extremely poor. Proceedings of the 20th ACM SIGKDD international conference on
knowledge discovery and data mining , 1563–1572.

Aiken, E., S. Bellue, D. Karlan, C. Udry, and J. E. Blumenstock (2022). Machine learning
and phone data can improve targeting of humanitarian aid. Nature 603, 864–870.

Aiken, E. L., G. Bedoya, J. E. Blumenstock, and A. Coville (2023). Program targeting with
machine learning and mobile phone data: Evidence from an anti-poverty intervention in
afghanistan. Journal of Development Economics 161, 103016.

Andree, B. (2021). Estimating food price inflation from partial surveys. World Bank Policy
Research Working Paper 9886.

Andree, B., A. Chamorro, A. Kraay, P. Spencer, and D. Wang (2020). Predicting food
crises. World Bank Policy Research Working Paper 9412.

Atkinson, A., T. Piketty, and E. Saez (2011). Top incomes in the long run of history.
Journal of Economic Literature 49, 3–71.

Baker, J. L. and M. E. Grosh (1994). Poverty reduction through geographic targeting:
How well does it work? World Development 22 (7), 983–995.

Blattman, C., N. Fiala, and S. Martinez (2013, 12). Generating Skilled Self-Employment
in Developing Countries: Experimental Evidence from Uganda *. The Quarterly Journal
of Economics 129 (2), 697–752.

Blumenstock, J., G. Cadamuro, and R. On (2015). Predicting poverty and wealth from
mobile phone metadata. Science 350 (626), 1073–1076.

Bollinger, C., B. Hirsch, C. M. Hokayem, and J. Ziliak (2019). Trouble in the tails? what
we know about earnings nonresponse 30 years after lillard, smith, and welch. Journal of
Political Economy 127 (5), 2143 – 2185.

Brown, C., M. Ravallion, and D. van de Walle (2018). A poor means test? econometric
targeting in africa. Journal of Development Economics 134 (C), 109–124.

Burkhauser, R. V., K. Corinth, J. Elwell, and J. Larrimore (2023). Evaluating the success
of the war on poverty since 1963 using an absolute full-income poverty measure. Journal
of Political Economy 0 (ja), null.

Calvo, C. and S. Dercon (2013). Vulnerability to individual and aggregate poverty. Social
Choice and Welfare 41 (4), 721–740.

25



Chen, S. and M. Ravallion (2010, 11). The Developing World is Poorer than We Thought,
But No Less Successful in the Fight Against Poverty*. The Quarterly Journal of Eco-
nomics 125 (4), 1577–1625.

Coady, D., M. Grosh, and J. Hoddinott (2004). Targeting of Transfers in Developing
Countries: Review of Lessons and Experience. The World Bank.

Cowell, F. and M. Victoria-Feser (1996a). Poverty measurement with contaminated data:
A robust approach. European Economic Review 40, 1761–1771.

Cowell, F. and M.-P. Victoria-Feser (1996b). Robustness properties of inequality measures.
Econometrica 64, 77–101.

D’Alessio, G. and I. Faiella (2002). Non-response behaviour in the bank of italy’s survey
of household income and wealth. Banca D’Italia: Temi di discussione (462).

D’Alessio, G. and A. Neri (2015). Income and wealth sample estimates consistent with
macro aggregates: some experiments. Banca D’Italia: Questioni di Economia e Finanza,
Occasional Papers (272).

Dang, H., D. Jolliffe, and C. Carletto (2019, July). Data Gaps, Data Incomparability,
And Data Imputation: A Review Of Poverty Measurement Methods For Data-Scarce
Environments. Journal of Economic Surveys 33 (3), 757–797.

Dang, H.-A. and P. Verme (2022). Estimating poverty for refugee populations: Can cross-
survey imputation methods substitute for data scarcity? Journal of Population Eco-
nomics (forthcoming).

Deaton, A. (2005, 05). Measuring Poverty in a Growing World (or Measuring Growth in a
Poor World). The Review of Economics and Statistics 87 (2), 395–395.

Douidich, M., A. Ezzrari, R. van der Weide, and P. Verme (2016). Estimating quarterly
poverty rates using labor force surveys: A primer. World Bank Economic Review 30 (3),
475–500.

Elbers, C., J. Lanjouw, and P. Lanjouw (2003). Micro–level estimation of poverty and
inequality. Econometrica 71 (1), 355–364.

Glewwe, P. (1991). Investigating the determinants of household welfare in cote d’ivoire.
Journal of Development Economics 35 (2), 307–337.

Hlasny, V., L. Ceriani, and P. Verme (2021). Bottom incomes and the measurement of
poverty and inequality. Review of Income and Wealth doi.org/10.1111/roiw.12535.

Hlasny, V. and P. . Verme (2018a). Top incomes and the measurement of inequality in
egypt. World Bank Economic Review 32 (32), 428–455.

26



Hlasny, V. and P. . Verme (2021). The impact of top incomes biases on the measure-
ment of inequality in the united states. Oxford Bulletin of Economics and Statis-
tics (https://doi.org/10.1111/obes.12472).

Hlasny, V. and P. Verme (2018b). Top incomes and inequality measurement: A comparative
analysis of correction methods using the eu silc data. Econometrics 6 (2), 1–21.

Jean, N., M. Burke, M. Xie, M. Davis, D. B. Lobell, and S. Ermon (2016). Combining
satellite imagery and machine learning to predict poverty. Science 353 (6301), 790–794.

Jenkins, S. (2017). Pareto models, top incomes and recent trends in uk income inequality.
Economica 84 (334), 261–289.

Kim, J. K. and J. J. Kim (2007). Nonresponse weighting adjustment using estimated
response probability. The Canadian Journal of Statistics / La Revue Canadienne de
Statistique 35 (4), 501–514.

Korinek, A., J. Mistiaen, and M. Ravallion (2006). Survey nonresponse and the distribution
of income. The Journal of Economic Inequality 4 (1), 33–55.

Korinek, A., J. Mistiaen, and M. Ravallion (2007). An econometric method of correcting
for unit nonresponse bias in surveys. Journal of Econometrics 136 (1), 213–235.

Lillard, L., J. Smith, and F. Welch (1986). What do we really know about wages? the
importance of nonreporting and census imputation. Journal of Political Economy 94 (3),
489–506.

Mcbride, L. and A. Nichols (2018). Retooling poverty targeting using out-of-sample vali-
dation and machine learnin. World Bank Economic Review 32 (3), 531–550.

Moore, J., L. Stinson, and E. Welniak (1997). Income measurement error in surveys: A
review. Census Working Papers (SM97-05).

Morduch, J. (1994). Poverty and vulnerability. American Economic Review 84 (2), 221–25.

Piketty, T. and E. Saez (2003, 02). Income Inequality in the United States, 1913–1998*.
The Quarterly Journal of Economics 118 (1), 1–41.

Rosenbaum, P. R. (1987). Model-based direct adjustment. Journal of the American Sta-
tistical Association 82 (398), 387–394.

Rubin, D. B. (1976). Inference and missing data. Biometrika 63 (3), 581–592.

Rubin, D. B. and R. J. A. Little (2020). Statistical Analysis with Missing Data, 3rd Edition.
John Wiley and Sons.

27



Sala-i Martin, X. (2006, 05). The World Distribution of Income: Falling Poverty and . . .
Convergence, Period*. The Quarterly Journal of Economics 121 (2), 351–397.

Tarozzi, A. and A. Deaton (2009). Using census and survey data to estimate poverty and
inequality for small areas. The Review of Economics and Statistics 91 (4), 773–792.

Verme, P. and C. Gigliarano (2019). Optimal targeting under budget constraints in a
humanitarian context. World Development (119).

Verme, P., C. Gigliarano, C. Wieser, K. Hedlund, M. Petzoldt, and M. Santacroce (2016).
The Welfare of Syrian Refugees: Evidence from Jordan and Lebanon. Washington DC:
World Bank.

Wodon, Q. (1997). Targeting the poor using roc curves. World Development 25 (12),
2083–2092.

28



Tables

Table I: True and Predicted Poverty Confusion Matrix

Note: [x,y] indicates row and column.
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Table II: Summary Statistics

Variable Obs Mean Std. Dev. Min Max

household income 7,062 56887 54561 2800 1113157
income per capita 7,062 13118 15098 826 261621
age 7,062 51.64 14.00 15 98
age squared 7,062 2863 1526 225 9604
household size 7,062 5.14 2.43 1 24
male 7,062 0.82 0.38 0 1
marital status 7,062 0.83 0.38 0 1
skills 7,062 0.19 0.39 0 1
urban 7,062 0.60 0.49 0 1
work salaried 7,062 0.39 0.49 0 1
work selfemployed 7,062 0.31 0.46 0 1
work unpaid 7,062 0.00 0.05 0 1
econ.sect. secondary 7,062 0.17 0.37 0 1
econ.sect tertiary 7,062 0.33 0.47 0 1
out of labor force 7,062 0.26 0.44 0 1
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Table III: OLS Baseline Regression (Dep.Var=HH Inc./Cap.)

b se t pvalue

age .0165937 .003265 5.082352 3.82e-07
age2 -.0001052 .0000301 -3.495455 .0004762
hhsize -.1087016 .0031699 -34.29193 1.7e-238
male .1536354 .0297315 5.167423 2.44e-07
marstat -.0538351 .0289874 -1.857187 .0633262
skills .5101445 .0207039 24.64005 1.2e-128
urban .2795772 .0180025 15.52991 1.66e-53
work salaried -.4529071 .0386937 -11.70494 2.34e-31
work selfemployed -.3464273 .0395114 -8.767785 2.26e-18
sect sec -.0749966 .0264836 -2.831814 .0046416
sect tert .0828654 .0233992 3.541374 .0004006
out labor -.1971939 .0439236 -4.489479 7.25e-06
cons 9.156962 .0929127 98.55447 0
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Table IV: Logit Baseline Regression (Dep.Var.=HH Poor/Non-Poor)

b se z pvalue

truepoor
age -.0465 .0128019 -3.632287 .0002809
age2 .0003321 .0001182 2.809007 .0049695
hhsize .3561425 .0147467 24.15058 7.4e-129
male -.3922606 .114842 -3.415653 .0006363
marstat .0242854 .112487 .2158953 .8290693
skills -1.319658 .0817895 -16.13481 1.45e-58
urban -.7173156 .0685802 -10.45952 1.33e-25
work salaried 1.297566 .1604475 8.087167 6.11e-16
work selfemployed .9322508 .1616109 5.768491 8.00e-09
sect sec .0441941 .1030088 .4290316 .6679002
sect tert -.3580383 .0898093 -3.986649 .000067
out labor .3610466 .1765711 2.044765 .040878
cons -.1580234 .3644101 -.4336416 .6645487
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Table V: Comparing Poverty Prediction Models Using Different Objective Functions

wcn wcn r rcn rcn r ecn ecn r ncn ncn r pct pct r rct rct r ect ect r nct nct r

Observations 7062 . 7062 . 7062 . 7062 . 7062 . 7062 . 7062 . 7062 .
TruePovRate 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50 .
PredPoverty 43.09 . 50.06 . 43.16 . 49.63 . 49.11 . 49.92 . 49.45 . 50.48 .
Diff.(absmin) 6.91 8 .06 1 6.84 7 .37 3 .89 6 .08 2 .55 5 .48 4
Diff.(tstat) 10.61 . -.12 . 10.51 . .6 . 1.39 . .2 . .86 . -.74 .
PrefTruePos(max) 67.83 8 83.08 2 67.94 7 72.95 3 70.76 4 87.66 1 70.68 5 70.58 6
PrefTrueNeg(max) 71.28 5 83.05 2 71.36 4 73.13 3 71.21 6 87.7 1 70.95 7 70.34 8
TruePos(max) 2212 8 2935 2 2218 7 2566 3 2475 6 3093 1 2481 5 2505 4
TrueNeg(max) 2700 4 2931 2 2701 3 2592 5 2538 6 3099 1 2520 7 2471 8
FalsePos(min) 831 4 600 2 830 3 939 5 993 6 432 1 1011 7 1060 8
FalseNeg(min) 1319 8 596 2 1313 7 965 3 1056 6 438 1 1050 5 1026 4
Leakage(min) 23.53 4 16.99 2 23.51 3 26.59 5 28.12 6 12.23 1 28.63 7 30.02 8
Undercoverage(min) 37.35 8 16.88 2 37.18 7 27.33 3 29.91 6 12.4 1 29.74 5 29.06 4
Sensitivity(max) 62.65 8 83.12 2 62.82 7 72.67 3 70.09 6 87.6 1 70.26 5 70.94 4
Specificity(max) 76.47 4 83.01 2 76.49 3 73.41 5 71.88 6 87.77 1 71.37 7 69.98 8
Precision(max) 72.69 5 83.03 2 72.77 4 73.21 3 71.37 6 87.74 1 71.05 7 70.27 8
Accuracy(max) 69.56 8 83.06 2 69.65 7 73.04 3 70.99 4 87.68 1 70.82 5 70.46 6

Legenda: wcn (Welfare - Continuous); rcn (Random Forest - Continuous); ecn (Elastic Net - Continuous); ncn (Neural Network - Continuous); pct (Poverty - Categorical);
rct (Random Forest - Categorical); ect (Elastic Net - Categorical) and nct (Neural Network - Categorical). wcn-r refers to the rank position of the wcn model (horizontal
ranking) with ‘1’ indicating the top performing model and ‘8’ the worse performing model. Similarly for other models. ‘Diff’ refers to the difference between the true
and the predicted poverty rates. Leakage=FP/(FP+TN); Undercoverage=FN/(FN+TP); Sensitivity=TP/(FN+TP); Specificity=TN/(TN+FP); Precision=TP/(TP+FP);
Accuracy=(TP+TN)/N. (min) (max) indicate whether the objective function is to be minimized or maximized. (absmin) indicates that the absolute value is to be minimized.
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Table VI: Comparing Poverty Prediction Models Using Different Types and Shares of
Missing Observations and Poverty Lines

wcn wcn r rcn rcn r ecn ecn r ncn ncn r pct pct r rct rct r ect ect r nct nct r

PovLine=5% . . . . . . . . . . . . . . . .
MCAR95 4.8 1 4.8 2 4.8 3 4.7 7 4.8 4 4.8 5 4.8 6 4.7 8
MCAR75 4.1 2 4 3 4 4 3.7 6 3.8 5 4.2 1 3.7 7 3.7 8
MCAR50 2.9 2 2.7 4 2.8 3 2.5 6 2.6 5 3.2 1 2.5 7 2.5 8
MCAR25 1.9 2 1.6 4 1.8 3 1.2 7 1.5 5 2.7 1 1.3 6 1.2 8
MCAR5 1 1 .2 6 .9 3 1 2 .6 5 .7 4 .2 7 .2 8
MARpure 3.2 2 2.9 5 3.2 3 2.9 6 3 4 3.4 1 2.9 7 2.9 8
MAR MNAR 3.9 2 3.9 3 3.9 4 3.9 5 3.9 6 4 1 3.9 7 3.9 8
MNARpure 4.2 2 4.2 3 4.2 4 4.2 5 4.2 6 4.3 1 4.2 7 4.2 8
Average 3.3 1.8 3 3.8 3.2 3.4 3 5.5 3 5 3.4 1.9 2.9 6.8 2.9 8
PovLine=25% . . . . . . . . . . . . . . . .
MCAR95 24.5 3 24.6 2 24.4 5 23.7 8 24.4 6 24.8 1 24.4 7 24.5 4
MCAR75 21.9 3 22.3 2 21.7 4 18.7 7 21.7 5 23.4 1 21.4 6 18.7 8
MCAR50 18.2 3 20.1 2 17.6 5 13.5 8 17.6 6 21.9 1 16.7 7 18.1 4
MCAR25 15.2 3 16.7 2 14.2 5 6.2 8 14.6 4 20.5 1 12.9 6 12.6 7
MCAR5 10.5 3 5.6 7 9.4 4 8 6 11 2 13.6 1 4.3 8 8.3 5
MARpure 18.6 4 20.2 2 18.4 5 15.9 8 18.7 3 21.8 1 18 7 18.1 6
MAR MNAR 19.7 4 20.1 2 19.7 5 19.9 3 19.7 6 20.8 1 19.7 7 19.7 8
MNARpure 21.4 3 21.8 2 21.4 4 21.3 8 21.4 5 22.2 1 21.4 6 21.4 7
Average 18.8 3.3 18.9 2.6 18.4 4.6 15.9 7 18.6 4.6 21.1 1 17.4 6.8 17.7 6.1
PovLine=50% . . . . . . . . . . . . . . . .
MCAR95 49.6 6 49.9 1 49.6 7 47.5 8 49.9 2 50.1 3 49.9 4 49.9 5
MCAR75 47.8 6 49.4 4 47.8 7 37.5 8 49.6 1 49.6 2 49.5 3 49.2 5
MCAR50 45.7 6 48.8 4 45.5 7 29.5 8 49.2 3 49.7 1 49.7 2 47.3 5
MCAR25 43.6 6 47.8 5 43.6 7 12.5 8 49.3 2 50 1 49.1 3 50.9 4
MCAR5 44.3 6 49.2 2 44.9 5 35.1 8 52.1 4 50.2 1 51.8 3 44 7
MARpure 44.4 7 47.8 2 44.3 8 52.3 4 47.2 5 49.3 1 47 6 47.8 3
MAR MNAR 42.3 6 43.3 2 42.2 7 41.7 8 43.1 4 44.5 1 43.2 3 43.1 5
MNARpure 44.4 6 45.5 2 44.4 7 42.6 8 44.5 4 46.2 1 44.5 5 44.8 3
Average 45.3 6.1 47.7 2.8 45.3 6.9 37.3 7.5 48.1 3.1 48.7 1.4 48.1 3.6 47.1 4.6
PovLine=75% . . . . . . . . . . . . . . . .
MCAR95 75.3 4 75.1 3 75.4 5 76.2 8 75.4 6 75 1 75.5 7 75 2
MCAR75 76.6 3 76.3 2 76.7 4 81.2 8 77.1 5 75.9 1 77.6 7 77.1 6
MCAR50 78.4 3 77.5 2 78.7 4 87.5 8 79.5 5 76.7 1 80.7 7 79.7 6
MCAR25 80.8 3 79.5 2 81.3 5 93.7 8 82.7 6 78.7 1 84.7 7 81 4
MCAR5 89.7 4 87.9 3 90.8 5 91.7 7 87.4 2 84 1 91.1 6 98.7 8
MARpure 76.6 4 75.7 3 76.7 5 78.1 7 77.6 6 75.4 2 78.4 8 75.2 1
MAR MNAR 71.8 3 71.3 7 72 2 69.2 8 71.4 4 71.4 5 72.5 1 71.4 6
MNARpure 71.1 8 71.3 5 71.3 6 78.7 7 72.8 3 71.8 4 73.7 1 73.5 2
Average 77.5 4 76.8 3.4 77.9 4.5 82 7.6 78 4.6 76.1 2 79.3 5.5 78.9 4.4

Legenda: wcn (Welfare - Continuous); rcn (Random Forest - Continuous); ecn (Elastic Net - Continuous); ncn
(Neural Network - Continuous); pct (Poverty - Categorical); rct (Random Forest - Categorical); ect (Elastic Net -
Categorical) and nct (Neural Network - Categorical). wcn-r refers to the rank position of the wcn model (horizontal
ranking) with ‘1’ indicating the top performing model and ‘8’ the worse performing model. Similarly for other
models. MCAR95-MCAR5 indicate the share of observed incomes with Missing Completely at Random
observations. MAR pure indicate observations Missing at Random only, MAR-MNAR indicate observations
Missing at Random and Missing Not at Random; MNAR pure indicate observation Missing Not at Random only.
See text for more details.
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Table VII: Comparing Poverty Prediction Models Using Different Specifications

wcn wcn r rcn rcn r ecn ecn r ncn ncn r pct pct r rct rct r ect ect r nct nct r

Model1 43.2 7 50.1 1 43.2 8 48 6 49.2 5 50.1 2 49.4 3 50.6 4
Model2 43.2 6 50.1 1 43.2 7 43 8 49.2 4 50.3 2 49.4 3 54.5 5
Model3 42.3 8 51.9 3 43 7 45.4 6 50.7 1 53.5 5 51.1 2 52.5 4
Mobel4 39.6 2 39.6 3 39.6 4 38.4 8 39.6 5 39.6 6 39.6 7 41.8 1

Legenda: wcn (Welfare - Continuous); rcn (Random Forest - Continuous); ecn (Elastic Net -
Continuous); ncn (Neural Network - Continuous); pct (Poverty - Categorical); rct (Random Forest -
Categorical); ect (Elastic Net - Categorical) and nct (Neural Network - Categorical). wcn-r refers to the
rank position of the wcn model (horizontal ranking) with ‘1’ indicating the top performing model and ‘8’
the worse performing model. The poverty line is set at the Median value (50%) by design.
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Table VIII: Comparing Error Adjusted OLS model with Other Models for Different Poverty
Lines

Poverty Line (%) 25 50 75
Continuous Dep. Var.

OLS 12.1 43.2 82.1
OLS povimp (empirical) 25.0 47.4 73.2
Random Forest 16.6 49.7 81.0
Elastic Net 11.1 42.9 83.0
Neural Network 13.0 47.5 77.4
Categorical Dep. Var.
Logit 11.4 51.9 84.8
Logit povimp (empirical) 25.5 51.0 75.7
Random Forest 20.2 50.9 79.7
Elastic Net 10.1 52.2 87.3
Neural Network 16.2 54.9 87.1
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Table IX: Comparing Dichotomous Poverty Prediction Models Using Different Probability
Cutpoints and Different Poverty Lines

pct pct r rct rct r ect ect r nct nct r

PL=5 . . . . . . . .
Cut=0 45 .4 2 3.84 1 .23 3 0 4
Cut=0 50 .2 2 3.27 1 .16 3 0 4
Cut=0 55 .2 2 3.07 1 .11 3 0 4
PL=25 . . . . . . . .
Cut=0 45 15.4 3 25.15 1 13.89 4 18.58 2
Cut=0 50 11.5 3 21.75 1 9.52 4 14.27 2
Cut=0 55 7.8 3 18.82 1 6.22 4 10.96 2
PL=50 . . . . . . . .
Cut=0 45 55.4 3 54.6 2 56.24 4 53.65 1
Cut=0 50 49.2 4 50.14 1 49.39 2 50.64 3
Cut=0 55 43.9 2 46.05 1 42.69 4 42.78 3
PL=75 . . . . . . . .
Cut=0 45 87.1 3 79.35 1 89.8 4 85.58 2
Cut=0 50 84.2 3 77.37 1 86.12 4 82.82 2
Cut=0 55 78.3 2 74.64 1 81.05 4 79.3 3

Legenda: pct (Poverty - Categorical); rct (Random Forest - Categorical); ect (Elastic Net - Categorical)
and nct (Neural Network - Categorical). pct-r refers to the rank position of the pct model (horizontal
ranking) with ‘1’ indicating the top performing model and ‘4’ the worse performing model. Similarly for
other models. PL=Poverty Line=True Poverty Rate. Cut=Probability cutpoint for separating predicted
poor and non-poor.
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Table X: Machine Learning Models: Grid Search Range and Optimal Parameters’ Values

Grid range Optimal parameters
Cont. Cont. Cont. Cat. Cat. Cat.

Poverty Line (%) 25 50 75 25 50 75

Random Forest
Iterations 50, 100, 200, 400 50 50 200 50 200 100
Number of Vars 1-12 6 9 9 6 3 11
Depth 3-8 8 6 5 7 7 6
Leaf size 5, 10, 50, 100 100 10 10 100 50 10
Elastic Net
Alpha 0, 2, 4, 6, 8, 1 0 0.2 0 1 0.2 0.8
Lambda 50, 100, 200 50 50 50 100 100 50
Folds 5, 10, 20 5 10 5 5 5 5
Neural Network
Layer 1 64, 128, 256 128 128 256 64 128 64
Layer 2 64, 128, 256 64 128 128 64 256 64
Learning Rate .01, .001 0.01 0.001 0.01 0.01 0.001 0.001
Batch 20, 80 20 20 80 20 20 20
Epochs 50, 200 50 200 50.0 50 50 50
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Table XI: Comparing Accuracy Scores in Test Samples Across Models

Cont. Cont. Cont. Cat. Cat. Cat.
Poverty Line (%) 25 50 75 25 50 75

Max
Random forest 78.5 71.4 80.7 78.3 70.9 80.2
Elastic Net 77.9 69.5 79.5 78.1 70.4 79.2
Neural Network 78.2 70.9 80.2 78.6 71.0 80.3
Mean
Random forest 77.7 69.9 79.0 77.7 69.9 78.2
Elastic Net 77.8 69.4 79.4 78.0 70.4 79.2
Neural Network 77.2 70.0 79.3 78.1 70.2 79.2
Std.Dev.
Random forest 0.6 0.9 1.4 0.4 0.8 1.5
Elastic Net 0.1 0.0 0.0 0.0 0.0 0.1
Neural Network 0.6 0.6 0.5 0.5 0.9 1.3

39



Figure I: Distributions of Income with Missing Data Patterns
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Legenda: MCAR95-MCAR5 indicate the share of observed incomes with Missing Completely at Random
observations. For example, with MCAR95, 95% of incomes are observed and 5% are missing randomly.
MAR pure indicate observations Missing at Random only, MAR-MNAR indicate observations Missing at
Random and Missing Not at Random; MNAR pure indicate observation Missing Not at Random only.
See text for more details.
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Figure II: Distributions of Predicted Values
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Legenda: wcn (Welfare - Continuous); rcn (Random Forest - Continuous); ecn (Elastic Net -
Continuous); ncn (Neural Network - Continuous); pct (Poverty - Categorical); rct (Random Forest -
Categorical); ect (Elastic Net - Categorical) and nct (Neural Network - Categorical).
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Figure III: Cumulative Distributions of Predicted Values (CDFs)
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