#### Algorithmic Persuasion through Simulation

NICOLE IMMORLICA, MICROSOFT RESEARCH

BASED ON JOINT WORK WITH KEEGAN HARRIS, BRENDAN LUCIER, AND ALEX SLIVKINS

### Al and persuasion.



#### persuasion.





### persuasion.





Receiver observes signal correlated with state.



Simulation oracle tells sender how receiver will react.

## sales copilot.



#### How should seller leverage simulator given limited (or expensive) queries?



# related work.

#### Bayesian persuasion with informed receivers:

- Optimal experiment is a linear (or convex) optimization problem [Gentzkow and Kamenica 2016], [Candogan 2019], [Candogan and Strack 2022]
- Screening is equivalent to experiments with binary actions, but not otherwise [Kolotilin et al. 2017], [Guo and Shmaya 2019], [Candogan and Strack 2022]

#### Pure exploration in bandits and learning in Stackelberg games:

- Predict best action after K rounds of exploration
  [Bubeck et al. 2009], [Chen et al. 2014], [Xu et al. 2018]
- Learn optimal strategy for leader in Stackelberg games from query access [Letchford et al. 2009], [Balcan et al. 2015], [Peng et al. 2019]

# model.

State:  $\omega \in \{0,1\}$  representing quality of product (high or low)

Receiver/buyer: binary action  $a \in \{0,1\}$  representing purchasing decision

- has private signal  $\tau$  drawn from finite set  $T^*$
- private signal is correlated with state, i.e.,  $(\omega, \tau) \sim F$

1 if purchased product and high quality

- utility =  $\begin{cases} -1 \text{ if purchased and low quality} \\ 0 \text{ otherwise} \end{cases}$
- \* Can also handle continuum signal space via discretization

#### Sender/seller:

- can commit to policy  $\sigma: \{0,1\} \to M$  mapping state to messages
- utility 1 if product purchased, 0 otherwise

### simulation oracle.

A black-box that simulates receiver's action for any message.

Definition: A simulation oracle inputs a query consisting of a messaging policy  $\sigma$  and a message m and returns receiver's optimal action given posterior beliefs, i.e.,

 $\operatorname{argmax}_{a} E_{\omega}[u_{R}(\omega, a) | \sigma(\omega) = m, \tau].$ 

Examples: generative AI (e.g., sales copilot), survey/historical data, sequence of myopic buyers, algorithmic buyer agents (e.g., autobidders in ad auctions)

### game.

#### Timing:

- 1. State  $\omega \in \{0,1\}$  and receiver's private signal  $\tau \in T$  drawn from joint distribution F
- 2. Sender adaptively queries simulator up to *K* times
- 3. Sender commits to random message policy  $\sigma$  mapping states to messages  $m \in M$
- 4. Sender observes state and sends signal  $m \sim \sigma(\omega)$  to receiver
- 5. Receiver takes action  $a \in \{0,1\}$

Definition: A query policy  $\pi$  maps a history  $h \in H$  of queries and responses to a new query (overloading notation, let  $\pi(\tau) \in H$  be history generated by  $\pi$  when signal is  $\tau$ )

# equilibrium.

#### Perfect Bayesian Equilibrium.

- Receiver takes utility-maximizing action given belief induced by signal and message.
- Sender chooses utility-maximizing messaging policy and query policy given that receiver behaves in this manner.

Definition: Strategies  $(\pi^*, \sigma^*, a^*)$ , belief  $B_S: H \to \Delta(T)$  for the sender mapping query histories to distributions over receiver signals, and belief  $B_R: M \times T \to \Delta(\{0,1\})$  for the receiver mapping messages and signals to distributions over the state, is a PBE if:

- For each m and  $\tau$ , action  $a^*(m, \tau)$  maximizes receiver's utility given belief  $B_R(m, \tau)$
- Belief  $B_R(m,\tau)$  is posterior distribution over  $\omega$  given  $\tau$ ,  $\sigma^*$ , and fact that  $\sigma^*(\omega) = m$
- For each  $h \in H$ , message policy  $\sigma^*$  maximizes sender's utility given belief  $B_S(h)$
- Belief  $B_S(h)$  is posterior distribution over  $\tau$ , given  $\pi^*$  and fact that  $\pi^*(\tau) = h$
- Sender's querying policy  $\pi^*$  maximizes sender's utility given  $\sigma^*$  and  $a^*$

### results.

Theorem: Can compute sender-optimal PBE strategies  $(\pi^*, \sigma^*, a^*)$  in time polynomial in number of private signals |T|.

Proof overview: Show how to compute in polynomial time,

- 1. Receiver action  $a^*$  given message and message policy
- 2. Sender message policy  $\sigma^*$  given query policy  $\pi^*$  and query responses  $\pi^*(\tau)$
- 3. Sender query policy  $\pi^*$

#### Implications and extensions:

- Structure: optimal query policy precomputes a pooling of receivers into contiguous intervals of beliefs, then uses queries to identify interval and message policy
- Robustness to noise: message policy robust to slight downward perturbations of beliefs (i.e., assuming receiver is slightly more pessimistic than queries suggest)
- Myopic receivers: query policy trades off between exploration and exploitation

**Proposition:** For any messaging policy  $\sigma$ , there is an outcome-equivalent messaging policy  $\sigma'$  with just |M| = |T| + 1 messages.

**Proof Sketch:** Consider any message  $m \in M$ 



(abusing terminology, will equate signal with induced posterior belief or type)

Proposition: For any messaging policy  $\sigma$ , there is an outcome-equivalent messaging policy  $\sigma'$  with just |M| = |T| + 1 messages.

Implication: There is a 1:1 correspondence between messages and thresholds.

- sender can distinguish between any pair of beliefs with one simulation query
- can uniquely identify receiver belief with  $\log |T|$  simulation queries
- optimal querying policy for  $K < \log |T|$  equates to choosing set of thresholds

Note: In sufficiently rich economic environments, a single query may suffice to identify belief.

Proposition: For any given set T of beliefs, the optimal messaging policy mixes between a two messages  $m_i$  and  $m_j$  signifying threshold beliefs.



Proof Sketch: Given the correspondence between messages and thresholds,

- optimization problem is a linear program with |T| + 2 constraints
- substituting for tight IC constraints leaves just two non-trivial constraints
- rank lemma implies optimal solution has positive weight on just two variables

Note: The policy can be computed in time  $O(|T|^2)$ .

Instance: Posterior beliefs (0.1,0.2,0.3,0.4,0.5) w/prob (0.2,0.2,0.39,0.01,0.2), resp.



Gain from single query: submodular, implying greedy is constant-factor approximation



Theorem: The optimal query policy can be computed in time  $O(|T|^2 \min\{|T|, 2^K\})$  where K is the bound on the number of queries.

Lemma: Suffices to compute a set of min{ $|T|, 2^K$ } possible queries and adaptively choose among them using binary search.

**Proof:** equivalence between *K*-query adaptive and  $2^{K}$ -query non-adaptive policies 1. A given adaptive policy partitions space into  $\leq 2^{K}$  sub-intervals of beliefs.



Theorem: The optimal query policy can be computed in time  $O(|T|^2 \min\{|T|, 2^K\})$  where K is the bound on the number of queries.

Lemma: Suffices to compute a set of min{ $|T|, 2^K$ } possible queries and adaptively choose among them using binary search.

**Proof:** equivalence between K-query adaptive and  $2^{K}$ -query non-adaptive policies

2. A non-adaptive policy that queries the  $2^{K} - 1$  thresholds separating the subintervals of an adaptive policy gains same information resulting in same value.



Theorem: The optimal query policy can be computed in time  $O(|T|^2 \min\{|T|, 2^K\})$  where K is the bound on the number of queries.

Lemma: Suffices to compute a set of min{ $|T|, 2^K$ } possible queries and adaptively choose among them using binary search.

**Proof:** equivalence between K-query adaptive and  $2^{K}$ -query non-adaptive policies

3. An adaptive policy performs binary search among the  $2^{K} - 1$  queries of a nonadaptive policy gains the same information and hence the same value.



What set of queries should sender select to maximize utility?

Dynamic Program: Compute optimal set of  $2^{K}$  non-adaptive queries.

- 1. Compute optimal message policy for each of the  $|T|^2$  subinterval of types.
- 2. Optimal value of K' queries for subinterval of types from p to 1 is sum of best split given K' 1 remaining queries in suffix.



3. Return queries computed from using  $2^{K}$  queries for interval of all types.

Theorem: The optimal query policy can be computed in time  $O(|T|^2 \min\{|T|, 2^K\})$  where K is the bound on the number of queries.

Note: Value of policy is robust to perturbations of thresholds, so at an additive loss of  $\epsilon$  to sender's utility, can run in time  $O(\epsilon^{-2} \min\{1/\epsilon, 2^K\})$ .



OPT-Rounded(original)  $\geq$  OPT-Rounded(rounded)  $\geq$  OPT-Original(original) -  $\epsilon$ 

## generalizations.

Approximate oracles: If difference between true and assumed belief is at most  $\delta$  with probability at least  $1 - \gamma$ , policy guarantees at least  $(1 - \gamma)OPT - O(\delta)$ .

Costly queries: Suppose each query q has a cost  $c_q$  to the sender. Then the following dynamic program A(1, |T|) computes the optimal query policy in time  $O(|T|^3)$ .

$$A(1,j) \coloneqq \max\left\{V[1,j]; \max_{q \in T} A[1,q] + V[q+1,j] - c_q\right\}$$

Private types: Model and results extend if there is a total ordering on receiver belief/type pairs that is monotone in action.

## partition queries.

Model: Given a query consisting of a partition Q of beliefs, the oracle returns the subset  $q \in Q$  containing the receiver's belief.

Theorem. Finding the optimal query policy is NP-complete.

**Proof.** A reduction from set-cover.



## partition queries.

Model: Given a query consisting of a partition Q of beliefs, the oracle returns the subset  $q \in Q$  containing the receiver's belief.

Theorem. Finding the optimal query policy is NP-complete.

**Proof.** A reduction from set-cover.



## partition queries.

Model: Given a query consisting of a partition Q of beliefs, the oracle returns the subset  $q \in Q$  containing the receiver's belief.

Theorem. Finding the optimal query policy is NP-complete.

**Proof.** A reduction from set-cover.



## persuasion through simulation.

How can human agents leverage generative AI\* to shape strategy?

Model: a binary action persuasion game where

- Receivers have additional signals of product quality
- Al simulates receiver choice for any sender messaging policy

#### **Results:**

- Al equivalent to a separation oracle on receiver beliefs
- An efficient algorithm for optimal query policy
- Extensions including error tolerance, private types, costly queries

\* What if AI has its own incentives that are misaligned with those of its human user?