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AI and persuasion.



persuasion.

Utilities are function of state and action.

𝑺𝑺

Sender

𝑹𝑹

Receiver

commit to 
message policy

1

2 observe state
of world

send message
3

take an action
4

Pr



persuasion.

Simulation oracle tells sender how receiver will react.
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Receiver observes signal correlated with state.



sales copilot.

How should seller leverage simulator given limited (or expensive) queries?



related work.
Bayesian persuasion with informed receivers:
- Optimal experiment is a linear (or convex) optimization problem

[Gentzkow and Kamenica 2016], [Candogan 2019], [Candogan and Strack 2022] 
- Screening is equivalent to experiments with binary actions, but not otherwise

[Kolotilin et al. 2017], [Guo and Shmaya 2019], [Candogan and Strack 2022]

Pure exploration in bandits and learning in Stackelberg games: 
- Predict best action after 𝐾𝐾 rounds of exploration

[Bubeck et al. 2009], [Chen et al. 2014], [Xu et al. 2018]
- Learn optimal strategy for leader in Stackelberg games from query access 

[Letchford et al. 2009], [Balcan et al. 2015], [Peng et al. 2019]



model.
State: 𝜔𝜔 ∈ 0,1  representing quality of product (high or low)

Receiver/buyer: binary action 𝑎𝑎 ∈ 0,1  representing purchasing decision
- has private signal 𝜏𝜏 drawn from finite set 𝑇𝑇*
- private signal is correlated with state, i.e., 𝜔𝜔, 𝜏𝜏 ∼ 𝐹𝐹

- utility = 

* Can also handle continuum signal space via discretization

Sender/seller: 
- can commit to policy 𝜎𝜎: 0,1 → 𝑀𝑀 mapping state to messages 
- utility 1 if product purchased, 0 otherwise

1 if purchased product and high quality 
-1 if purchased and low quality
 0 otherwise



simulation oracle.
A black-box that simulates receiver’s action for any message.

Definition: A simulation oracle inputs a query consisting of a messaging policy 𝜎𝜎 and a 
message 𝑚𝑚 and returns receiver’s optimal action given posterior beliefs, i.e.,

argmax𝑎𝑎 𝐸𝐸𝜔𝜔 𝑢𝑢𝑅𝑅 𝜔𝜔,𝑎𝑎 𝜎𝜎 𝜔𝜔 = 𝑚𝑚, 𝜏𝜏].

Examples: generative AI (e.g., sales copilot), survey/historical data, sequence of 
myopic buyers, algorithmic buyer agents (e.g., autobidders in ad auctions)



game.
Timing:
1. State 𝜔𝜔 ∈ 0,1  and receiver’s private signal 𝜏𝜏 ∈ 𝑇𝑇 drawn from joint distribution 𝐹𝐹
2. Sender adaptively queries simulator up to 𝐾𝐾 times
3. Sender commits to random message policy 𝜎𝜎 mapping states to messages 𝑚𝑚 ∈ 𝑀𝑀
4. Sender observes state and sends signal 𝑚𝑚 ∼ 𝜎𝜎(𝜔𝜔) to receiver
5. Receiver takes action 𝑎𝑎 ∈ 0,1

Definition: A query policy 𝜋𝜋 maps a history ℎ ∈ 𝐻𝐻 of queries and responses to a new 
query (overloading notation, let 𝜋𝜋 𝜏𝜏 ∈ 𝐻𝐻 be history generated by 𝜋𝜋 when signal is 𝜏𝜏)



equilibrium.
Perfect Bayesian Equilibrium.
- Receiver takes utility-maximizing action given belief induced by signal and message.
- Sender chooses utility-maximizing messaging policy and query policy given that 

receiver behaves in this manner.

Definition:  Strategies (𝜋𝜋∗,𝜎𝜎∗,𝑎𝑎∗), belief 𝐵𝐵𝑆𝑆:𝐻𝐻 → Δ(𝑇𝑇) for the sender mapping query 
histories to distributions over receiver signals, and belief 𝐵𝐵𝑅𝑅:𝑀𝑀 × 𝑇𝑇 → Δ 0,1  for the 
receiver mapping messages and signals to distributions over the state, is a PBE if:
- For each 𝑚𝑚 and 𝜏𝜏, action 𝑎𝑎∗(𝑚𝑚, 𝜏𝜏) maximizes receiver's utility given belief 𝐵𝐵𝑅𝑅(𝑚𝑚, 𝜏𝜏)
- Belief 𝐵𝐵𝑅𝑅(𝑚𝑚, 𝜏𝜏) is posterior distribution over 𝜔𝜔 given 𝜏𝜏, 𝜎𝜎∗, and fact that 𝜎𝜎∗(𝜔𝜔)  =  𝑚𝑚 
- For each ℎ ∈ 𝐻𝐻, message policy 𝜎𝜎∗ maximizes sender's utility given belief 𝐵𝐵𝑆𝑆(ℎ)
- Belief 𝐵𝐵𝑆𝑆(ℎ) is posterior distribution over 𝜏𝜏, given 𝜋𝜋∗ and fact that 𝜋𝜋∗ 𝜏𝜏 = ℎ
- Sender's querying policy 𝜋𝜋∗ maximizes sender's utility given 𝜎𝜎∗ and 𝑎𝑎∗



results.
Theorem: Can compute sender-optimal PBE strategies (𝜋𝜋∗,𝜎𝜎∗,𝑎𝑎∗) in time polynomial 
in number of private signals |𝑇𝑇|.

Proof overview: Show how to compute in polynomial time,
1. Receiver action 𝑎𝑎∗ given message and message policy
2. Sender message policy 𝜎𝜎∗ given query policy 𝜋𝜋∗ and query responses 𝜋𝜋∗(𝜏𝜏)
3. Sender query policy 𝜋𝜋∗ 

Implications and extensions:
- Structure: optimal query policy precomputes a pooling of receivers into contiguous 

intervals of beliefs, then uses queries to identify interval and message policy
- Robustness to noise: message policy robust to slight downward perturbations of 

beliefs (i.e., assuming receiver is slightly more pessimistic than queries suggest)
- Myopic receivers: query policy trades off between exploration and exploitation



optimal message policy.
Proposition: For any messaging policy 𝜎𝜎, there is an outcome-equivalent messaging 
policy 𝜎𝜎′ with just |𝑀𝑀|  = |𝑇𝑇| + 1 messages.

Proof Sketch: Consider any message 𝑚𝑚 ∈ 𝑀𝑀

0 1𝑝𝑝
𝑺𝑺

Sender
𝜎𝜎 𝜔𝜔 = 𝑚𝑚 𝑎𝑎 𝑚𝑚 = 0 𝑎𝑎 𝑚𝑚 = 1 𝑎𝑎 𝑚𝑚 = 1

(abusing terminology, will equate signal with induced posterior belief or type)



optimal message policy.
Proposition: For any messaging policy 𝜎𝜎, there is an outcome-equivalent messaging 
policy 𝜎𝜎′ with just |𝑀𝑀|  = |𝑇𝑇| + 1 messages.

Implication: There is a 1:1 correspondence between messages and thresholds. 
- sender can distinguish between any pair of beliefs with one simulation query 
- can uniquely identify receiver belief with log |𝑇𝑇| simulation queries
- optimal querying policy for 𝐾𝐾 <  log |𝑇𝑇| equates to choosing set of thresholds

Note: In sufficiently rich economic environments, a single query may suffice to 
identify belief.



Proposition: For any given set 𝑇𝑇 of beliefs, the optimal messaging policy mixes 
between a two messages 𝑚𝑚𝑖𝑖  and 𝑚𝑚𝑗𝑗  signifying threshold beliefs.

Proof Sketch: Given the correspondence between messages and thresholds, 
- optimization problem is a linear program with |𝑇𝑇| + 2 constraints
- substituting for tight IC constraints leaves just two non-trivial constraints
- rank lemma implies optimal solution has positive weight on just two variables

Note: The policy can be computed in time 𝑂𝑂 𝑇𝑇 2 .

optimal message policy.

0 ≤ 𝐿𝐿 𝐻𝐻 ≤ 1𝑝𝑝𝑖𝑖 𝑝𝑝𝑗𝑗1/2



optimal message policy.
Instance: Posterior beliefs (0.1,0.2,0.3,0.4,0.5) w/prob (0.2,0.2,0.39,0.01,0.2), resp.



optimal query policy.
Gain from single query: submodular, implying greedy is constant-factor approximation



optimal query policy.
Theorem: The optimal query policy can be computed in time 𝑂𝑂 𝑇𝑇 2 min 𝑇𝑇 , 2𝐾𝐾  
where 𝐾𝐾 is the bound on the number of queries.

Lemma: Suffices to compute a set of min 𝑇𝑇 , 2𝐾𝐾  possible queries and adaptively 
choose among them using binary search.

Proof: equivalence between 𝐾𝐾-query adaptive and 2𝐾𝐾-query non-adaptive policies
1. A given adaptive policy partitions space into ≤ 2𝐾𝐾  sub-intervals of beliefs.

1𝑠𝑠𝑠𝑠  query 2𝑛𝑛𝑛𝑛  query3𝑟𝑟𝑛𝑛  query

yes nonoSub-interval for
answers 100



optimal query policy.
Theorem: The optimal query policy can be computed in time 𝑂𝑂 𝑇𝑇 2 min 𝑇𝑇 , 2𝐾𝐾  
where 𝐾𝐾 is the bound on the number of queries.

Lemma: Suffices to compute a set of min 𝑇𝑇 , 2𝐾𝐾  possible queries and adaptively 
choose among them using binary search.

Proof: equivalence between 𝐾𝐾-query adaptive and 2𝐾𝐾-query non-adaptive policies
2. A non-adaptive policy that queries the 2𝐾𝐾 − 1 thresholds separating the sub-

intervals of an adaptive policy gains same information resulting in same value.



optimal query policy.
Theorem: The optimal query policy can be computed in time 𝑂𝑂 𝑇𝑇 2 min 𝑇𝑇 , 2𝐾𝐾  
where 𝐾𝐾 is the bound on the number of queries.

Lemma: Suffices to compute a set of min 𝑇𝑇 , 2𝐾𝐾  possible queries and adaptively 
choose among them using binary search.

Proof: equivalence between 𝐾𝐾-query adaptive and 2𝐾𝐾-query non-adaptive policies
3. An adaptive policy performs binary search among the 2𝐾𝐾 − 1 queries of a non-

adaptive policy gains the same information and hence the same value.

1𝑠𝑠𝑠𝑠  query 2𝑛𝑛𝑛𝑛  query3𝑟𝑟𝑛𝑛  query

yes nono



What set of queries should sender select to maximize utility?

Dynamic Program: Compute optimal set of 2𝐾𝐾 non-adaptive queries. 
1. Compute optimal message policy for each of the 𝑇𝑇 2 subinterval of types.
2. Optimal value of 𝐾𝐾′ queries for subinterval of types from 𝑝𝑝 to 1 is sum of best split 

given 𝐾𝐾′ − 1 remaining queries in suffix.

3. Return queries computed from using 2𝐾𝐾 queries for interval of all types.

optimal query policy.

𝑝𝑝 1𝐾𝐾′ queryvalue from step 1 recursively compute value with 𝐾𝐾′ − 1 queries



optimal query policy.
Theorem: The optimal query policy can be computed in time 𝑂𝑂 𝑇𝑇 2 min 𝑇𝑇 , 2𝐾𝐾  
where 𝐾𝐾 is the bound on the number of queries.

Note: Value of policy is robust to perturbations of thresholds, so at an additive loss 
of 𝜖𝜖 to sender’s utility, can run in time 𝑂𝑂 𝜖𝜖−2 min 1/𝜖𝜖, 2𝐾𝐾 .

0 ≤ 𝐿𝐿 𝐻𝐻 ≤ 11/𝜖𝜖 2/𝜖𝜖

OPT-Rounded(original) ≥ OPT-Rounded(rounded) ≥ OPT-Original(original) - 𝜖𝜖



Approximate oracles: If difference between true and assumed belief is at most 𝛿𝛿 with 
probability at least 1 − 𝛾𝛾, policy guarantees at least 1 − 𝛾𝛾 𝑂𝑂𝑂𝑂𝑇𝑇 − 𝑂𝑂 𝛿𝛿 .

Costly queries: Suppose each query 𝑞𝑞 has a cost 𝑐𝑐𝑞𝑞  to the sender. Then the following 
dynamic program 𝐴𝐴 1, |𝑇𝑇|  computes the optimal query policy in time 𝑂𝑂 𝑇𝑇 3 .

𝐴𝐴 1, 𝑗𝑗 ≔ max 𝑉𝑉 1, 𝑗𝑗 ; max
𝑞𝑞∈𝑇𝑇

𝐴𝐴 1,𝑞𝑞 + 𝑉𝑉 𝑞𝑞 + 1, 𝑗𝑗 − 𝑐𝑐𝑞𝑞

Private types: Model and results extend if there is a total ordering on receiver 
belief/type pairs that is monotone in action.

generalizations.



Model: Given a query consisting of a partition 𝑄𝑄 of beliefs, the oracle returns the 
subset 𝑞𝑞 ∈ 𝑄𝑄 containing the receiver’s belief.

Theorem. Finding the optimal query policy is NP-complete.

Proof. A reduction from set-cover.

partition queries.



Model: Given a query consisting of a partition 𝑄𝑄 of beliefs, the oracle returns the 
subset 𝑞𝑞 ∈ 𝑄𝑄 containing the receiver’s belief.

Theorem. Finding the optimal query policy is NP-complete.

Proof. A reduction from set-cover.

partition queries.



Model: Given a query consisting of a partition 𝑄𝑄 of beliefs, the oracle returns the 
subset 𝑞𝑞 ∈ 𝑄𝑄 containing the receiver’s belief.

Theorem. Finding the optimal query policy is NP-complete.

Proof. A reduction from set-cover.

partition queries.



persuasion through simulation.
How can human agents leverage generative AI* to shape strategy?

Model: a binary action persuasion game where
- Receivers have additional signals of product quality
- AI simulates receiver choice for any sender messaging policy

Results:
- AI equivalent to a separation oracle on receiver beliefs
- An efficient algorithm for optimal query policy
- Extensions including error tolerance, private types, costly queries

* What if AI has its own incentives that are misaligned with those of its human user?
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