
The Importance of Being Even:

Restitution and Cooperation∗

Maria Bigoni1, Marco Casari1, Andrea Salvanti2,

Andrzej Skrzypacz3, and Giancarlo Spagnolo4

1University of Bologna
2University Pompeu Fabra and BSE

3Stanford GSB
4University of Rome Tor Vergata & EIEF

April 27, 2024

Abstract

We study – empirically and theoretically – how restitution helps restore cooperation.

After a breach, restitution strategies “propose” returning to cooperation by cooperating

against defection, and condition actions on the balance between the cooperation given

and received. We reanalyze experimental data from three classes of repeated games

and find compelling empirical support for restitution strategies in general and for a

strategy we named Payback in particular. Considering restitution strategies enables to

resolve discrepancies between theory and experiments emerging from prior literature -

such as the prevalent use of non-equilibrium strategies like Tit-for-tat - and questions

the predominance of memory-one strategies.
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1 Introduction

Cooperation can be fragile and easily disrupted. In situations where trust has been breached,

whether intentionally or unintentionally, rebuilding mutual confidence is essential. Here we

focus on strategies for restoring cooperation in social dilemmas after a defection and argue

that Restitution is a particularly intuitive and effective approach when communication is

absent. Restitution involves “proposing” a return to cooperation by restoring gains lost from

the breach. This gesture, which is materially costly for the offender and rewarding for the

offended party, works as a credible message. Furthermore, restitution can be seen as fair, as

it closes the payoff gap created by the deviation and makes subjects even.

While the potential role of restitution in rebuilding cooperation has been discussed in

theoretical studies, the experimental literature on repeated games appears to have overlooked

it. As far as our knowledge extends, until now it has primarily focused on tit-for-tat and other

forgiving or lenient symmetric strategies as effective means of restoring cooperation after a

breach (Fudenberg et al., 2012). Moreover, recent experimental studies have increasingly

centered on memory-one strategies, which, by definition, exclude forms of restitution as

paths to restoring cooperation.1

In this study, we investigate the presence of restitution strategies in experiments on

three broad classes of games, the repeated prisoner’s dilemmas with finite and indefinite

repetition and perfect monitoring, and the indefinitely repeated Prisoner’s Dilemma with

imperfect monitoring. We then focus on a specific, simple restitution strategy – which we

term Payback – and we discuss its theoretical properties and empirical performance. We

find robust support for restitution strategies in all types of repeated games we consider.

We also argue that these strategies have theoretical advantages with respect to the simple

memory-one strategies that the experimental literature mainly focused on, which justify their

relatively widespread adoption.

Restitution strategies imply asymmetric play in the “punishment” phase following a defec-

tion, before resorting again to cooperation. Appealing theoretical features of these strategies

have been highlighted in a number of contexts, including renegotiation-proofness in the re-

peated Prisoner’s Dilemma (Van Damme, 1989); repeated games with monetary payments,

like relational contracts (Levin, 2003); and tacit collusion in repeated auctions (Skrzypacz

and Hopenhayn, 2004). In the realm of pricing games, the superiority of asymmetric strate-

gies over strongly symmetric ones has been established by Athey and Bagwell (2001) and

Harrington and Skrzypacz (2007). Evolutionary game theory has also considered asymmet-

1 See, for example, Breitmoser (2015), Dal Bó and Fréchette (2018), Romero and Rosokha (2018), Dal Bó
and Fréchette (2019), Romero and Rosokha (2019), Normann and Sternberg (2023), and Fudenberg and
Karreskog (2024).
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ric strategies. Sugden (1986) showed that while no pure strategies are evolutionary stable

within the Prisoner’s Dilemma framework without noise, mistakes in actions enable an asym-

metric punishment strategy termed “Sophisticated Tit-for-tat,” a restitution strategy, to be

evolutionary stable.2 Asymmetric strategies are not purely theoretical constructs: Harring-

ton (2006), for example, describes several instances of their use by real-life cartels. Despite

their theoretical merits, the experimental literature appears to have overlooked restitution

strategies and their role in rebuilding cooperation.

To address this gap, we make use of data collected from previous experiments. We

rely on three meta-datasets that comprise distinct classes of repeated games. One meta-

dataset covers indefinitely repeated prisoner’s dilemmas with perfect monitoring (Dal Bó and

Fréchette, 2018); another meta-dataset includes finitely repeated Prisoner’s Dilemma games

(Embrey et al., 2017); the third meta-dataset – which we constructed ex novo – incorporates

indefinitely repeated games with imperfect monitoring. In all the three databases, we observe

that the likelihood of cooperation depends not only on the outcome of the previous round of

interaction but also on the round before that. Consider for instance participants’ behavior

that follows a unilateral defection by the opponent. We observe higher cooperation rates

in histories where, before that, the opponent cooperated and the participant defected, as

compared to any of the other possible histories.

This finding aligns with the adoption of restitution strategies and is incompatible with

the strategies that emerged as most prominent in the previous experimental literature –

including Grim Trigger (Grim), Tit-for-Tat (TFT), t-period punishment strategies, and their

more lenient and forgiving variations. It also suggests that subjects adopt strategies with

memory longer than one. Our analyses indicate that “restitution” may occur even after

more than two periods: subjects cooperate more frequently after a unilateral defection of

the opponent when, based on past outcomes, they were ‘in debt’ with the opponent at the

time when the opponent defected. This suggests that focusing exclusively on memory-one

strategies in the analysis of experimental repeated games – as it is often done in the recent

literature – may be problematic as it makes it impossible to detect some important features

of subjects’ behavior.

Restitution strategies tend to balance the number of cooperative actions by the subject

and her opponent – which leads subjects to end up about even – hence the adoption of this

type of strategies may be driven by a heuristic related to fairness and inequity-aversion (Fehr

and Schmidt, 1999; Charness and Rabin, 2002), rather than, or besides, strategic considera-

tions. This might explain why restitution strategies in finitely repeated games initially emerge

2 In this literature, the strategy was also referred to as “Contrite Tit-for-tat”. See Boyd (1989), Wu and
Axelrod (1995), Boerlijst et al. (1997), and Graser and van Veelen (2024).
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at frequencies comparable to that observed in indefinitely repeated games, even though they

cannot be equilibrium strategies in the former setting. To shed some light on these issues we

analyze the effects of experience comparing behavior in the first and last four supergames in

each session. We find that after subjects gain experience, restitution strategies fade away in

finite horizon games, while they persist or increase in infinitely repeated games, where they

can be part of an equilibrium. This suggests that strategic considerations are the strongest

driver of the adoption of restitution strategies, in the long run.

To further deepen our understanding of the role played by restitution strategies, we need

to focus on a specific, well-defined one. We concentrate on Contrite (or Sophisticated) TFT,

as it was already praised by the evolutionary game theory literature for its resilience in

environments with noise, and we re-name it “Payback” to better emphasize the difference

with its main “rival” TFT.3 This strategy prescribes cooperation in the initial period. If a

unilateral defection occurs, the player who suffered the deviation should retaliate by defecting,

while the original defector should cooperate. Once this repayment phase takes place, both

players revert to mutual cooperation.

We study the theoretical and empirical properties of Payback, compared to Grim and

TFT, in infinitely repeated games, where cooperation can be sustained in equilibrium. Under

perfect monitoring we show that, contrary to TFT, Payback can form a subgame perfect

equilibrium. We also prove that, when gains from unilateral deviations are equal to losses

from playing cooperation while the opponent defect, Payback is an optimal penal code in

the sense of Abreu (1988): it sustains cooperation as a subgame perfect equilibrium for the

same set of parameters as Grim, which uses the strongest punishment strategy to discipline

deviations. At the same time, it is not subject to renegotiation concerns (in line with Van

Damme, 1989).

Games with imperfect monitoring are of particular interest in this perspective, as in these

settings the differences between Payback and other common strategies such as Grim and

TFT emerge more prominently. Under perfect monitoring, the way off-path punishments

are structured is not particularly relevant for the value that the strategy achieves on the

equilibrium path (provided they are strong enough). On the contrary, with imperfect moni-

toring deviations happen on the equilibrium path and symmetric punishments become very

costly. As an example, consider two players who wish to coordinate on mutual cooperation,

and both start playing C in period 1. With probability E, the action of either of them is

changed to D. With Grim, they would immediately switch to mutual defection until the end

of the supergame. With TFT, a sequence of asymmetric CD-DC outcomes would follow.4

3 This strategy is among the simplest restitution strategies according to the complexity measures proposed
by Oprea (2020), based on the number of states and transitions in the automata representation.

4 Under standard assumptions on payoffs this is less profitable than remaining on the cooperative path.
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The players would be able to revert to mutual cooperation only when a second random error

materializes and changes the intended action of one of them from D to C. With Payback,

instead, they would be able to revert to mutual cooperation after a single period of asym-

metric punishment, unless a second random error takes place. In this sense, Payback is an

error-correcting strategy. This intuitive consideration illustrates why as soon as we allow

for a positive probability of implementation errors the value produced by two players using

Payback is higher than the value produced by using TFT and Grim.

We show that, under imperfect monitoring, Payback has several theoretical advantages:

(i) it can be part of a public perfect equilibrium; (ii) it can be an equilibrium for a larger

set of parameters compared to Grim; (iii) it achieves a higher value on the equilibrium path

and (iv) it is less exposed to strategic risk than Grim or TFT. The latter theoretical result

has relevant implications for our understanding of the determinants of cooperation. While

many papers provide strong evidence that strategic risk is one of the main predictors of the

emergence and sustainability of cooperation in games with perfect monitoring, Fudenberg

et al. (2012, p. 733) observed that their data “do not show the strong support for risk

dominance of TFT as the key determinant of the level of cooperation in games with noise

that was seen in studies of games without noise.” We show, instead, that risk dominance

of Payback does emerge as a strong predictor of cooperation rates, also in their set-up with

noise. Cooperation rates are almost 20 percentage points higher in the treatments in which

Payback is risk-dominant, as compared to the treatments in which it is not.

The theoretical advantages of Payback over TFT and Grim led us to wonder whether

this strategy is in fact adopted by subjects. To answer this question, we perform a maxi-

mum likelihood estimation of strategies with and without including Payback among the set

of strategies. The results show that, in indefinitely repeated games with perfect monitor-

ing, Payback is played by a share of subjects comparable to the one attributed to Grim

and TFT; with imperfect monitoring instead the estimated share of Payback play is higher

than the one of TFT and Grim, and comparable to that of other more lenient and forgiving

strategies. Notably, the introduction of Payback reduces the share assigned to TFT both

with perfect and with imperfect monitoring, which suggests that Payback represents a good

empirical alternative to TFT in classifying subjects’ choices and might explain the sustained

rate of cooperation observed in treatments where TFT (and sometimes Grim) are not equi-

librium strategies. This can offer a new perspective on a number of other experiments that

have reported an important role for TFT in categorizing behavior (for example Dal Bó and

Fréchette, 2011; Bigoni et al., 2013; Embrey et al., 2016; Romero and Rosokha, 2018; Dal Bó

and Fréchette, 2019; Romero and Rosokha, 2019; Dvorak and Fehrler, 2023; Romero and

Rosokha, 2023).
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The remainder of the paper is organized as follows. Using meta-data from previous exper-

iments involving repeated Prisoner’s Dilemma games, Section 2 provides evidence for the use

of a broad class of restitution strategies. Section 3 introduces Payback, which is one of the

simplest restitution strategies, and derives theoretical results characterizing its equilibrium

and strategic-risk properties. Section 4 presents results from a maximum likelihood estima-

tion of strategies, providing empirical support for the use of Payback. Section 5 concludes.

2 Restitution strategies in three classes of games

In this section, we present our general empirical results obtained using data from previous

experiments involving repeated Prisoner’s Dilemma games. To ensure comparability across

different studies, we have standardized the payoffs as shown in Table 1. Here, the payoff

from deviating from the cooperative action profile (C,C), known as the temptation payoff,

is represented as 1 + g, where parameter g represents the additional gain from defection.

Conversely, the loss of payoff from cooperating while the opponent defects, referred to as the

sucker’s payoff, is denoted as −l. Both g and l take strictly positive values.5

Player 2
C D

Player 1
C 1, 1 −l, 1 + g
D 1 + g,−l 0, 0

Table 1: Standardized stage game payoffs for the Prisoner’s Dilemma.

We will utilize data from three different meta-datasets, which we refer to as Standard,

Noise, and Finite, as detailed in Table 2. Each of these datasets features the Prisoner’s

Dilemma as the stage game and is structured into sequences of play involving fixed pairs

of participants, which we term ‘supergames’. However, they differ in the time-horizon of

the supergame (which is either indefinite or finite), and in the level of information provided.

Each dataset represents a distinct class of games.

Standard includes data from previous experiments on indefinitely repeated games with

perfect monitoring: the stage game is repeated with constant continuation probability δ,

and subjects observe each other’s action without any noise. The Finite dataset consists

of finitely repeated games with perfect monitoring; hence the stage game is repeated with

probability one for a finite number of periods, which is common knowledge. The Noise

5 In line with the standard practice in the literature, we only consider games where the condition g− l < 1
holds. This condition implies that alternating between cooperation and defection is not more profitable
than mutual cooperation.
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Repeated interaction: Indefinite Indefinite Finite
Monitoring: Perfect Imperfect Perfect
Source: Dal Bo & Frechette (2018) This paper Embrey et al.(2018)
Number of sessions: 103 27 27
Number of subjects: 1734 598 552
Number of observations: 116,644 60,334 65,720
Dataset: Standard Noise Finite

Notes: Since the analyses we conduct are not compatible with supergames lasting less than 3
periods, we drop those observations from all the datasets. The Noise dataset includes data from
Fudenberg et al. (2012), Arechar et al. (2017) (only the treatments without communication), and
Aoyagi et al. (2019) (only the treatments strategically equivalent to the setting of Fudenberg et al.,
2012 and Arechar et al., 2017).

Table 2: Summary information on the meta-dataset of repeated PD experiments.

dataset encompasses indefinitely repeated games with imperfect monitoring, studied in Fu-

denberg et al. (2012), Arechar et al. (2017), and Aoyagi et al. (2019). In each period there

is a probability E that the realized action or a payoff-relevant signal of the chosen action

deviates from the player’s intended action. This deviation occurs independently across the

two players. When a random deviation occurs, players only observe the profile of the realized

public signals, which is payoff-relevant. To take noise into account, the standardization of

payoffs reported in Table 1 is done on the expected stage-game payoffs.

2.1 Evidence of restitution strategies

In this section we focus on the frequency of cooperation conditionally on the outcomes from

previous periods. To eliminate any effect of reputation and strategic teaching behavior,

we limit our analysis to the decisions made in the third period of each supergame. To

identify restitution strategies, we examine instances where the opponent defected unilaterally

in period 2. We then analyze how the player’s action in period 3 changes depending on the

outcome of period 1.

To elucidate the implications of restitution strategies, we adopt the concept of ‘standing’

used in evolutionary game theory (Boerlijst et al., 1997). This term refers to a state variable

that tracks the balance between cooperation and defection in a player’s history. For instance,

a sequence of outcomes DD, CD results in a ‘credit’ standing for the player. This is because

the player cooperated once during the supergame, while the opponent never did. In this

case, a restitution strategy would prescribe defection. On the other hand, a sequence of

outcomes DC, CD results in an ‘even’ standing, as both players cooperated an equal number

of times. Consequently, a restitution strategy prescribes cooperation. This latter scenario
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is particularly relevant in our analyses, because it serves as a litmus test: in it, restitution

strategies diverge from other common strategies such as Tit-for-Tat, Grim-Trigger, or t-

period punishment. While restitution strategies align with these alternatives in most other

cases, this particular instance allows us to tell them apart.

Table 3 presents the empirical frequency of cooperation in period 3, following CD outcome

in period 2. This is done for all possible outcomes in period 1 (CD, CD and CD, CC). The

number of observations for each history is also provided in parentheses.

Outcome Standing at Standard Noise Finite
in period 1 start of period 2 Init.intention C Init.intention D

DC debt 0.566 0.859 0.475 0.522
(746) (99) (198) (458)

DD even 0.282 0.521 0.186 0.242
(440) (73) (167) (132)

CD credit 0.297 0.240 0.179 0.246
(617) (425) (28) (284)

CC even 0.239 0.632 0.100 0.217
(268) (353) (10) (138)

Total 0.383 0.472 0.325 0.367
(2071) (950) (403) (1012)

Notes: Number of observations in parentheses. In the Noise dataset, the initial intention is the
action chosen by the subject in period 1 before the random realization of the noise.

Table 3: Cooperation frequency in period 3 following a CD outcome in period 2.

Finding A. Consistent with restitution strategies, in the third period of a supergame subjects

are more likely to cooperate following a unilateral defection by the opponent, if they themselves

have unilaterally defected in the first period.

Support for Finding A emerges from Table 3 which shows that cooperation rates in the CD,

DC history are approximately 57%, compared to the 24%-30% observed in the other three

cases of the Standard dataset. A similar pattern is observed in the Finite dataset, with a

cooperation rate of 52% versus 22%-25% in other cases. In the Noise dataset, we categorize

observations based on the intended action in period 1. This provides insight into the subject’s

strategy, even though the opponent may not have observed it. The pattern in the Noise

dataset mirrors those in the other datasets under both conditions. In conclusion, Finding

A is consistent across all three classes of games. It suggests that a sizable proportion of

subjects deviate from the behavior prescribed by Grim-trigger or by Tit-for-tat, which would

be defection in all four cases of Table 3.

Finding A is substantiated by the results of a series of panel regressions, as shown in Table

4. This table provides estimates derived from a linear probability model that incorporates
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random effects at the subject level and fixed effects at both the treatment and supergame

levels. The treatment-level effects account for variability arising from game-specific parame-

ters, while the supergame-level effects control for the influence of experience. The large and

highly significant coefficient for the CD outcome in period 1, observed across all regressions,

strongly indicates a widespread adoption of restitution strategies to reestablish cooperation

in repeated social dilemmas.

Standard Noise Finite
Outcome in period 1 initial C initial D
DC (debt) 0.332*** 0.205*** 0.369*** 0.319***

(0.036) (0.045) (0.117) (0.054)
DD (even) 0.048 -0.167*** 0.141 0.030

(0.038) (0.064) (0.108) (0.062)
CD (credit) 0.038 -0.421*** 0.064 -0.022

(0.037) (0.035) (0.124) (0.053)
Intercept 0.339*** 0.508*** -0.002 0.131

(0.088) (0.080) (0.148) (0.128)
N. of observations 2071 950 403 1012
N. of subjects 949 394 244 348
R2-within 0.150 0.323 0.110 0.188
R2-between 0.140 0.167 0.180 0.115
R2-overall 0.143 0.229 0.151 0.139

Notes: Linear probability model, with one observation per subject, per period. The model
incorporates random effects at the subject level and fixed effects at both the treatment and
supergame levels. The default case is outcome CC in t − 1. Standard errors robust for het-
eroskedasticity. ∗∗∗p < .01, ∗∗p < .05, ∗p < .1.

Table 4 Cooperation in period 3 when the outcome was CD in period 2.

Anecdotal evidence for the use of restitution strategies also emerges from the chats among

the participants of Fudenberg et al. (2012) (included in our Noise dataset). The following

descriptions, for instance, align with restitution strategies and contrasts with other strategies

such as Grim or Tit-for-Tat:6

“Keep the other person honest. Compensate for errors”

“[...] If I had accidentally picked B, I would pick A and make it up to the other

person. then if they had chosen B I would assume they were checking me and

continue to choose A”

6 Many other chats reported in the Online Appendix of Fudenberg et al., 2012 are consistent with resti-
tution strategies but also with other strategies.
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“If the other person gave me 4 points and lost 2 points in the previous round I

would try to do the same [...] I would choose B after a round where I played A

and the other played B, because in the previous round I gave up points to the

other person so I expect them to do the same for me in this round”

“If it became clear we were going tit for tat with each other I’d try and break out

of the cycle by playing A even if his or her last move was B”

2.2 Beyond the first three periods

Our analyses so far have relied on the first three periods of each supergame to avoid reputa-

tional or strategic teaching effects. Here, we extend our analyses to the following periods to

gain further insights.

Table 5 reports the results of regressions in which the dependent variable is the subject’s

action in period t, conditional on the outcome in period t − 1 being CD. The independent

variable is whether the subject was “in debt” at the beginning of period t − 1, when the

opponent’s unilateral defection took place. The results indicate a positive correlation between

the state of being “in debt” and cooperation in periods following a unilateral deviation by

the opponent, in all the three classes of experiments we consider. This result indicates that

subjects employ strategies with memory longer than one. Thus, the analysis of data from

periods beyond the third one confirms Finding A, showing that subjects react to a unilateral

defection by the opponent in a different way, depending on their standing.

One might wonder whether the standing of being “in debt” simply captures the outcome

in t−2, or instead subjects also react to “debts” that were generated earlier in time. In fact,

restitution strategies predict higher cooperation with a “debt” standing, even considering

histories before t−2. The question is of particular importance in light of the recent literature

on the repeated Prisoner’s Dilemma, which predominantly emphasizes the use of memory-1

strategies to explain subjects’ behavior. While we have previously demonstrated the existence

of memory-2 strategies in our Finding A, here we propose a method to ascertain the empirical

relevance of restitution strategies that employ even longer memory spans.

To this aim, we replicate the regression presented in Table 5, restricting the sample to

interactions where the outcome in t − 2 was DC. If subjects only reacted to debts that

emerged in t− 2, then the coefficient of the variable Debtt−1 should no longer be significant.

The results of this analysis are presented in Table 6. They reveal that even if the imbalance

in cooperation emerged more than two periods before, the probability of cooperation is still

higher when subjects are ‘in debt’, compared to when they are not. The effect, however, is

only significant in Standard, and in Noise when the initial intention was cooperative. This
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Standard Noise Finite
Initial C Initial D

Debt t−1 0.247∗∗∗ 0.390∗∗∗ 0.123∗∗∗ 0.374∗∗∗

(0.023) (0.031) (0.041) (0.055)
Period 0.004∗∗ −0.000 0.003 −0.027∗∗∗

(0.001) (0.002) (0.002) (0.004)
Debt t−1× Period −0.009∗∗∗ −0.020∗∗∗ −0.012∗∗ −0.034∗∗∗

(0.003) (0.003) (0.006) (0.009)
Intercept −0.038 0.251∗∗∗ 0.112∗∗∗ 0.354∗∗∗

(0.025) (0.039) (0.039) (0.075)
N. of observations 6161 5683 2851 3827
N. of subjects 1283 499 378 438
R2-within 0.075 0.062 0.020 0.132
R2-between 0.052 0.097 0.141 0.006
R2-overall 0.061 0.064 0.052 0.089

Notes: Linear probability model, with one observation per subject, per period.
The model incorporates random effects at the subject level and fixed effects at both
the treatment and supergame levels. Standard errors robust for heteroskedasticity.
∗∗∗p < .01, ∗∗p < .05, ∗p < .1.

Table 5: Cooperation in period t when the outcome was CD in t− 1 (all periods after 2).

Standard Noise Finite
Initial C Initial D

Debt t−1 0.107∗∗ 0.340∗∗∗ 0.060 0.196
(0.049) (0.065) (0.092) (0.137)

Period −0.000 −0.003 0.006 −0.024∗

(0.004) (0.006) (0.007) (0.014)
Debt t−1× Period 0.000 −0.007 0.000 −0.006

(0.005) (0.007) (0.010) (0.023)
Intercept 0.000 0.251∗∗∗ 0.071 0.456∗∗

(0.085) (0.078) (0.098) (0.179)
N. of observations 1103 1078 540 499
N. of subjects 565 388 245 195
R2-within 0.064 0.131 0.083 0.172
R2-between 0.077 0.137 0.093 0.070
R2-overall 0.081 0.126 0.082 0.110

Notes: Linear probability model, with one observation per subject, per pe-
riod. The model incorporates random effects at the subject level and fixed
effects at both the treatment and supergame levels. Standard errors robust for
heteroskedasticity. ∗∗∗p < .01, ∗∗p < .05, ∗p < .1.

Table 6: Cooperation in period t when the outcome was CD in t− 1 and DC in t− 2
(all periods after 3).
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is broadly in line with the use of restitution strategies with memory longer than two periods as

estimated in the previous subsection. These results are consistent across all classes of games,

and starkly contrast with the predictions of both Grim trigger and Tit-for-tat strategies,

which prescribe defection after a CD outcome, regardless of the history of play before period

t− 1.

Finding B. When considering all periods in a supergame, empirical evidence consistently

aligns with restitution strategies. Choices are strongly affected by the outcomes of previous

periods, documenting the relevance of strategies that employ a memory span of two or more

periods.

The evidence presented so far clearly points to a widespread use of restitution strategies to

rebuild cooperation in repeated social dilemmas. In particular, it suggests that a deviation

by the opponent is deemed more acceptable and often leads to increased cooperation, if it

makes players more “even”. Notably, extending our analysis beyond the third period has

enabled us to identify the use of restitution strategies with a memory span longer than two

periods, which has further implications. Finding B diverges from the prevalent approach

adopted in the recent literature on repeated prisoner’s dilemma experiments, as it implies

that focusing solely on memory-one strategies when analyzing experimental data on repeated

games could overlook significant aspects of subjects’ behavior, in this case how asymmetries

in past play affect restitution and cooperation.

The reason why Findings A and B may have previously gone unnoticed is that their dis-

covery necessitates an examination of specific histories of miscoordination where restitution

and other strategies have conflicting predictions.7 These specific histories could easily be

obscured in an aggregate analysis of all data. Yet, focusing on them is essential because

for most other recorded histories, the predictions of restitution strategies align with those of

other commonly considered strategies, such as Tit-for-Tat. Based on these other scenarios,

even if all subjects were playing restitution strategies, an observer could erroneously conclude

that they are all playing Tit-for-Tat (or vice versa). Therefore, focusing on the aforemen-

tioned specific subset serves as a crucial litmus test for determining whether subjects employ

restitution strategies. Notice, however, that even though we only focus on a relatively small

subsample of the datasets, this restriction does not imply that our conclusions are based on

the behavior of a minority of subjects. The sub-sample of observations we focus on in this sec-

tion covers 77% of the total number of subjects included in the three meta-datasets. Section

4 will present additional empirical evidence, this time based on unrestricted meta-datasets.

Two important remarks are in order with respect to the Noise and Finite class of games.

First, Findings A and B are particularly noteworthy, as they emerge also in the Noise

7 These instances only constitute about 8% of the combined observations from the three datasets.
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dataset, which is characterized by imperfect monitoring. In this context, subjects generally

exhibit more leniency than under perfect monitoring (Fudenberg et al., 2012), and this might

imply a looser link between a subjects’ standing and their cooperative choices. Contrarily,

we present systematic evidence consistent with restitution strategies, particularly when the

intended action in the first period was C: a scenario which is the most compatible with

the implementation of a restitution strategy. Second, while one might anticipate empirical

evidence of restitution strategies in the Standard dataset, their presence in the Finite

dataset is more difficult to interpret, as canonical theory would not predict their occurrence

in finitely repeated games. Van Damme (1989) proved that restitution strategies can be

equilibrium strategies in infinitely repeated games with perfect monitoring. We corroborate

this in Section 3, extending the prediction to games with imperfect monitoring. However,

these strategies cannot be equilibrium strategies in finitely repeated games (e.g. Embrey et

al., 2017). In the next subsection we delve deeper into this unexpected finding by examining

the impact of experience on the adoption of restitution strategies.

2.3 The Role of Experience

In our three datasets, subjects participated in multiple supergames during each experimen-

tal session. To examine the strategy adoption while subjects gain experience, we contrast

the empirical patterns that emerged in the earliest supergames with those from the latest

supergames within each session.

We adopt the same approach as in Subsection 2.2, and contrast the first and last four

supergames of each session. Figure 1 illustrates the frequency of cooperation following a

unilateral defection by the opponent (CD), with Tables 7 and 8 providing additional analy-

ses. As in previous subsections, we partition observations based on the subject’s standing –

whether ‘in debt’ or not – in the period when the opponent unilaterally defected.

Let us point our attention to the first four supergames, represented in Figure 1. The solid

line typically lies above the dashed line, suggesting a higher frequency of cooperation among

subjects who were ‘in debt’ when their opponent unilaterally defected, compared to those

who were ‘even’ or ‘in credit’. This observation is corroborated by the results in Table 7 and

aligns broadly with Findings A and B, which indicated the adoption of a restitution strategy

by a sizable fraction of subjects.

Let us now turn to the last four supergames. The results differ depending on the class of

games. In finitely repeated games, with experience the effect diminishes in size and becomes

less significant with experience (Finite dataset). Conversely, in indefinitely repeated games,

the effect not only endures with experience, but it also grows in magnitude (Standard

dataset). When evaluating the evidence under imperfect monitoring (Noise dataset), it

13



Standard dataset Finite dataset

Noise dataset - initial D Noise dataset - initial C

Figure 1: Inexperienced vs. experienced behavior:
cooperation rates conditional on standing (all periods after 2).
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Standard Noise Finite
Initial C Initial D

Debt t−1 0.170∗∗∗ 0.321∗∗∗ 0.125∗ 0.358∗∗∗

(0.035) (0.049) (0.069) (0.089)
Period 0.005∗∗ 0.002 0.006 −0.023∗∗∗

(0.002) (0.003) (0.005) (0.008)
Debt t−1× Period −0.006∗ −0.023∗∗∗ −0.015 −0.052∗∗∗

(0.004) (0.005) (0.009) (0.015)
Intercept 0.346 0.260∗∗∗ 0.144∗∗ 0.321∗∗∗

(0.360) (0.052) (0.057) (0.099)
N. of observations 1907 1840 940 929
N. of subjects 804 430 302 320
R2-within 0.048 0.039 0.013 0.101
R2-between 0.063 0.088 0.076 0.032
R2-overall 0.063 0.051 0.045 0.066

Notes: Linear probability model, with one observation per subject, per period.
The model incorporates random effects at the subject level and fixed effects at both
the treatment and supergame levels. Standard errors robust for heteroskedasticity.
∗∗∗p < .01, ∗∗p < .05, ∗p < .1.

Table 7: Cooperation in period t when the outcome was CD in t− 1
(all periods after 2, first 4 supergames).

is important to remember that restitution strategies prescribe cooperation as the action in

period 1. With an initial intention to cooperate, the effect persists and increases in size.

Instead, if the initial intention is to defect, the effect – already smaller for inexperienced

subjects – disappears with experience.8

Finding C. With experience, the use of restitution strategies declines in finitely repeated

experiments, while it becomes more prominent in indefinitely repeated games.

A possible interpretation of Finding C relies on both behavioral and theoretical argu-

ments. While both aspects may be pertinent, our results can shed some light on their

respective roles and their relative importance in our settings. Restitution strategies may

have an intuitive appeal due to fairness considerations, which could account for their sys-

tematic adoption by inexperienced subjects. These strategies align well with insights from

the literature on inequity aversion (Fehr and Schmidt, 1999; Charness and Rabin, 2002),

according to which fairness-related heuristics may prevail over strategic considerations of in-

come maximization. For experienced subjects, instead, the primary determinant of strategy

8 Figure 1 and Tables 7 and 8 also provide a more detailed view of the effect’s magnitude within a
supergame. Across all game classes, the gap between the solid and the dashed lines reaches its peak in
period 3, then diminishes. This pattern further refines Findings A and B.
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Standard Noise Finite
Initial C Initial D

Debt t−1 0.250∗∗∗ 0.416∗∗∗ 0.038 0.209
(0.036) (0.053) (0.086) (0.128)

Period 0.004∗∗ 0.001 −0.002 −0.030∗∗∗

(0.002) (0.002) (0.005) (0.010)
Debt t−1× Period −0.006∗∗ −0.021∗∗∗ −0.003 −0.017

(0.003) (0.006) (0.012) (0.021)
Intercept 0.238∗ 0.250 0.051 0.319∗∗∗

(0.126) (0.204) (0.433) (0.111)
N. of observations 1767 1897 833 664
N. of subjects 661 406 252 288
R2-within 0.065 0.068 0.027 0.142
R2-between 0.141 0.147 0.155 0.084
R2-overall 0.099 0.091 0.121 0.094

Notes: Linear probability model, with one observation per subject, per period.
The model incorporates random effects at the subject level and fixed effects at both
the treatment and supergame levels. Standard errors robust for heteroskedasticity.
∗∗∗p < .01, ∗∗p < .05, ∗p < .1.

Table 8: Cooperation in period t when the outcome was CD in t− 1
(all periods after 2, last four supergames).

adoption may be whether restitution strategies constitute equilibrium strategies for income-

maximizing subjects. Restitution strategies are not equilibrium behavior in finitely repeated

games; by contrast, in Section 3 we show that restitution strategies can be consistent with

equilibrium behavior in indefinitely repeated games (both with and without noise).9

Given the empirical insights from Findings A, B and C, it may seem surprising that resti-

tution strategies have not been considered so far in the experimental literature on repeated

social dilemmas. In the Discussion, we elucidate why the toolbox employed for strategy

estimation in this branch of literature made the identification of such strategies rather chal-

lenging, if not impossible.

3 Payback and the theory of infinitely repeated games

To deepen our understanding of the general findings reported earlier, in this section, we

consider a specific restitution strategy - Payback - that has been studied in the evolutionary

9 The persistence of restitution strategies only in games where they can be part of an equilibrium also links
our results to the literature on cooperation and personality traits, which suggests that social preferences
and individual inclinations tend to have a significant, but typically transitory effect on cooperation rates
(Proto et al., 2021), which are outweighed by strategic concerns (Dreber et al., 2014).
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literature under the names of Sophisticated-TFT and Contrite-TFT (Sugden, 1986; Boyd,

1989; Wu and Axelrod, 1995; Boerlijst et al., 1997; Graser and van Veelen, 2024). We have

selected Payback because it belongs to the class of the simplest restitution strategies when

measured in terms of complexity by the number of states and transitions.10 After describing

Payback, we characterize its theoretical properties in infinitely repeated games, both under

perfect and imperfect monitoring, comparing them with those of Grim and TFT.11 The

imperfect monitoring case is particularly important because, there, breaches of cooperation

are unavoidable, which better highlights the differences between Payback and strategies not

based on restitution.

3.1 The Payback strategy

Figure 2 describes the Payback automaton, which consists of three states represented by

circles and a set of transition rules represented by arrows. The upper-case letter within each

circle indicates the action to be taken by the agent in that state: we denote cooperation

by “C,” and defection by “D.” The pairs of lower-case letters next to the arrows represent

the action pairs that trigger the corresponding transition: “cc” denotes mutual cooperation,

“dd” mutual defection, “cd” a unilateral defection by the opponent, and “dc” a unilateral

defection by the player. As we discuss later, in the case of a game with perfect monitoring,

the actions determining transitions are the actions chosen by the players. In the case of

imperfect monitoring, these are actions publicly observed by the agents, which may differ

from the actions intended by the players.

Payback prescribes to start at the top-left circle, which we term the “Cooperation state”:

hence, the initial action is cooperation (C). The automaton remains in the “Cooperation

state” if the observed outcome is “cc” or “dd”, while if the outcome is “cd” it triggers

a transition to the “Punishment state,” in the bottom-left circle: thus, it prescribes to

defect (D) until observing cooperation (c) from the opponent. Finally, if the outcome in

the cooperation state is “dc”, Payback triggers a transition to the “Restitution state” (in the

upper-right circle), which prescribes cooperation (C).

The Payback strategy differs notably from the Grim strategy because it punishes devi-

ations asymmetrically: when player 1 defects (intentionally or not), his continuation payoff

goes down. At the same time, the continuation payoff of player 2 goes up. In the continuation

game, player 2 is paid back for the bad outcome of this period. In contrast, Grim (and any

strongly symmetric strategy, like the ones described in Green and Porter, 1984) penalizes

both players when one of them defects.

10 See Oprea (2020) and Salant (2011).
11 We do not discuss finitely repeated games because Payback can never be an equilibrium there.
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Figure 2. Automaton of “Payback strategy”

At first sight, Payback may look very similar to TFT, but the difference comes from

Payback depending on more than what happened in the last period. In particular, there

are two instances that set Payback apart from TFT. First, if the observed outcome is cd,

the prescription of Payback depends on the previous state: cooperation in the Restitution

state and defection in the other states. Second, if the agent observes dd, Payback prescribes

defection only if the agent is in the Punishment state. Otherwise, it prescribes cooperation.

Instead, in both instances, TFT (and Grim) prescribe defection independent of the previous

history.

3.2 Perfect monitoring

Under perfect monitoring, Grim has the lowest possible critical discount factor (δ) among all

strategies that sustain cooperation in every period as a subgame perfect equilibrium (SPE)

outcome. The reason is that it is an optimal penal code in the sense of Abreu (1988), as

it uses the harshest possible punishment for deviations (in PD, the static Nash payoffs are

the min-max payoffs). Hence, while on the cooperative path, the value of cooperation is the

same, the critical discount factor for Payback has to be weakly higher than for Grim.

Payback prescribes that a deviation on the equilibrium path, with a gain g on top of the

equilibrium payoff, is compensated by repayment in the subsequent period, with an implied

loss of l.

The larger is g (in comparison to l), the more tempting it is to deviate unilaterally in the
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cooperative state. Also, if l is too large, there would be an incentive to deviate during the

repayment phase. Depending on the parameters, either of these constraints may bind. We

show in Appendix A that the relevant constraint for Payback to be a SPE is:

δ ≥ max{l, g}
1 + l

.

Specifically, if g > l, the binding incentive constraint is in the Cooperation state, while if

l > g, the binding constraint is in the Restitution state. Following this reasoning, we prove

in Appendix A the following proposition:12

Proposition 1. Consider an infinitely repeated PD with perfect monitoring and normalized

payoffs as in Table 1. (i) There exists a threshold δ∗ < 1 such that for all discount factors

δ ≥ δ∗ Payback is a subgame perfect equilibrium strategy. (ii) If g = l, this threshold is

the same for Grim and Payback; if g ̸= l, the threshold is strictly lower for Grim than for

Payback.

Note that if g = l, then Grim and Payback are SPE for the same set of parameters:

the anticipation of the repayment phase offsets gains from a one-sided deviation to the same

extent as the commitment to an indefinite punishment. Payback’s punishment phase is much

more efficient, however, as players can keep cooperating after just one round of punishment

(Restitution) in which the defector compensates the opponent for the deviation.13

Finally, a standard result in the literature is that if g−l < 1, as imposed in our game, TFT

is not sustainable as an SPE, for any discount factor. The reason is that after a unilateral

deviation, TFT calls for an infinite sequence of mis-coordinated actions (cd-dc) that the

players would have incentives to deviate from.

3.3 Imperfect monitoring

We now turn to analyzing Perfect Public Equilibria (PPE) of the repeated game with im-

perfect monitoring. In this subsection, we assume g = l for two reasons. First, in order

to theoretically characterize the implications of imperfect monitoring, we want to compare

Grim and Payback under a common perfect monitoring benchmark, which by Proposition 1 is

12 Recall that we have assumed above that g − l < 1.
13 While this does not matter for equilibrium values under perfect monitoring because deviations do not

happen on the equilibrium path, it matters in terms of robustness of the strategy to renegotiation.
The threat of never cooperating again after a player unilaterally deviates is so inefficient that may be
implausible if players can renegotiate the continuation equilibrium. The punishment phase in Payback is
robust to such concerns because it is much more efficient and asymmetric, so carrying out the repayment
phase is more profitable for the party that suffered the defection than renegotiating away the punishment
phase and immediately returning to mutual cooperation (Van Damme, 1989).
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implied by g = l. Second, the main related experimental results under imperfect monitoring

(Fudenberg et al., 2012; Arechar et al., 2017; Aoyagi et al., 2019) assume g = l.14

The specific game with imperfect monitoring we study has been studied in Fudenberg et al.

(2012) (FRD, henceforth) and Arechar et al. (2017). We assume that in each period, players

privately choose intended actions. Then, each intended action is changed with probability

E < 1
2
, independently across the two players. Players publicly observe the implemented

action profile, which is payoff relevant.15

In Appendix A, we show that in this class of games, Payback is sustainable in a PPE for

a larger range of discount factors than Grim:

Proposition 2. In the infinitely repeated PD game with imperfect monitoring described

above, (i) if 1+g
g

> E
(1−2E)(1−E)

, then there exist threshold levels for the discount factor,

δPPE,Payback < 1, δPPE,Grim < 1, above which Payback and Grim are perfect public equi-

librium strategies; and (ii) for all g = l > 0, and E ∈ (0, 1
2
), the threshold for Payback is

strictly lower than for Grim: δPPE,Payback < δPPE,Grim.

The intuition for the ranking of the threshold discount factors for Payback and Grim

is as follows. Under Grim, cooperation can be sustained in equilibrium for sufficiently high

discount factors, but the punishment sustaining cooperation is much more inefficient than for

Payback. When players move from mutual cooperation to mutual defection during the Grim

punishment phase, the sum of payoffs drops approximately from 2 to 0 (ignoring noise). In

contrast, when a player unilaterally defects and then moves to the Restitution state, accepting

the opponent’s punishment, the sum of payoffs drops approximately only to 1, while providing

even stronger punishment per period (the deviating player loses 1 + l instead of 1). So the

false-positive punishments caused by noise are just much more efficient (in terms of keeping

a high sum of continuation payoffs while satisfying the incentive compatibility constraints)

in Payback than in Grim. This improves the expected payoffs from cooperation on the

equilibrium path and relaxes the Payback’s IC constraints for a PPE.

While Proposition 2 reveals that Payback is a PPE for a wider range of parameters than

Grim, the next proposition shows that, when both are PPEs, Payback also offers a higher

expected payoff than Grim:

Proposition 3. In the infinitely repeated PD game with imperfect monitoring described

above, for all g = l > 0, δ ∈ (0, 1) and E ∈ (0, 1
2
) such that both Grim and Payback are

14 The reason is that whenever g = l an equivalent representation of the Prisoner’s Dilemma exists, in
which cooperation and defection take the “benefit/cost” form, b/c in Fudenberg et al. (2012) notation.
Specifically, to cooperate, players have to pay a cost c to give a benefit b to the other player, while
defection gives 0 to each party.

15 As mentioned earlier, the environment is also strategically equivalent to that in the imperfect public
monitoring treatment by Aoyagi et al. (2019), which we also include in our analysis of the metadata.
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a PPE, the expected payoff in the Payback PPE (VPayback) is strictly higher than the expected

payoff in the Grim PPE (VGrim).

Remark 1. It can be shown that in our imperfect monitoring game, TFT cannot be sustained

in a PPE.16 Moreover, in the proof of Proposition 3 we also show that the expected payoff

in the Payback PPE (VPayback) is higher than the expected payoff from both players following

TFT (VTFT ) for any δ ∈ (0, 1). The main reason for this ranking is Payback’s ability to keep

the value of cooperation high even after accidental deviations. Payback can induce a return

to cooperation just one period after the accidental deviation (if no other errors occur), while

with TFT, a sequence of asymmetric cd−dc outcomes would follow, reducing the continuation

value. With TFT, Players would be able to revert to mutual cooperation only after a second

random error would change the intended action from d to c.

Strategic Risk. Several recent experiments on the infinitely repeated Prisoner’s Dilemma

with perfect monitoring have shown that the “strategic risk” of cooperating, i.e. the expected

cost of cooperating when the opponent defects, is a strong predictor of cooperation17. Blonski

and Spagnolo (2015) and Blonski et al. (2011) showed (theoretically) that a simple measure of

such risk can be obtained by restricting attention to the cooperative strategy and the uniquely

safe strategy AllD, and then comparing the two by applying Harsanyi and Selten (1988)’s

concept of risk dominance to the resulting 2x2 automaton game.18 Dal Bó and Fréchette

(2011, 2018) noted that the above comparison can alternatively be performed using the

basin of attraction, an easy-to-compute indicator from the theory of dynamic systems. The

riskiness of a cooperative strategy is then measured by the size of the basin of attraction of

AllD (SizeBAD).19 In the Appendix A, we present the calculations for SizeBAD when AllD

plays against Payback, Grim, and TFT, and prove the following proposition:

Proposition 4. In the infinitely repeated PD game with imperfect monitoring described

above, for all g = l > 0 and E ∈ (0, 1
2
) strategic risk (SizeBAD) is lower for Payback

than for Grim and TFT.

16 This result also follows from Graser and van Veelen (2024), who show that, in the presence of errors,
Nash equilibrium strategies that can be represented via finite automata must exhibit a structure that
they label “self-mirroring”, which immediately rules out Tit-for-Tat.

17 See, among others, Blonski et al. (2011), Dal Bó and Fréchette (2011), Calford and Oprea (2017), Dal
Bó and Fréchette (2018), Ghidoni and Suetens (2022), Boczo et al. (2023), and Martinez-Martinez and
Normann (2024).

18 See Blonski and Spagnolo (2015) for details. The authors also derive a cutoff level for the discount
factor, δRD, below which all cooperation equilibria are risk-dominated by AllD, and cooperation should
not be expected. Blonski et al. (2011) derived the same cutoff axiomatically.

19 SizeBAD is then the probability that a player must assign to the opponent playing the cooperative
strategy in order to be indifferent between playing that strategy rather than AllD. Dal Bó and Fréchette
(2018) find that the two measures of strategic risk are empirically indistinguishable in their metadata.
Note also that SizeBAD=1/2 when δ=δRD.
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Under perfect monitoring, without the possibility of a tremble, the value of cooperation of

TFT, Grim and Payback is the same, while they all punish indefinitely after the first deviation

if matched with AllD. Therefore, the strategic risk is the same for all the cooperative strategies

considered. Under imperfect monitoring this is not true anymore. On the one hand, Payback

loses more against AllD compared to Grim, which in turn condemns AllD to lower profits

in a pairwise comparison. On the other hand, due to its forgiving nature, the value of

cooperation sustained by Payback in equilibrium is much higher than the value sustained

by Grim (Proposition 3). Ultimately, the asymmetric punishment phase of Payback solves

the trade-off more efficiently, containing the losses against AllD while keeping the value of

cooperation high. Conversely, Grim’s lower exposure to losses against AllD does not outweigh

the low efficiency implied by its stricter punishment phase. A similar reasoning, mostly driven

by efficiency considerations, holds when we compare TFT with Payback.

4 Empirical support for Payback

In this section we perform a maximum likelihood estimation of strategies taking Payback into

account. We then analyze the ability of strategic risk to predict cooperation with imperfect

monitoring.

4.1 Retrieving strategies from observed actions

Differently from Section 2, the empirical evidence reported here is based on all the observa-

tions in the three datasets of Table 2.

Table 9 reports Maximum Likelihood Estimates of strategies for the three classes of

repeated games we are studying, respectively with and without Payback among candidates.

Estimates are obtained using the methodology originally developed by Dal Bó and Fréchette

(2011), and – in line with the typical procedure adopted in this literature – they are based

on the last four interactions in each session to allow subjects to gain experience. Besides

Payback, the set of candidate strategies includes all those considered in Fudenberg et al.

(2012). For finitely repeated games, we follow Aoyagi et al. (2024) and consider a different

set of strategies, including also threshold strategies, which conditionally cooperate until a

threshold round before switching to AllD.

Column 1 presents the results of our strategy estimation for infinitely repeated games

with perfect monitoring, without considering Payback. Column 2 presents the same esti-

mates including Payback in the set of candidate strategies. Results in Column 2 indicate

that, when Payback is included in the set of strategies, its estimated prevalence (10%) is
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Standard Noise Finite
Strategies (1) (2) (3) (4) (5) (6)
Payback / 0.10∗∗∗ / 0.09∗∗∗ / 0.02∗

TFT 0.24∗∗∗ 0.16∗∗∗ 0.07∗∗∗ 0.02∗∗∗ 0.08∗∗∗ 0.06∗∗∗

ALLC 0.02∗∗∗ 0.02∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.02∗∗∗ 0.02∗∗∗

TF2T 0.03∗∗∗ 0.02∗ 0.11∗∗∗ 0.08∗∗∗ 0 0
TF3T 0.01∗∗ 0.01∗∗∗ 0.05∗∗∗ 0.05∗∗∗ / /
2TFT 0.03∗∗∗ 0.02∗∗ 0.07∗∗∗ 0.07∗∗∗ 0 0
2TF2T 0.03∗∗∗ 0.02∗∗∗ 0.10∗∗∗ 0.10∗∗∗ / /
Grim 0.14∗∗∗ 0.14∗∗∗ 0.06∗∗∗ 0.06∗∗∗ 0.05∗∗∗ 0.05∗∗∗

Grim-last2 0.01∗∗ 0.02∗∗∗ 0.06∗∗∗ 0.06∗∗∗ 0.03∗∗∗ 0.03∗∗∗

Grim-last3 0.02∗∗∗ 0.02∗∗∗ 0.10∗∗∗ 0.09∗∗∗ / /
ALLD 0.30∗∗∗ 0.30∗∗∗ 0.28∗∗∗ 0.28∗∗∗ 0.35∗∗∗ 0.35∗∗∗

D-TFT 0.17∗∗∗ 0.17∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.10∗∗∗ 0.10∗∗∗

Threshold t− 3 / / / / 0.12∗∗∗ 0.12∗∗∗

Threshold t− 2 / / / / 0.13∗∗∗ 0.13∗∗∗

Threshold t− 1 / / / / 0.13∗∗∗ 0.13∗∗∗

Gamma 0.37 0.37 0.48 0.48 0.38 0.38
Number of observations 50218 11696 13144
Number of subjects 1734 598 552

Notes: Estimates based only on the last four interactions in each session. p-values are based on
bootstrapped standard errors.

Table 9: Maximum Likelihood Estimates of strategies.

comparable in magnitude to that of Grim (14%) and TFT (16%). The comparison between

Columns 1 and 2 further highlights that the addition of Payback predominantly affects the

estimated prevalence of TFT, which decreases by 8 percentage points. This suggests that

the SFEM approach struggles to differentiate between these two strategies, which predict

identical behavior in most empirical occurrences.

Columns 3 and 4 make the same comparison for infinitely repeated games with imperfect

monitoring. Column 4 shows that, also in this class of supergames, Payback captures a

substantial and significant fraction of the observed behavior (9%). Comparing Column 3

with Column 4 highlights again how the introduction of Payback reduces the estimated

prevalence of TFT, which drops from 7% to 2%.20 The higher prevalence of Payback as

compared to TFT in this setting is not surprising, since with imperfect monitoring TFT and

Payback are easier to distinguish from one another; in addition TFT is not an equilibrium

strategy, while as shown in the previous section Payback is, and is also much more resilient

20 By contrast, the introduction of Payback only marginally reduces the estimated prevalence of delayed-
trigger strategies, hence it does not question the importance of being “slow to anger”, pointed out by
Fudenberg et al. (2012).
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to strategic risk than TFT.

The estimation of strategies through maximum likelihood should be viewed in conjunc-

tion with the results discussed in Section 2, rather than in opposition to them. Several

reasons underpin this approach. First, here we explicitly focus on a single restitution strat-

egy, namely Payback. However, if this specific strategy fails to emerge, it remains plausible

that our Findings A-C could be driven by alternative restitution strategies. Second, unlike

in the analyses in Section 2, our strategy estimation framework here assumes that individ-

ual subjects consistently employ the same strategy across multiple supergames. Third, we

leverage data from all subjects and their complete history of play, rather than restricting our

analysis to specific segments that allow for the differentiation between restitution and other

strategies.

These methodological considerations are pivotal when interpreting the relatively modest

estimated prevalence of the Payback strategy, as observed in Table 9. Notably, the action pre-

dicted by Payback diverges from that predicted by other conditionally cooperative strategies

only in highly specific instances. Consequently, the methodology employed in this subsection

may not be optimally suited to disentangle these subtle differences.

4.2 Strategic risk and imperfect monitoring

Besides their main results on the importance of lenient and forgiving strategies in repeated

games with noise, Fudenberg et al. (2012) highlight a “puzzling” finding. They investigate

whether risk dominance (in the sense of Blonski and Spagnolo, 2015) is a good predictor of

cooperation also with imperfect monitoring, and conclude that this is not the case. However,

they measure risk dominance of cooperation taking TFT as the reference strategy.21 They

observe that TFT becomes risk dominant only in treatments with g = l = 2/3, but the

largest increase in cooperation occurs between treatments with g = l = 2 and g = l = 1.

Therefore, they argue that “the risk-dominance criterion has at best limited predictive power

regarding cooperation in games with noise” (Fudenberg et al., 2012, p. 742).

21 Similarly Dvorak and Fehrler (2023) use Grim to find the threshold that makes a cooperative equilibrium
risk-dominant.
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FRD dataset

Arechar et al. (2017) dataset
Notes: In all treatments, E = 1

8 . Results based on the last 4 supergames of each session.

Figure 3: Cooperation rates by treatment under imperfect monitoring.

We show here that this conclusion is reversed if we consider risk dominance of Payback,

rather than TFT. In Figure 3 we present the empirical cooperation rates observed by Fu-

denberg et al. (2012) and by Arechar et al. (2017), across treatments that only differ for

the payoff parameters. Their results reveal that the initial and aggregate cooperation rates

increase significantly from the treatments where g = l = 2 – in which Payback is not risk-

dominant – to the treatments in which g = l = 1, where it is. Panel 3 of Table 10 below

reports the minimum discount factors for the strategies of interest to be risk dominant in

FRD’s and Arechar et al. (2017)’s treatments. As illustrated by FRD, for their continuation

probability (87.5%) TFT becomes risk dominant only in the treatments with g = l = 2/3,
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which is misaligned with the increase in cooperation between treatments with g = l = 2 and

g = l = 1. Panel 4 shows that the same conclusion can be drawn using SizeBAD to measure

strategic risk. The same two panels show that, instead, Payback is not risk dominant for

g = l = 2 (δRD = 0.95 ≥ 0.875) and becomes risk dominant for g = l = 1, that is, precisely

in the treatments for which we observe a major increase in cooperation.

Treatment:
g=l=2 g=l=1 g=l=2/3 g=l=1/3 g=l=1/3 g=l=1/3
E=1/8 E=1/8 E=1/8 E=1/8 E=1/16 E=0

Strategies
Vcoop
Payback 6.5 12.9 19.4 38.8 42.9 48
Grim 3.3 6.5 9.8 19.6 25.7 48
TFT 5.1 10.2 15.3 30.6 35.2 48
δSPE
Payback 0.85 0.67 0.55 0.36 0.30 0.25
Grim 0.91 0.70 0.57 0.37 0.30 0.25
TFT / / / / / /
δRD

Payback 0.96 0.83 0.73 0.54 0.46 0.4
Grim >1 0.91 0.80 0.57 0.47 0.4
TFT >1 0.89 0.76 0.53 0.46 0.4
Size-BAD
Payback 0.81 0.40 0.27 0.13 0.08 0.05
Grim >1 0.57 0.38 0.19 0.11 0.05
TFT >1 0.52 0.35 0.17 0.10 0.05
Cooperation rates
First Period (FRD) 54% 75% 79% 76% 87% 83%
First Period (Arechar et al.) 33% 50% / / / /
Overall (FRD) 32% 49% 61% 59% 82% 78%
Overall (Arechar et al.) 21% 37% / / / /

Notes: The table includes data from Fudenberg et al. (2012) and Arechar et al. (2017). The value of
cooperation is obtained from Tables 4 and 6 in FRD, while the critical thresholds derive from our calculations.
The cooperation rates are for the last 4 supergames.

Table 10. Theoretical benchmarks and observed cooperation under imperfect monitoring.

The results in the previous subsection already showed that, when we analyze strategies with

the SFEM methodology, the estimated prevalence of TFT falls dramatically after accounting

for Payback. In Table 11 we report estimates of strategies for all the treatments with noise,

separately. The estimated frequency of TFT is 6% when g = l = 2 and 0 when g = l = 1.

On the contrary, the prevalence of Payback surges from 4% when g = l = 2 to 13% when

g = l = 1, and stays constant for treatment with an higher g = l. Importantly, the treatment

in which Payback’s frequency surges (g = l = 1) is precisely the one in which Payback
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becomes sustainable as a risk-dominant equilibrium. This result can only be theoretically

justified by the effect of strategic-risk on the choice of the strategy, since Payback can be

sustained in a PPE also in the treatment with g = l = 2.

g=l=2 g=l=1 g=l=2/3 g=l=1/3
Strategies (1) (2) (3) (4) (5) (6) (7) (8)
Payback / 0.04∗∗ / 0.13∗∗∗ / 0.14∗∗∗ / 0.14∗∗∗

TFT 0.09∗∗∗ 0.06∗∗∗ 0.08∗∗∗ 0 0.07∗ 0.02 0.10∗ 0
ALLC 0.01 0.01 0.02∗ 0.02 0 0 0.05∗ 0.10∗∗

TF2T 0.04 0.03∗∗ 0.08∗∗ 0.03 0.14∗ 0.07 0.15∗∗ 0.10∗∗

TF3T 0.01 0.01 0.01 0.01 0.08 0.06 0.08 0.08∗∗

2TFT 0.08∗∗∗ 0.08∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.02 0.02 0.05∗∗ 0.05
2TF2T 0.03 0.03 0.10∗∗∗ 0.10∗∗∗ 0.15∗∗ 0.17∗∗ 0.15∗∗ 0.12∗

Grim 0.11∗∗∗ 0.11∗∗∗ 0.05∗∗ 0.05∗∗ 0.12∗∗ 0.12∗∗∗ 0.03 0.03
Grim-last2 0.05∗∗∗ 0.05∗ 0.10∗∗∗ 0.10∗∗∗ 0.02 0.02 0.08∗∗ 0.09∗∗∗

Grim-last3 0.06∗∗∗ 0.06∗∗ 0.15∗∗∗ 0.15∗∗∗ 0.25∗∗∗ 0.22∗∗∗ 0.08∗ 0.07∗

ALLD 0.41∗∗∗ 0.42∗∗∗ 0.29∗∗∗ 0.29∗∗∗ 0.14∗∗∗ 0.14∗∗∗ 0.23∗∗∗ 0.22∗∗∗

D-TFT 0.11∗∗∗ 0.10∗∗∗ 0.05∗∗∗ 0.05∗∗ 0.01 0.02 0 0
Gamma 0.45 0.45 0.47 0.46 0.49 0.48 0.45 0.44
N. obs 5244 5022 2214 3076
Number of subjects 148 130 64 90

Notes: Bootstrapped standard errors used to calculate p-values. Pooled data from Arechar et al. (2017) and
Fudenberg et al. (2012), last 4 supergames.

Table 11. Maximum Likelihood Estimates of strategies: imperfect monitoring and strategic
risk.

To sum up, Payback (i) is much more frequently played than TFT when it becomes

risk dominant, and (ii) it becomes risk dominant and is played by a larger share of sub-

jects precisely under the parameter configurations in which the cooperation rate increases.

This evidence suggests that measures of strategic risk are good predictors of the empirical

frequency of cooperation also in games with imperfect monitoring.

5 Discussion and Conclusions

In this paper, we study restitution strategies and their role in restoring cooperation after

a defection, with a focus on both their empirical adoption and their theoretical properties.

We rely on meta-datasets comprising many previous experimental studies, covering three

classes of games: indefinitely repeated Prisoner Dilemmas with perfect and imperfect moni-

toring, and finitely repeated PD. We find that, in general, restitution strategies are frequently

adopted in all three classes of games. With experience, however, they tend to fade away in
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finitely repeated games, where they cannot be equilibrium strategies. In contrast, their rel-

evance not only persists but even increases in the other classes of repeated games, where

these strategies can indeed be equilibria. This suggests that, initially, restitution strategies

may be adopted for their “behavioral” appeal, since they resonate with inequity aversion.

Eventually, however, the main driver of their empirical success is related to strategic reasons.

The empirical relevance of restitution strategies – which by definition have a memory

of two periods or longer – suggests that restricting the focus on memory-one strategies,

as common in the recent literature, may lead to overlook important features of subjects’

behavior.

To characterize the theoretical properties of restitution strategies, we focus on Payback,

which is one of the simplest strategies within this category. We show that Payback can sup-

port cooperation as an equilibrium outcome in settings with perfect and imperfect monitoring

where Tit-for-tat, and sometimes even Grim trigger, cannot. In addition, we prove that, un-

der some circumstances, Payback can be more profitable and less exposed to strategic risk

than Grim trigger. The observed presence of Payback in our three meta-datasets also sheds

light on two puzzles that have emerged from previous literature. First, the high estimated

frequency of Tit-for-Tat in environments where it is not a subgame-perfect equilibrium or

public-perfect equilibrium; and second, the apparent lack of predictive power of strategic risk

in games with imperfect monitoring, in contrast to what occurs in games with perfect moni-

toring. On one hand, accounting for Payback significantly reduces the estimated prevalence

of Tit-for-Tat – primarily because restitution strategies have often been misclassified as Tit-

for-Tat. On the other hand, the risk dominance of Payback demonstrates robust predictive

power even in games with imperfect monitoring.

Why did previous experimental papers fail to identify restitution strategies? The reason

cannot lie in the data we use, which have not been collected ad hoc and have already been

analyzed by others to empirically estimate strategies. It lies instead in the approaches pro-

posed, which are unsuitable to capture restitution strategies. The issue may concern either

the empirical methodology, the experimental design, or both.

First, the most widespread empirical methodology may overlook restitution strategies.

When retrieving strategies from observed actions, researchers have to define ex-ante a set of

strategies, and then estimate their likely presence in the experimental data as in Dal Bó and

Fréchette (2011) and many subsequent studies. None of the studies following this methodol-

ogy have included restitution strategies in their set. Detecting restitution strategies with this

methodology is anyway challenging, as they differ from other conditionally cooperative strate-

gies only in a relatively small subset of histories, especially in games with perfect monitoring.

Consequently, if one does not specifically examine those instances – as we did in this paper –
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disentangling strategies becomes nearly impossible, as differences may appear minor and can

be easily attributed to random errors. A similar issue emerges with the approach proposed

by Breitmoser (2015), which considers stochastic strategies but cannot identify a restitution

strategy like Payback. This approach focuses on memory-one strategies, conditioning only

on the combination of actions of the two players in the previous period. It would therefore

classify Payback within the class of “semi-grim” strategies, because in a period that follows

the opponent’s unilateral defection Payback may prescribe either defection or cooperation,

depending on the subject’s “standing”.

Second, the design of some experiments may rule out the possibility for participants to

employ restitution strategies. The methodologies developed by Dal Bó and Fréchette (2019)

and Romero and Rosokha (2018, 2019, 2023) to directly elicit subjects’ strategies are clever

and effective but are affected by this type of limitation. The former requires subjects to

choose from a pre-specified list of options, which did not include Payback or any other

restitution strategy. The latter allows subjects to create their own strategy conditioning on

past outcomes, but without considering the subjects’ standing, which excludes the possibility

of constructing a strategy such as Payback.

As Dal Bó and Fréchette (2019) have already pointed out, uncovering the strategies that

subjects employ is crucial for several reasons. For instance, identifying what strategies are

used to support cooperation can provide a more effective test of theory than relying solely on

observable outcomes. Furthermore, it allows scholars to focus on a limited set of empirically

relevant strategies for a dialogue with theory, for example in evaluating which strategies are

likely to survive evolutionary pressure. Lastly, a better understanding of strategies can aid in

designing setups and institutions that promote the emergence and persistence of cooperation

(or foster competition, in case cooperation in the game implies tacit collusion against third

parties).

An implication of our results is to reinstate trust in the theoretical tools that are generally

used to predict cooperation, such as Public Perfect Equilibrium and risk dominance, that

were questioned by the overestimation of TFT in experiments. We bridge the gap between

theoretical models – extensively using asymmetric restitution strategies and showing that

they are evolutionary stable – and the experimental literature that attributed them a minor

role so far. More broadly, this study sheds light on the factors contributing to the sustain-

ability of cooperation in the long run. While experimental super-games are relatively short,

real-world interactions often last so long that defections – whether intentional or uninten-

tional – eventually take place. Identifying how people restore cooperation after a breach of

trust is essential for our grasp of how cooperation endures over time.
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Appendix

A Theoretical analysis of the Payback strategy

A.1 Perfect Monitoring

Proof of Proposition 1

We start by deriving the critical discount factors for the Grim and Payback strategies.

Grim For the Grim strategy, the equilibrium path payoff is

VC =
1

1− δ
.

The only relevant IC constraint is in the cooperative state and Grim is an equilibrium if and

only if the deviation payoff in the cooperative state is lower than the on-path payoff, which

implies the critical discount factor:

1 + g ≤ VC ⇐⇒ δ ≥ g

1 + g
.

Payback The Payback strategy has three states: (C,P,R) (Cooperation, Punishment and

Restitution). The on-path payoffs in these three states are:

VC =
1

1− δ
,

VP = 1 + g + δVC ,

VR = −l + δVC .

The IC constraint in the P state is always satisfied because the player is recommended the

dominant stage-game action, and the continuation payoff does not depend on his action.

The IC constraint in the C state is

1 + g + δVR ≤ 1 + δVC ⇐⇒ δ ≥ g

1 + l
.

The IC constraint in the R state is

0 + δVR ≤ −l + δVC ⇐⇒ δ ≥ l

1 + l
.

Combining these two constraints, the threshold discount factor for Payback to be a subgame
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perfect equilibrium is:
max {l, g}

1 + l
.

For part (i) note that since g < 1 + l, the ratio is guaranteed to be less than 1. For

part (ii), note that if g = l, the threshold discount factors for the two strategies coincide.

However, for all g ̸= l the threshold discount factor for Payback is higher.

A.2 Imperfect Monitoring

Recall that in Section 3.3 we assume g = l. We claim that whenever g = l, an equivalent

representation of the Prisoner’s Dilemma is the one in table 12b, in which cooperation and

defection take the “benefit/cost” form, in which to cooperate, players have to pay a cost c

to give a benefit b to the other player, while defection gives 0 to each party.

Player 2
C D

Player 1
C 1, 1 −l, 1 + g
D 1− g,−l 0, 0

12a) Standardized PD.

Player 2
C D

Player 1
C b− c, b− c −c, b
D b,−c 0, 0

12b) Benefit-cost Representation.

Table 12 Equivalence between two representations of a PD.

Specifically, to move from the first representation to the second, substitute g = l = c
b−c

and

multiply all the payoffs by b − c. We assume b > c ≥ 0 so that the stage game in this new

representation is still a PD.

Recall that we also assume that in every period, each intended action is independently

changed with probability E < 1
2
. Denoting G ≡ b

c
= 1+g

g
> 1, we can write the stage-game

expected payoffs of player 1 as:

Player 2
C D

Player 1
C c(G− 1)(1− E) c(E(1 +G)− 1)
D c(G− E(1 +G)) cE(G− 1)

Table 13 Expected Payoffs of Player 1 in the PD with Imperfect Monitoring.

These expected stage-game payoffs constitute a PD because E ∈ (0, 1
2
) and G > 1. Since c

scales all expected payoffs equally, without loss of generality, we further normalize c = 2 (as

in Fudenberg et al., 2012) to describe the stage game with just two parameters (G and E).
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A.2.1 Proof of Proposition 2

Payback The expected payoffs in the three states of Payback are, respectively:

VC = 2(G− 1)(1− E) + δ(VC(1− E)2 + (1− E)EVP + (1− E)EVR + E2VC),

VP = 2G− 2E(1 +G) + δ(VC(1− E)2 + (1− E)EVC + (1− E)EVP + E2VP ),

VR = 2(E(1 +G)− 1) + δ(VC(1− E)2 + (1− E)EVC + (1− E)EVR + E2VR).

These expressions can be simplified to:

VC = 2
(G− 1)(1− E)

(1− δ)(1 + Eδ(1− 2E))

VP =
2G(1− E)− 2E + δ(1− E)VC

1− δE

VR =
2(E(1 +G)− 1) + δ(1− E)VC

1− δE

To check whether Payback is a (Perfect Public) equilibrium, we need to check the IC

constraints in the three states:

Step 1: IC constraints in State C.

A defection in State C gives payoff

VDC = 2G− 2E(1 +G) + δ(VR(1− E)2 + (1− E)EVC + (1− E)EVC + E2VP )

For this not to be profitable, we must have

VDC ≤ VC

The threshold discount factor for state C solves:

2G− 2E(1 +G) + δ(VR(1− E)2 + (1− E)EVC + (1− E)EVC + E2VP )

= 2(G− 1)(1− E) + δ(VC(1− E)2 + (1− E)EVP + (1− E)EVR + E2VC).

The solution is:

δC =
2

VC − VR + E(VP + VR − 2VC)
(1)
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Plugging in the formulas for the payoffs and solving for the threshold δ we get that it is:

δC =
−G(1− 2E)(1− E)− E +

√
(G(1− 2E)(1− E) + E)2 + 4E(1− 2E)(1− E)

2E(1− 2E)(1− E)

Step 2: IC constraints in State P .

The IC constraint is always satisfied in state P . Note that the transitions from that state

are independent of player 1 actions. Hence the continuation payoff of that player does not

depend on his action and hence the best response is just myopic best response which is the

recommended action in that state.

Step 3: IC constraints in State R.

In state R, the recommended action is C. A deviation to D yields expected payoff:

VDR = 2E(G− 1) + δ(VR(1− E) + EVC).

For the deviation not to be profitable, we must have

VDR ≤ VR = 2(E(1 +G)− 1) + δ(VC(1− E) + EVR).

The threshold discount factor in that state is:

δR =
2

VC − VR

.

Recall from (1) that the threshold discount factor in state C satisfies

δC =
2

VC − VR + E(VP + VR − 2VC)
.

Since

VP + VR − 2VC = −2
(G− 1)(1− 2E)

1 + δE − 2E2δ
< 0,

we have that δC ≥ δR for all parameters. Hence Payback is an equilibrium if and only if

δ ≥ δPPE,Payback ≡
−G(1− 2E)(1− E)− E +

√
(G(1− 2E)(1− E) + E)2 + 4E(1− 2E)(1− E)

2E(1− 2E)(1− E)
.
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Grim. The Grim Strategy has two states: (C,P ) (Cooperate, Punishment). The expected

payoffs in the two states are, respectively:

VC = 2(G− 1)(1− E) + δ(VC(1− E)2 + (1− (1− E)2)VP ),

VP =
2E(G− 1)

1− δ
.

Solving for VC we get:

VC = 2(G− 1)
(1− δ)(1− E) + E2δ(2− E)

(1− δ)(1− δ + Eδ(2− E))
.

The IC constraint in the Punishment state is always satisfied since the players play infinite

repetition of the static Nash equilibrium. So to check under what conditions Grim is a PPE,

we need to only check the IC constraint in the Cooperate state, which is

2G− 2E(1 +G) + δ((1− E)EVC + (1− (1− E)E)VP ) ≤ VC .

It holds when:

δ ≤ δPPE,Grim ≡ 1

(1− E)(G(1− 2E) + E)
.

Threshold δPPE,Grim is less than 1 if and only if G = 1+g
g

> E
(1−2E)(1−E)

, as claimed in part

(i) of Proposition 2 (we show next that the threshold for Payback is lower, hence if δ is high

enough for Grim to be a PPE, it is also high enough for Payback to be PPE).

Comparing the threshold factors for Grim and Payback Define X ≡ (G(1−2E)(1−
E) + E) and A ≡ E(1− 2E)(1− E). In this notation, we can write:

δPPE,Payback ≡ −X +
√
X2 + 4A

2A
,

δPPE,Grim =
1

X − E2
.

Let Z be the ratio of these thresholds:

Z ≡ δPPE,PB

δPPE,Grim

=
(X − E2)(−X +

√
X2 + 4A)

2A
.
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First, note that the limit of Z as G → ∞ is 1:

lim
X→+∞

(X − E2)(−X +
√
X2 + 4A)

2A
= 1.

Using this limit, we show that Z < 1 for all parameters by showing that Z is increasing in

G.

The derivative of the numerator of Z with respect to X is:

∂

∂X
((X − E2)(−X +

√
X2 + 4A))

= −(2X − E2)
√
X2 + 4A− 2X2 − 4A+ E2X√

X2 + 4A
.

Note that this expression is zero at A = 0, and positive for all A > 0. Therefore, for all

parameters ∂Z
∂X

> 0, which implies that Z is strictly increasing inG. Hence, for all parameters,

Z < 1. This establishes the rest of the claims in Proposition 2.

A.2.2 Proof of Proposition 3

Payback vs. Grim The expected PPE payoff for Payback is:

VPayback = 2
(G− 1)(1− E)

(1− δ)(1 + Eδ(1− 2E))
.

while for Grim:

VGrim = 2(G− 1)
(1− δ)(1− E) + E2δ(2− E)

(1− δ)(1− δ + Eδ(2− E))
.

Therefore, to show VPayback > VGrim we need to show that:

1− E

1 + Eδ(1− 2E)
>

(1− δ)(1− E) + E2δ(2− E)

(1− δ + Eδ(2− E))
.

An algebraic manipulation shows that this condition holds if and only if:

δ(1− E − 2E2 + E3) + 1 > 0.

For all E < 1
2
, this expression is positive, and that establishes the comparison between

the equilibrium payoffs for Payback and Grim.

Payback vs. TFT If players follow TFT (starting in the Cooperative state), the expected

payoff is:
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VTFT = 2(G− 1)
1− E + δ(2E − 1)

(1− δ)(1 + δ(2E − 1))
.

Using our computation for VPayback, we need to show that:

1− E

(1 + Eδ(1− 2E))
>

1− E + δ(2E − 1)

1 + δ(2E − 1)
.

After some algebra, this is equivalent to

δ > − E2

E(1− 2E)
,

which is always satisfied since δ > 0 and the r.h.s. is negative.

A.2.3 Proof of Proposition 4

We start with calculations for the size of the basin of attraction (BAD) for Payback, Grim

and TFT when compared to AllD.

BAD for Payback. When I play Payback and meet another player that plays Payback,

my expected payoff is

VPayback,Payback = 2
(G− 1)(1− E)

(1− δ)(1 + Eδ(1− 2E))
.

When I meet a player that plays AllD, my expected payoff is a solution to the system that

describes expected payoffs in the three states of Payback:

UC = 2(E(1 +G)− 1) + δ((1− E)2UP + 2E(1− E)UC + E2UR),

UP = 2E(G− 1) + δ((1− E)UP + EUC),

UR = 2(E(1 +G)− 1) + δ((1− E)UC + EUR).

The solution for the expected payoff at the beginning of the game is:

VPayback,ALLD = 2
δ(1− E)2(2δE2 − δE + 1)− 2δE2G(1− E) + E(1 +G)− 1

(1− δ)(1− 2δE(1− E))
.

If instead I play AllD and I meet a player that plays AllD, I get a payoff:

VALLD,ALLD =
2E(G− 1)

1− δ
.
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Finally, if I play AllD and I meet a player that plays Payback, I get a payoff that is a solution

to the following system of equations (where subscripts now represent the state of Payback of

the other player).

UC = 2G− 2E(1 +G) + δ((1− E)2UP + 2E(1− E)UC + E2UR),

UP = 2E(G− 1) + δ((1− E)UP + EUC),

UR = 2G− 2E(1 +G) + δ((1− E)UC + EUR).

Solving this system yields expected payoff at the beginning of the game:

VALLD,Payback = 2
G(1− δ)− (1 +G)E + EG(1− 2E)(1− E)2δ2 − Eδ(−2G+ EG− 2E + 2E2)

(1− δ)(1− 2δE(1− E))
.

Let α be the fraction of other players using the Payback strategy. Player 1 is indifferent

between AllD and Payback if

αVPayback,Payback + (1− α)VPayback,ALLD = αVALLD,Payback + (1− α)VALLD,ALLD.

Solving for α we get:

α∗
Payback =

(1− δE(1− E))(1 + δE(1− 2E))(1− δ(1− E))

(1− 2E)(1− E)(1− δ2E2(1− E))(G− 1)δ
.

BAD for Grim. When I play Grim and meet another player that plays Grim, my expected

payoff is

VGrim,Grim = 2(G− 1)
(1− δ)(1− E) + E2δ(2− E)

(1− δ)(1− δ + Eδ(2− E))
.

When I play Grim and meet a player that plays AllD, my expected payoff is a solution to

the system (where subscripts represent the two states of my Grim strategy):

UC = 2(E(1 +G)− 1) + δ((1− E)EUC + (1− (1− E)E)UP )

UP =
2E(G− 1)

1− δ
,

The resulting expected payoff is:

VGrim,ALLD = 2
δE2(G− 1)(−1 + E) + (G+ 1− 2δ)E − 1 + δ

(1− δ)(1− δE + δE2).

Finally, if I play AllD and I meet a player that plays Grim, I get a payoff that is a solution

to the following system of equations (where subscripts represent now the states of the other
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player):

UC = 2G− 2E(1 +G) + δ((1− E)EUC + (1− (1− E)E)UP ),

UP =
2E(G− 1)

1− δ
.

The resulting expected payoff is:

VALLD,Grim = 2
G(1− δ)− δE2(G− 1)(1− E)− (1 +G(1− 2δ))E

(1− δ)(−δE + δE2 + 1)
.

Let α be the fraction of other players using the Grim strategy. Player 1 is indifferent between

AllD and Grim if

αVGrim,Grim + (1− α)VGrim,ALLD = αVALLD,Grim + (1− α)VALLD,ALLD.

Solving for α we get:

α∗
Grim =

1− δ + Eδ(2− E)

δ(1− 2E)(1− E)(G− 1)
.

BAD for TFT. When two players that play TFT meet, each has expected payoff of:

VTFT,TFT = 2(G− 1)
1− E + δ(2E − 1)

(1− δ)(1 + δ(2E − 1))

When I play TFT and meet a player that plays AllD, my expected payoff is:

VTFT,ALLD =
2(E(G+ 1)− 1) + δ(1− E)(1− 2E)

1− δ

If I play AllD and meet a player that plays TFT, I get expected payoff :

VALLD,TFT =
2(G(1− E)(1 + δ(−1 + 2E))− E)

1− δ

Let α be the fraction of other players using the TFT strategy. Player 1 is indifferent between

AllD and TFT if

αVTFT,TFT + (1− α)VTFT,ALLD = αVALLD,TFT + (1− α)VALLD,ALLD.

Solving for α we get:

α∗
TFT =

1− δ + 2δE

(G− 1)δ(1− 2E)
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Comparison: Grim vs. Payback Using our formulas for α∗
Grim and α∗

Payback we get that

the difference is:

α∗
Grim − α∗

Payback

= E
E4δ2 + 2δ(1− δ)E3 + 1− δE(1 + E(1− δ))

(1− 2E)(1− E)(1− δ2E2 + δ2E3)(G− 1)

The denominator is positive, and the numerator is positive because

1− δE(1 + E(1− δ)) ≥ 1− E > 0.

Comparison: TFT vs. Payback We want to show that α∗
Payback < α∗

TFT , which is:

(1− δE(1− E))(1 + δE(1− 2E))(1− δ(1− E))

(1− E)(1− δ2E2(1− E))
< 1− δ(1− 2E)

which can be rewritten as:

(1− δE(1− E))

(1− δ2E2(1− E))
<

(1− δ(1− 2E))(1− E)

(1 + δE(1− 2E))(1− δ(1− E))
.

Since the l.h.s. is lower than 1, it is enough to show that the r.h.s. is greater than 1, which

is equivalent to:

1− δ(1− 2E)− E + Eδ(1− 2E) > 1 + δE(1− 2E)− δ(1− E)(1 + δE(1− 2E)).

Collecting terms, this is equivalent to:

1 < 1 + (1− E)Eδ,

which is true for any (E, δ) ∈ (0, 1
2
)× (0, 1).
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