Peer prediction markets to elicit unverifiable information

Aurélien Baillon Cem Peker Sophie van der Zee

Emlyon Business School - NYU Abu Dhabi - Erasmus University Rotterdam

August 28, 2024

<ロト < 回 ト < 巨 ト < 巨 ト 三 の へ ()・ 1/24 • "Did you have a good experience in your hotel in Rotterdam?"

- "Did you have a good experience in your hotel in Rotterdam?"
- answer = private signal a respondent acquires by exerting effort (remembering)

- "Did you have a good experience in your hotel in Rotterdam?"
- answer = private signal a respondent acquires by exerting effort (remembering)
- How can we ensure signal acquisition and revelation if cannot compare answer to ground truth?

• Novel solution to incentivize acquisition and revelation of private signals: **Peer-Prediction Market (PPM)**.

- Novel solution to incentivize acquisition and revelation of private signals: **Peer-Prediction Market (PPM)**.
- Bets on what others will say.

• Mechanism design literature (Crémer and McLean, 1988): explored ways to reveal private signals.

- Mechanism design literature (Crémer and McLean, 1988): explored ways to reveal private signals.
- Peer Prediction (Miller et al., 2005): a respondent's answer is informative in predicting peers' answers.

- Mechanism design literature (Crémer and McLean, 1988): explored ways to reveal private signals.
- Peer Prediction (Miller et al., 2005): a respondent's answer is informative in predicting peers' answers.
 - Uncertainty about the rate of yes answers to the hotel question.

- Mechanism design literature (Crémer and McLean, 1988): explored ways to reveal private signals.
- Peer Prediction (Miller et al., 2005): a respondent's answer is informative in predicting peers' answers.
 - Uncertainty about the rate of yes answers to the hotel question.
 - Respondents answering yes increase their expectations about the proportion of *other* people answering yes.

- Mechanism design literature (Crémer and McLean, 1988): explored ways to reveal private signals.
- Peer Prediction (Miller et al., 2005): a respondent's answer is informative in predicting peers' answers.
 - Uncertainty about the rate of yes answers to the hotel question.
 - Respondents answering yes increase their expectations about the proportion of *other* people answering yes.
 - Formally: Bayesian updating.

- Mechanism design literature (Crémer and McLean, 1988): explored ways to reveal private signals.
- Peer Prediction (Miller et al., 2005): a respondent's answer is informative in predicting peers' answers.
 - Uncertainty about the rate of yes answers to the hotel question.
 - Respondents answering yes increase their expectations about the proportion of *other* people answering yes.
 - Formally: Bayesian updating.
 - Intuitively, yes answers says something about likely experience of other customers.

1. Theory (skipped today): peer prediction markets

1. Theory (skipped today): peer prediction markets

• Acquiring and revealing signals is a Nash equilibrium of Bayesian game (dominating no effort equilibria);

1. Theory (skipped today): peer prediction markets

- Acquiring and revealing signals is a Nash equilibrium of Bayesian game (dominating no effort equilibria);
- 2. Study 1: online experiment closely following the theoretical model

- 1. Theory (skipped today): peer prediction markets
 - Acquiring and revealing signals is a Nash equilibrium of Bayesian game (dominating no effort equilibria);
- 2. Study 1: online experiment closely following the theoretical model
 - real effort task from the experimental economics literature to get a signal;
 - PPM makes people provide more effort.

- 1. Theory (skipped today): peer prediction markets
 - Acquiring and revealing signals is a Nash equilibrium of Bayesian game (dominating no effort equilibria);
- 2. Study 1: online experiment closely following the theoretical model
 - real effort task from the experimental economics literature to get a signal;
 - PPM makes people provide more effort.
- 3. Study 2: health survey, involving questions about social distancing (in 2020).

- 1. Theory (skipped today): peer prediction markets
 - Acquiring and revealing signals is a Nash equilibrium of Bayesian game (dominating no effort equilibria);
- 2. Study 1: online experiment closely following the theoretical model
 - real effort task from the experimental economics literature to get a signal;
 - PPM makes people provide more effort.
- 3. Study 2: health survey, involving questions about social distancing (in 2020).
 - practical feasibility, with stigmatizing answers;

- 1. Theory (skipped today): peer prediction markets
 - Acquiring and revealing signals is a Nash equilibrium of Bayesian game (dominating no effort equilibria);
- 2. Study 1: online experiment closely following the theoretical model
 - real effort task from the experimental economics literature to get a signal;
 - PPM makes people provide more effort.
- 3. Study 2: health survey, involving questions about social distancing (in 2020).
 - practical feasibility, with stigmatizing answers;
 - reveal lower compliance with guidelines.

1. Introduction

2. Study 1

3. Study 2

4. Conclusion

・ロト・日本・山下・山下・山下・山下・山下・山下

• Q= "more yellow" or I= "less yellow"

- Q="more yellow" or I="less yellow"
- One of the boxes has been selected (=one state of the world occurred, equally likely). Guess which one.

- Q="more yellow" or I="less yellow"
- One of the boxes has been selected (=one state of the world occurred, equally likely). Guess which one.
- Want to see a ball (= a signal) from the selected box?

・ロト ・四ト ・ヨト ・ヨト

• Common prior expectations that anyone drawing a ball will get a yellow ball $\bar{\omega} = 60\%$.

- Common prior expectations that anyone drawing a ball will get a yellow ball $\bar{\omega} = 60\%$.
- Drawing a yellow (blue) ball makes people think the actual box is Q (I).

- Common prior expectations that anyone drawing a ball will get a yellow ball $\bar{\omega} = 60\%$.
- Drawing a yellow (blue) ball makes people think the actual box is Q (I).
- Hence, common prior expectations that anyone drawing a ball will think the actual box is Box $Q = \bar{\omega} = 60\%$.

- Common prior expectations that anyone drawing a ball will get a yellow ball $\bar{\omega} = 60\%$.
- Drawing a yellow (blue) ball makes people think the actual box is Q (I).
- Hence, common prior expectations that anyone drawing a ball will think the actual box is Box Q = $\bar{\omega} = 60\%$.
- Two decisions: whether to provide effort (counting 1s to get a ball) and then which box to report.

A peer-prediction market is defined by the following steps:

1. The center (market maker) announces the asset price $\bar{\omega} = 0.6$ (unit to be defined).

- 1. The center (market maker) announces the asset price $\bar{\omega} = 0.6$ (unit to be defined).
- 2. Agents simultaneously choose their reports. Those who report Box Q ($r_i = 1$) become buyers of the asset and those Box I ($r_i = 0$) become sellers.

- 1. The center (market maker) announces the asset price $\bar{\omega} = 0.6$ (unit to be defined).
- 2. Agents simultaneously choose their reports. Those who report Box Q ($r_i = 1$) become buyers of the asset and those Box I ($r_i = 0$) become sellers.
- 3. The center computes the asset value $\bar{r} =$ proportion of people reporting Box Q.

- 1. The center (market maker) announces the asset price $\bar{\omega} = 0.6$ (unit to be defined).
- 2. Agents simultaneously choose their reports. Those who report Box Q ($r_i = 1$) become buyers of the asset and those Box I ($r_i = 0$) become sellers.
- 3. The center computes the asset value $\bar{r} =$ proportion of people reporting Box Q.
- 4. Buyers pay $\bar{\omega} = 0.6$ to the center in exchange of \bar{r} and sellers receive $\bar{\omega} = 0.6$ from the center in exchange of \bar{r} .

- 1. The center (market maker) announces the asset price $\bar{\omega} = 0.6$ (unit to be defined).
- 2. Agents simultaneously choose their reports. Those who report Box Q ($r_i = 1$) become buyers of the asset and those Box I ($r_i = 0$) become sellers.
- 3. The center computes the asset value $\bar{r} =$ proportion of people reporting Box Q.
- 4. Buyers pay $\bar{\omega} = 0.6$ to the center in exchange of \bar{r} and sellers receive $\bar{\omega} = 0.6$ from the center in exchange of \bar{r} .
- Incentives: if you draw a yellow ball, then you expect Box Q to be the actual box, and therefore more people reporting Box Q (asset value) than expected ex ante (price 60%).

- 1. The center (market maker) announces the asset price $\bar{\omega}=$ 0.6 (unit to be defined).
- 2. Agents simultaneously choose their reports. Those who report Box Q ($r_i = 1$) become buyers of the asset and those Box I ($r_i = 0$) become sellers.
- 3. The center computes the asset value $\bar{r} =$ proportion of people reporting Box Q.
- 4. Buyers pay $\bar{\omega} = 0.6$ to the center in exchange of \bar{r} and sellers receive $\bar{\omega} = 0.6$ from the center in exchange of \bar{r} .
- Incentives: if you draw a yellow ball, then you expect Box Q to be the actual box, and therefore more people reporting Box Q (asset value) than expected ex ante (price 60%).
- Can be implemented without observing the actual box and the balls people draw.

- Flat fee: £3.25 completion fee.
- Accuracy incentives: £3.25 \pm 0.20 if guess is correct or not.
- PPM: $\pounds 3.25 + PPM$ with unit 0.20c.

210 U.S. students from Prolific.May 2020 online, with Qualtrics.10 tasks (10 pairs of boxes, 10 matrices).

Results

Proportion of subjects providing an effort (counting 1s to see a ball) across the 10 tasks.

Results

Dep.	var.: P(effort	task complete	d)	
	(whole	sample)	(filtered	sample)
	(1)	(2)	(3)	(4)
PPM	0.16**	0.14**	0.16**	0.14*
	(0.05)	(0.06)	(0.06)	(0.06)
Accuracy	0.23***	0.23***	0.23***	0.23***
	(0.05)	(0.05)	(0.05)	(0.05)
Age		-0.00		-0.00
		(0.00)		(0.00)
Female		0.04		0.04
		(0.04)		(0.04)
US resident		-0.03		-0.02
		(0.07)		(0.07)
Num. obs.	2100	2070	2060	2030
Likl. Ratio.	148.93	175.79	146.39	173.35
LR test p-val	< 0.0001	< 0.0001	< 0.0001	< 0.0001
AIC	1649.70	1549.38	1638.88	1539.16

 $p^{***} p < 0.001; \ ^{**} p < 0.01; \ ^{*} p < 0.05; \ ^{+} p < 0.1$

Table: Marginal effects, logistic regression (baseline category: Flat)

1. Introduction

2. Study 1

3. Study 2

4. Conclusion

Screenshot

Question 2 of 8 (show instructions)

Please try to remember how many times you were in the following situation:

I was seated less than 2 metres away from someone who is not part of my household in a restaurant/cafe/bar at least once in the last 7 days.

> True (picked by 44% last week)

False (picked by 56% last week)

Submit

Question 2 of 8 (show instructions)							
Please try to remember how many times you were in the following situation:							
I was seated less than 2 metres away from someone who is not part of my household in a restaurant/cafe/bar at least once in the last 7 days.							
True (picked by 44% last week)	False (picked by 56% last week)						
	Out-the						

- Remembering it happened is receiving signal 1.
- $\bar{\omega} = 0.44$ (common prior expectations).
- Clicking on True is $r_i = 1$.
- effort = mental cost of remembering whether one was seated less than 2 metres away from someone else.
- + psychological costs such as mild stigma of answering "True".

Questions

	Statement
1.	I have been in an elevator with another person in it at least once in the last 7 days
2.	I may have stood less than 2 metres away from the person in front in a queue at least once in the last 7 days
3.	I was seated less than 2 metres away from someone who is not part of my household in a restaurant/cafe/bar at least once in the last 7 days
4.	I have been in a social gathering with more than 6 people who are not part of my household at least once in the last 7 days
5.	I have been in a busy shop/market with no restrictions on number of customers at least once in the last 7 days
6.	I participated in an indoor activity with more than 6 people who are not part of my household at least once in the last 7 days
7.	I have been in a shop/market where one or more of the staff did not wear a mask at least once in the last 7 days
8.	I had an interaction with someone experiencing high body temperature, persistent cough or loss of taste/smell at least once in the last 7 days

Table: Covid-19 survey questions

- Control (question without past week rate, flat fee)
- Control 2 (question with past week rate, flat fee)
- Treatment (question with past week rate, PPM)
 - If report True: win (rate of True 44%)
 - If report False: earn (44% rate of True)

- UK participants
- 50 per treatment per week
- Week 0, just Control
- Weeks 1 & 2, Control, Control 2, Treatment
- November 2020

Results

	P(response = 'true'), marginal effects							
	(week 1)		(week 2)					
	(filtered sample)		(all)	(filtered sample)		(all)		
	(1)	(2)	(3)	(4)	(5)	(6)		
Flat-PastRate	0.05	0.04	0.04	-0.00	-0.01	-0.00		
	(0.04)	(0.04)	(0.04)	(0.03)	(0.03)	(0.03)		
PPM	0.11***	0.09**	0.09**	0.08*	0.08*	0.08*		
	(0.03)	(0.03)	(0.03)	(0.04)	(0.04)	(0.04)		
Response time	. ,	0.00	0.00	. ,	0.00	0.00		
		(0.00)	(0.00)		(0.00)	(0.00)		
Age		-0.00	-0.00		-0.00	-0.00		
		(0.00)	(0.00)		(0.00)	(0.00)		
Female?		0.02	0.02		-0.02	-0.02		
		(0.03)	(0.03)		(0.03)	(0.03)		
UK citizen?		-0.00	0.00		0.04	0.04		
		(0.03)	(0.03)		(0.04)	(0.04)		
Num. obs.	1259	1259	1264	1279	1279	1280		
Likl. Ratio.	10.44	16.28	15.87	8.03	12.85	13.83		
LR test p-val	0.0054	0.0123	0.0144	0.0180	0.0455	0.0316		
AIC	1662.27	1664.43	1671.58	1660.66	1663.85	1664.94		

***p < 0.001; **p < 0.01; *p < 0.05; +p < 0.1

Table: Logistic regression, average marginal effects

- Strong assumptions, but same as or weaker than in the literature.
- However, only binary.

- Strong assumptions, but same as or weaker than in the literature.
- However, only binary.
- Simple to implement.
- Simple enough to explain to participants.

- Strong assumptions, but same as or weaker than in the literature.
- However, only binary.
- Simple to implement.
- Simple enough to explain to participants.
- Studies complement each other.

- Strong assumptions, but same as or weaker than in the literature.
- However, only binary.
- Simple to implement.
- Simple enough to explain to participants.
- Studies complement each other.
- Support the theory: PPM motivates signal acquisition and revelation.

Thank you!

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

23 / 24