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A large Bayesian game with linear best responses
A Bayesian game with linear best responses (linear in opponents’
actions and payoff states) has numerous applications

A continuum of agents is a useful assumption to study the role of
information in a large economy

E.g., Bergemann and Morris (2013) build a framework for information
design based on Angeltos and Pavan (2007), henceforth AP&BM



A large Bayesian game with linear best responses
The aggregated action is the integration of a continuum of random
variables (a stochastic process), often assumed to be i.i.d.

It is implicitly assumed (without mathematical justification)

• an i.i.d. non-degenerate stochastic process is measurable

• the law of large numbers (LLN) holds

but mathematically incompatible (Judd, 1985; Uhlig, 1996)

Rigorous mathematical foundations are required for further analysis
of more general models



Summary
This paper introduces a general class of large Bayesian games with
linear best responses that have a solid mathematical foundation

• The model is formulated based on the Pettis integral framework
(Pettis, 1938; Uhlig, 1996).

• Conditions for the uniqueness of equilibrium are derived

• Information design is addressed based on the condition.

• An optimal information structure is characterized in AP&BM



A large Bayesian game with linear best responses
I = [0, 1]: the set of agents (with the Lebesgue measure ν)

θ(i): agent i’s payoff state, a random variable with a finite variance

x(i): i’s private information, an arbitrary random variable

{x(i)}i∈I: an information structure

f (i): i’s strategy, an x(i)-measurable random variable with a finite
variance

f : a strategy profile



A large Bayesian game with linear best responses
Agent i’s best response is linear in the conditional expectation of

{ f ( j)} j,i and θ(i)

Let R(i, j) ∈ R be the weight on f ( j)

The best response strategy is

f (i) = E
[
R f (i) + θ(i) | x(i)

]
R is the integral operator

f (i) 7→ R f (i) =
∫

R(i, j) f ( j)dν( j)

〈{θ(i), x(i)}i∈I,R〉: a Bayesian game

We call R : I × I → R a payoff structure

What assumption do we need to ensure equilibria are well-defined?



The model of AP&BM
R(i, j) = r < 1 for all i, j ∈ I (uniform payoff structure)

θ(i) = θ for all i ∈ I (common payoff state), θ is normally distributed

x(i) =
(
θ + εi
θ + ε0

)
a private signal
a public signal

The idiosyncratic errors {εi}i∈I constitute an i.i.d. Gaussian process

The unique equilibrium strategy f (i) is linear in signals



LLN
AP&BM rely on ∫

εidν(i) = 0

• an i.i.d. non-degenerate stochastic process is measurable

• the law of large numbers (LLN) holds

mathematically incompatible (Judd, 1985; Uhlig, 1996)

This problem is resolved by the Pettis integral (Uhlig, 1996)

We formulate 〈{θ(i), x(i)}i∈I,R〉 adopting the Pettis integral



A stochastic process
We regard a strategy profile f as a process

f : I → X

taking values in the set of all random variables with finite second
moments over a fixed probability space

The set of random variables X is endowed with

〈x, y〉 = E
[
xy

]
for x, y ∈ X



The Pettis integral

A process f : I → X is Pettis integrable if there exists f̄ ∈ X with

〈x, f̄〉 =
∫ ⟨

x, f (i)
⟩

dν(i) ∀x ∈ X

f̄ ∈ X is called the Pettis integral of f

We denote the Pettis integral of f (with abuse of notation) by∫
f (i)dν(i)



The Pettis integral
A process f : I → X is regular if

(Q1) The map (i, j) 7→ 〈 f (i), f ( j)〉 is measurable

(Q2) The map i 7→ ‖ f (i)‖2 = 〈 f (i), f (i)〉 is integrable

Lemma� �
A regular process f : I → X is Pettis integrable.� �

A weaker condition suffices for Pettis integrability

But we use (Q1) and (Q2) to discuss the uniqueness of equilibrium

The equilibrium strategy in AP&BM satisfies (Q1) and (Q2)



The Pettis integral

Proposition� �
If f is regular,

Var
[∫

f (i)dν(i)
]
=

∫ ∫
Cov

[
f (i), f ( j)

]
dν(i)dν( j).

If f (i) and f ( j) are uncorrelated for all i , j,

Var
[∫

f (i)dν(i)
]
= 0, i.e.,

∫
f (i)dν(i) = const. a.s.� �

The latter claim is the LLN of Uhlig (1996)



The Pettis integral
The variance of the average action is referred to as volatility in AP

Var
[∫

f (i)dν(i)
]

Assuming the LLM, BM show that

Var
[∫

f (i)dν(i)
]
= Cov

[
f (i), f ( j)

]
for i , j

which is consistent with our result

Var
[∫

f (i)dν(i)
]
=

∫ ∫
Cov

[
f (i), f ( j)

]
dν(i)dν( j)



The Pettis integral framework for 〈{θ(t), x(t)}t∈T ,R〉
〈{θ(i), x(i)}i∈I,R〉 is assumed to satisfy

• θ : I → X is regular

• R : I × I → R is measurable and bounded

A strategy profile f : I → X is a regular process such that f (i) ∈ X is
x(i)-measurable for every i ∈ I

A strategy profile f is an equilibrium if

f (i) = E
[
R f (i) + θ(i) | x(i)

] ∀i ∈ I

where R f (i) is the Pettis integral

R f (i) =
∫

R(i, j) f ( j)dν( j)



The Pettis integral framework for 〈{θ(t), x(t)}t∈T ,R〉
Lemma� �
AP&BM can be reformulated in accordance with the Pettis inte-
gral framework, where every result remains the same.� �



Uniqueness of equilibrium
L2: the Hilbert space of all square-integrable functions on I

〈ϕ, ψ〉L2 ≡
∫
ϕ(i)ψ(i)dν(i) ∀ϕ, ψ ∈ L2

Define the integral operator R : L2 → L2 using R : I × I → R

ϕ(i) 7→ Rϕ(i) =
∫

R(i, j)ϕ( j)dν( j)

The restriction of R on the set of the Pettis integrable processes to L2

f (i) 7→ R f (i) =
∫

R(i, j) f ( j)dν( j)

We use the same notation for simplicity



Uniqueness of equilibrium
The numerical range of R

W(R) = {〈Rϕ, ϕ〉L2 | ϕ ∈ H, ‖ϕ‖L2 = 1} ⊂ (−∞, 1)

is the set of all possible values that 〈Rϕ, ϕ〉L2 can take when ϕ is
any unit vector in L2

(R1) The maximum of the numerical range of R is less than 1

(R2) The maximum real eigenvalues of R is less than 1

Lemma� �
(R1) implies (R2).

(R1) and (R2) are equivalent if R(i, j) = R( j, i) for all i, j ∈ I.� �



Uniqueness of equilibrium
(R1) is sufficient, while (R2) is necessary for the uniqueness

If R(i, j) = R( j, i) for all i, j ∈ I, (R1) is both necessary and sufficient
since (R1) and (R2) are equivalent

Proposition� �
If R satisfies (R1) and the game has an equilibrium, this is a
unique equilibrium in the following sense:

If f and g are two equilibria such that (i, j) 7→ E
[
f (i)g( j)

]
is

measurable, then f (i) = g(i) a.s. for all i ∈ I.

If R does not satisfy (R2), there exists {x(i)}i∈I such that the game
has either no equilibria or a continuum of equilibria.� �



Uniqueness of equilibrium
Suppose that R(i, j) = r. The uniqueness holds if and only if r < 1

Corollary� �
Suppose that R(i, j) = r for all i, j ∈ I. If r < 1 and the game has
an equilbrium, this is a unique equilibrium.

If r ≥ 1, there exists {x(i)}i∈I such that the game has either no
equilibria or a continuum of equilibria.� �

AP&BM show the uniqueness of symmetric equilibrium (invariant
under permutations of agents)

By the above corollary, there are no asymmetric equilibria



Information design
We address information design, where an information structure is
endogenously determined by an information designer

Assume AP&BM, but θ can follow an arbitrary distribution

The objective function is quadratic in strategies and a state, where
agents’ strategies are treated equally (invariant under permutations)

An information structure is optimal if it maximizes the objective when
the agents follow the unique equilibrium

We have characterized optimal information structures



An application to large Cournot games
Firm i ∈ I produces ai units of a homogeneous product

The inverse demand function

θ − γ
∫ 1

0
a jdν( j)

θ is a random intercept; γ > 0 is a slope

Firm i’s cost

ai
2

2

The objective is the weighted average of PS and CS

λ · PS + (1 − λ) · CS



Optimal information structures

Proposition� �
It is optimal to inform all firms of θ (full disclosure) if and only if

the slope γ ≤ 4
the weight of PS λ

− 3.

Otherwise, it is optimal to inform a certain fraction of the firms of θ
and to inform the other firms of nothing at all (partial disclosure).

The fraction is
λ

λγ − 4(1 − λ)
> 0, which is decreasing in λ and γ

� �
Such an information structure is referred to as targeted disclosure



Optimal information structures
BM (2013) identify an optimal information structure that maximizes
PS, assuming θ is normally distributed (can take negative values)

Our result allows for any weighted sum of PS and CS and any
random variable θ (can be restricted to take positive values)



Optimal information structures



Takeaway
More generally, there exists targeted disclosure that is optimal
among all information structures in our model

This is based on

• the Pettis integral framework

• the condition for uniqueness



Thank you very much!


