Nash Bargaining with Coalitional Threats

Rajiv Vohra (r) Debraj Ray

Outline

- Nash meets vN-M: games with coalitional threats
- Endogenizing coalitional threats
- TU games and constrained egalitarianism

- ightharpoonup 2-player "game" (F, d)
- $\mathbf{F} \subseteq \mathbb{R}^2$ feasible payoffs
- $d \in F$ disagreement point: payoffs if no agreement
- **■** Domain restriction:
- $oldsymbol{F}$ nonempty compact convex with $x\gg d$ for some $x\in F$

- ightharpoonup 2-player "game" (F, d)
- $\mathbf{F} \subseteq \mathbb{R}^2$ feasible payoffs
- $d \in F$ disagreement point: payoffs if no agreement
- **■** Domain restriction:
- $\quad \textbf{$F$ nonempty compact convex with $x\gg d$ for some $x\in F$ }$
- Solution:
- $\quad \quad \Psi(F,d) \in F \text{ for every } (F,d)$

- Axioms on Solution:
- Pareto Optimality
- Symmetry: $[d_1=d_2]$ + [symmetric F] \Rightarrow $[\Psi_1(F,d)=\Psi_2(F,d)]$
- Invariance: Affine payoff transforms generate the same solution transform
- IIA: $[F'\subseteq F] + [\Psi(F,d)\in F'] \Rightarrow [\Psi(F',d) = \Psi(F,d)]$

Axioms on Solution:

- Pareto Optimality
- Symmetry: $[d_1=d_2]$ + [symmetric F] \Rightarrow $[\Psi_1(F,d)=\Psi_2(F,d)]$
- Invariance: Affine payoff transforms generate the same solution transform
- IIA: $[F'\subseteq F] + [\Psi(F,d)\in F'] \Rightarrow [\Psi(F',d) = \Psi(F,d)]$

Theorem (Nash)

 Ψ satisfies these four axioms if and only if for all (F,d):

$$\Psi(F,d) = \arg\max_{x \in F, x > d} (x_1 - d_1)(x_2 - d_2)$$

n-player "game" with coalitional threats: $G=(F, \boldsymbol{\Theta}, d)$

n-player "game" with coalitional threats: $G = (F, \Theta, d)$

 $F \subseteq \mathbb{R}^n$ feasible payoffs;

n-player "game" with coalitional threats: $G = (F, \Theta, d)$

- $F \subseteq \mathbb{R}^n$ feasible payoffs;
- $\mathbf{d} \in \mathbb{R}^n$ disagreement point: payoffs if no agreement at all;

n-player "game" with coalitional threats: $G = (F, \Theta, d)$

- $F \subseteq \mathbb{R}^n$ feasible payoffs;
- $d \in \mathbb{R}^n$ disagreement point: payoffs if no agreement at all;
- $oldsymbol{\Theta} = \{(\Theta(S))_{S \subset N}\}$, where:
 - $\Theta(S) \subset \mathbb{R}^S$ are sets of threats for each subcoalition S

Domain restrictions:

- F nonempty compact with $x \gg d$ for some $x \in F$.
- $\Theta(S)$ nonempty compact with $y \geq d_S$ for every $y \in \Theta(S)$.

Domain restrictions:

- F nonempty compact with $x \gg d$ for some $x \in F$.
- $\Theta(S)$ nonempty compact with $y \geq d_S$ for every $y \in \Theta(S)$.

Remarks:

1 Domain allows for nonconvex feasible sets.

■ Domain restrictions:

- F nonempty compact with $x \gg d$ for some $x \in F$.
- $\Theta(S)$ nonempty compact with $y \geq d_S$ for every $y \in \Theta(S)$.

Remarks:

- 1 Domain allows for nonconvex feasible sets.
- 2 S is ineffective if $\theta(S) = \{d_S\}$, and effective otherwise.

Domain restrictions:

- F nonempty compact with $x \gg d$ for some $x \in F$.
- $\Theta(S)$ nonempty compact with $y \geq d_S$ for every $y \in \Theta(S)$.

Remarks:

- 1 Domain allows for nonconvex feasible sets.
- 2 S is ineffective if $\theta(S)=\{d_S\}$, and effective otherwise.
- **3** It's possible that $\zeta_i \equiv \max \Theta(\{i\}) > d_i$.

Solution

 $x \in F$ is blocked by threat (S, y) if $y \in \Theta(S)$ and $y \gg x_S$.

Unblocked set:

$$U(G) \equiv \{x \in F | x \text{ is not blocked by any threat } (S,y)\}.$$

Solution

- $x \in F$ is blocked by threat (S, y) if $y \in \Theta(S)$ and $y \gg x_S$.
- Unblocked set:

$$U(G) \equiv \{x \in F | x \text{ is not blocked by any threat } (S,y)\}.$$

A solution with coalitional threats σ assigns to every G:

$$\sigma(G) \subseteq U(G)$$
 with $\sigma(G) \neq \emptyset$ whenever $U(G) \neq \emptyset$.

Solution

 $x \in F$ is blocked by threat (S, y) if $y \in \Theta(S)$ and $y \gg x_S$.

Unblocked set:

$$U(G) \equiv \{x \in F | x \text{ is not blocked by any threat } (S,y)\}.$$

A solution with coalitional threats σ assigns to every G:

$$\sigma(G)\subseteq U(G) \text{ with } \sigma(G)\neq\emptyset \text{ whenever } U(G)\neq\emptyset.$$

- Remark:
- Allow solution to be multi-valued:

Coalitional threats \Rightarrow nonconvexities.

 $\operatorname{[Par]}\sigma(G)$ is Pareto optimal in U(G) (and therefore in F).

[Par] $\sigma(G)$ is Pareto optimal in U(G) (and therefore in F).

[Inv] [G'] an affine transform of $G] \Rightarrow [\sigma(G')]$ same affine transform of $\sigma(G)$].

[Par] $\sigma(G)$ is Pareto optimal in U(G) (and therefore in F).

[Inv] [G'] an affine transform of $G] \Rightarrow [\sigma(G')]$ same affine transform of $\sigma(G)$].

[Sym] Suppose that every subcoalition is ineffective and $d_i=d_j$ for all $i,j\in N$.

If, for some permutation π of N, $y(\pi) \equiv (y_{\pi(1)}, \dots, y_{\pi(n)}) \in F$ for any $y \in F$,

then $x(\pi) \equiv (x_{\pi(1)}, \dots, x_{\pi(n)}) \in \sigma(G)$ for any $x \in \sigma(G)$.

[Par] $\sigma(G)$ is Pareto optimal in U(G) (and therefore in F).

[Inv] [G'] an affine transform of $G] \Rightarrow [\sigma(G')]$ same affine transform of $\sigma(G)$].

[Sym] Suppose that every subcoalition is ineffective and $d_i=d_j$ for all $i,j\in N$.

If, for some permutation π of N, $y(\pi) \equiv (y_{\pi(1)}, \dots, y_{\pi(n)}) \in F$ for any $y \in F$, then $x(\pi) \equiv (x_{\pi(1)}, \dots, x_{\pi(n)}) \in \sigma(G)$ for any $x \in \sigma(G)$.

then $x(\pi) = (x_{\pi(1)}, \dots, x_{\pi(n)}) \in \sigma(G)$ for any $x \in \sigma(G)$.

[IIA] If $F'\subseteq F$, then for any (Θ,d) , $\sigma(F',\Theta,d)=\sigma(F,\Theta,d)\cap F'$ whenever this intersection is nonempty.

[Par] $\sigma(G)$ is Pareto optimal in U(G) (and therefore in F).

[Inv] [G' an affine transform of G] \Rightarrow $[\sigma(G')$ same affine transform of $\sigma(G)$].

[Sym] Suppose that every subcoalition is ineffective and $d_i=d_j$ for all $i,j\in N$.

If, for some permutation π of N, $y(\pi) \equiv (y_{\pi(1)}, \dots, y_{\pi(n)}) \in F$ for any $y \in F$, then $x(\pi) \equiv (x_{\pi(1)}, \dots, x_{\pi(n)}) \in \sigma(G)$ for any $x \in \sigma(G)$.

[IIA] If $F'\subseteq F$, then for any (Θ,d) , $\sigma(F',\Theta,d)=\sigma(F,\Theta,d)\cap F'$ whenever this intersection is nonempty.

[UHC] If $G^k=(F^k, \mathbf{\Theta}^k, d^k)$ converges in the (product) Hausdorff metric to $G=(F, \mathbf{\Theta}, d)$, and $x^k \in \sigma(G^k)$ for all k with $x^k \to x$, then $x \in \sigma(G)$.

- Consider G such that $F=\{x,y\}$, d=0 and all coalitions ineffective.
- By invariance, if $x \in \sigma(F)$ then for all $\lambda \gg 1$, $\lambda \otimes x \in \sigma(\lambda \otimes F)$.

- Consider G such that $F=\{x,y\}$, d=0 and all coalitions ineffective.
- By invariance, if $x \in \sigma(F)$ then for all $\lambda \gg 1$, $\lambda \otimes x \in \sigma(\lambda \otimes F)$.
- **■** [Exp]:

- Consider G such that $F=\{x,y\}$, d=0 and all coalitions ineffective.
- By invariance, if $x \in \sigma(F)$ then for all $\lambda \gg 1$, $\lambda \otimes x \in \sigma(\lambda \otimes F)$.
- **■** [Exp]:

- Consider G such that $F=\{x,y\}$, d=0 and all coalitions ineffective.
- By invariance, if $x \in \sigma(F)$ then for all $\lambda \gg 1$, $\lambda \otimes x \in \sigma(\lambda \otimes F)$.
- **■** [Exp]:

- Consider G such that $F=\{x,y\}$, d=0 and all coalitions ineffective.
- By invariance, if $x \in \sigma(F)$ then for all $\lambda \gg 1$, $\lambda \otimes x \in \sigma(\lambda \otimes F)$.
- **■** [Exp]:

- Consider G such that $F=\{x,y\}$, d=0 and all coalitions ineffective.
- By invariance, if $x \in \sigma(F)$ then for all $\lambda \gg 1$, $\lambda \otimes x \in \sigma(\lambda \otimes F)$.
- **■** [Exp]:

 $[x \in \sigma(\{x,y\}, \mathbf{\Theta}, 0)] \Rightarrow [\lambda \otimes x \in \sigma(\lambda \otimes \{x,y\}, \mathbf{\Theta}, 0) \text{ for some } \lambda \gg 1].$

- Consider G such that $F=\{x,y\}$, d=0 and all coalitions ineffective.
- By invariance, if $x \in \sigma(F)$ then for all $\lambda \gg 1$, $\lambda \otimes x \in \sigma(\lambda \otimes F)$.
- **■** [Exp]:

$$[x \in \sigma(\{x,y\}, \mathbf{\Theta}, 0)] \Rightarrow [\lambda \otimes x \in \sigma(\lambda \otimes \{x,y\}, \mathbf{\Theta}, 0) \text{ for some } \lambda \gg 1].$$

It's not needed when all coalitions are ineffective or if x is the only solution.

Characterization

Theorem 1 (Coalitional Nash Solution)

A solution $\sigma(G)$ satisfies axioms [Par], [Inv], [Sym], [IIA], [UHC] and [Exp] for every game G if and only if

$$\sigma(G) = \underset{x \in U(G)}{\operatorname{arg max}} \prod_{j \in N} [x_j - d_j].$$

Characterization

Theorem 1 (Coalitional Nash Solution)

A solution $\sigma(G)$ satisfies axioms [Par], [Inv], [Sym], [IIA], [UHC] and [Exp] for every game G if and only if

$$\sigma(G) = \underset{x \in U(G)}{\operatorname{arg\,max}} \prod_{j \in N} [x_j - d_j].$$

- An asymmetry:
- The solution subtracts disagreement points, but no coalitional threat.
- The latter appear as "conventional" constraints.

Asymmetry

The asymmetry is particularly stark across d_i and $\zeta_i \equiv \max \Theta(\{i\})$:

$$\arg \max_{\mathbf{x} \in F} \{(x_1 - d_1)(x_2 - d_2) | x > d\} \text{ if } d = \zeta$$

$$\arg\max_{\mathbf{x}\in F}\left\{(x_1-d_1)(x_2-d_2)|x\geq d\right\} \text{ if } d=\zeta \qquad \qquad \arg\max_{\mathbf{x}\in F}\left\{(x_1-d_1)(x_2-d_2)|x\geq \zeta\right\} \text{ if } d\leq \zeta$$

Asymmetry

The asymmetry is particularly stark across d_i and $\zeta_i \equiv \max \Theta(\{i\})$:

$$\arg \max_{\mathbf{x} \in F} \{(x_1 - d_1)(x_2 - d_2) | x \ge d\} \text{ if } d = \zeta$$

$$\arg\max_{\mathbf{x}\in F}\left\{(x_1-d_1)(x_2-d_2)|x\geq d\right\} \text{ if } d=\zeta \qquad \qquad \arg\max_{\mathbf{x}\in F}\left\{(x_1-d_1)(x_2-d_2)|x\geq \zeta\right\} \text{ if } d\leq \zeta$$

Do you think that $d_i=\zeta_i$ by definition? If so, subtract ζ_i , but no other coalitional worth is treated the same way.

Noncooperative vs Axiomatic Bargaining

This schizophrenia often comes up in noncooperative bargaining models

E.g. Binmore-Shaked-Sutton (1989), Chatterjee-Dutta-Ray-Sengupta (1993), Compte-Jehiel (2010).

Noncooperative vs Axiomatic Bargaining

- This schizophrenia often comes up in noncooperative bargaining models

 E.g. Binmore-Shaked-Sutton (1989), Chatterjee-Dutta-Ray-Sengupta (1993), Compte-Jehiel (2010).
- Binmore, Shaked and Sutton (1989):

"The attraction of split-the-difference lies in the fact that a larger outside option seems to confer greater bargaining power. But how can a bargainer use his outside option to gain leverage? By threatening to play the deal-me-out card. When is such a threat credible? Only when dealing himself out gives the bargainer a bigger payoff than dealing himself in. It follows that the agreement that would be reached without outside options is immune to deal-me-out threats, unless the deal assigns one of the bargainers less than he can get elsewhere" [emphasis ours].

Noncooperative vs Axiomatic Bargaining

- This schizophrenia often comes up in noncooperative bargaining models

 E.g. Binmore-Shaked-Sutton (1989), Chatterjee-Dutta-Ray-Sengupta (1993), Compte-Jehiel (2010).
- Binmore, Shaked and Sutton (1989):
 - "The attraction of split-the-difference lies in the fact that a larger outside option seems to confer greater bargaining power. But how can a bargainer use his outside option to gain leverage? By threatening to play the deal-me-out card. When is such a threat credible? Only when dealing himself out gives the bargainer a bigger payoff than dealing himself in. It follows that the agreement that would be reached without outside options is immune to deal-me-out threats, unless the deal assigns one of the bargainers less than he can get elsewhere" [emphasis ours].
- We obtain the same solution axiomatically.

The Role of the Expansion Axiom

Axiom [Exp] is independent and cannot be dropped from Theorem 1.

The Role of the Expansion Axiom

- Axiom [Exp] is independent and cannot be dropped from Theorem 1.
- **Example 1:**
- Normalize d = 0 using [Inv].
- For each i and subcoalition $S\ni i$, $a_i(S)\equiv$ mean payoff to i over Pareto frontier of S, given uniform distribution, and $a_i\equiv$ mean of $a_i(S)$ over all $S\ni i$.

The Role of the Expansion Axiom

- Axiom [Exp] is independent and cannot be dropped from Theorem 1.
- **Example 1:**
- Normalize d=0 using [Inv].
- For each i and subcoalition $S\ni i$, $a_i(S)\equiv$ mean payoff to i over Pareto frontier of S, given uniform distribution, and $a_i\equiv$ mean of $a_i(S)$ over all $S\ni i$.
- Define the solution

$$\phi(G) = \operatorname*{arg\,max}_{x \in U(G)} \prod_{j \in N} [x_j - a_j].$$

 ϕ satisfies [Par], [Inv], [Sym], [IIA] and [UHC], but not [Exp].

- $N = \{1, 2\}$ with d = 0:
- $\zeta_1 = 1 \text{ and } \zeta_2 = 0, \text{ so } a = (1, 0).$
- $F = \{y, z\}$ where y = (2, 2) and z = (3, 1). Both unblocked.

- $N = \{1, 2\}$ with d = 0:
- $\zeta_1 = 1 \text{ and } \zeta_2 = 0 \text{, so } a = (1, 0).$
- $F = \{y, z\}$ where y = (2, 2) and z = (3, 1). Both unblocked.
- $\quad \text{(}y_1-1)y_2=2\text{ and }(z_1-1)z_2=2\text{, so }\phi(\{y,z\})=\{y,z\}.$

- $N = \{1, 2\}$ with d = 0:
- $\zeta_1 = 1 \text{ and } \zeta_2 = 0 \text{, so } a = (1, 0).$
- $F = \{y, z\}$ where y = (2, 2) and z = (3, 1). Both unblocked.
- $\quad \text{(}y_1-1)y_2=2\text{ and }(z_1-1)z_2=2\text{, so }\phi(\{y,z\})=\{y,z\}.$
- \blacksquare No expansion $\lambda\gg 1$ can maintain this indifference:
- $(\lambda_1y_1-1)\lambda_2y_2>(\lambda_1z_1-1)\lambda_2z_2 \text{ for all } (\lambda_1,\lambda_2)\gg (1,1).$

- $N = \{1, 2\}$ with d = 0:
- $\zeta_1 = 1 \text{ and } \zeta_2 = 0, \text{ so } a = (1,0).$
- $F = \{y, z\}$ where y = (2, 2) and z = (3, 1). Both unblocked.
- $y_1 1y_2 = 2$ and $(z_1 1)z_2 = 2$, so $\phi(\{y, z\}) = \{y, z\}$.
- No expansion $\lambda \gg 1$ can maintain this indifference:
- $(\lambda_1 y_1 1)\lambda_2 y_2 > (\lambda_1 z_1 1)\lambda_2 z_2$ for all $(\lambda_1, \lambda_2) \gg (1, 1)$.
 - By Theorem 1, [Exp] eliminates not just this objective function but everything else except our coalitional Nash solution.
- Can construct more complex violations even if we insist on $d=\zeta$.

- **Example 2:** $N = \{1, 2, 3\}$, TU game.
- v(N) = 1, $v(\{1, 2\}) = 0.8$, and v(S) = 0 for all other S.

- **Example 2:** $N = \{1, 2, 3\}$, TU game.
- v(N) = 1, $v(\{1, 2\}) = 0.8$, and v(S) = 0 for all other S.
- Unblocked set = Core = $\{x \in \mathbb{R}^3_+ \mid x_1 + x_2 + x_3 = 1; x_1 + x_2 \ge 0.8\}$

- **Example 2:** $N = \{1, 2, 3\}$, TU game.
- v(N) = 1, $v(\{1,2\}) = 0.8$, and v(S) = 0 for all other S.
- Unblocked set = Core = $\{x \in \mathbb{R}^3_+ \mid x_1 + x_2 + x_3 = 1; x_1 + x_2 \ge 0.8\}$

Example 2, contd.: Are all allocations for $\{1,2\}$ "credible", e.g., (0.8,0)?

- **Example 2, contd.:** Are all allocations for $\{1,2\}$ "credible", e.g., (0.8,0)?
- One approach: impose the same coalitional Nash procedure on subcoalitions.
- Then only "credible block" is (0.4, 0.4), and so:
- $\quad \quad U(N) = \{x \in F \mid x \geq 0 \text{ and } \max\{x_1, x_2\} \geq 0.4\}.$

- **Example 2, contd.:** Are all allocations for $\{1,2\}$ "credible", e.g., (0.8,0)?
- One approach: impose the same coalitional Nash procedure on subcoalitions.
- Then only "credible block" is (0.4, 0.4), and so:
- $U(N) = \{x \in F \mid x \ge 0 \text{ and } \max\{x_1, x_2\} \ge 0.4\}.$

- Start with $\mathbf{F} = \{F(S)_{S \subseteq N}\}$ non-empty compact for all S.
- Assume that if $x \neq d_S$ for some $x \in F(S)$, then $y \gg d$ for some $y \in F(S)$.

- Start with $\mathbf{F} = \{F(S)_{S \subseteq N}\}$ non-empty compact for all S.
- Assume that if $x \neq d_S$ for some $x \in F(S)$, then $y \gg d$ for some $y \in F(S)$.
- Recursively define Θ^* .

- Start with $\mathbf{F} = \{F(S)_{S \subseteq N}\}$ non-empty compact for all S.
- Assume that if $x \neq d_S$ for some $x \in F(S)$, then $y \gg d$ for some $y \in F(S)$.
- Recursively define Θ^* .
- 1 $\Theta^*(\{i\}) = \{\zeta_i\}$, where $\zeta_i = \max F(\{i\})$.

- Start with $\mathbf{F} = \{F(S)_{S \subseteq N}\}$ non-empty compact for all S.
- Assume that if $x \neq d_S$ for some $x \in F(S)$, then $y \gg d$ for some $y \in F(S)$.
- Recursively define Θ^* .
- 1 $\Theta^*(\{i\}) = \{\zeta_i\}$, where $\zeta_i = \max F(\{i\})$.
- **2** Fix S. Assume $\Theta^*(T)$ non-empty compact for every $T \subset S$. Define:

$$U^*(S) \equiv \{x \in F(S) | x \text{ is unblocked by any } (T,y) \text{ with } T \subset S \text{ and } y \in \Theta^*(T)\}.$$

- Start with $\mathbf{F} = \{F(S)_{S \subseteq N}\}$ non-empty compact for all S.
- Assume that if $x \neq d_S$ for some $x \in F(S)$, then $y \gg d$ for some $y \in F(S)$.
- Recursively define Θ^* .
- 1 $\Theta^*(\{i\}) = \{\zeta_i\}$, where $\zeta_i = \max F(\{i\})$.
- **2** Fix S. Assume $\Theta^*(T)$ non-empty compact for every $T \subset S$. Define:

$$U^*(S) \equiv \{x \in F(S) | x \text{ is unblocked by any } (T,y) \text{ with } T \subset S \text{ and } y \in \Theta^*(T)\}.$$

- 3 If $U^*(S)$ is empty, set $\Theta^*(S) = \{d_S\} = \{0_S\}$ and $\sigma^*(S) = \emptyset$.
- If $U^*(S)$ is nonempty, it is compact: Set $\sigma^*(S) = \Theta^*(S) = \underset{x \in U^*(S)}{\arg \max} \prod_{j \in N} x_j$.

- Start with $\mathbf{F} = \{F(S)_{S \subseteq N}\}$ non-empty compact for all S.
- Assume that if $x \neq d_S$ for some $x \in F(S)$, then $y \gg d$ for some $y \in F(S)$.
- Recursively define Θ^* .
- 1 $\Theta^*(\{i\}) = \{\zeta_i\}$, where $\zeta_i = \max F(\{i\})$.
- **2** Fix S. Assume $\Theta^*(T)$ non-empty compact for every $T \subset S$. Define:

$$U^*(S) \equiv \{x \in F(S) | x \text{ is unblocked by any } (T,y) \text{ with } T \subset S \text{ and } y \in \Theta^*(T)\}.$$

- 3 If $U^*(S)$ is empty, set $\Theta^*(S)=\{d_S\}=\{0_S\}$ and $\sigma^*(S)=\emptyset$.
- If $U^*(S)$ is nonempty, it is compact: Set $\sigma^*(S) = \Theta^*(S) = \underset{x \in U^*(S)}{\arg \max} \prod_{j \in N} x_j$.
- 4 Keep going: up to N.

Solution:
$$\sigma^*(N) = \Theta^*(N) = \underset{x \in U^*(N)}{\operatorname{arg max}} \prod_{j \in N} x_j.$$

Unwieldy, because of the recursion.

- Solution: $\sigma^*(N) = \Theta^*(N) = \underset{x \in U^*(N)}{\operatorname{arg max}} \prod_{j \in N} x_j$.
- Unwieldy, because of the recursion.
- Shortcuts:
- Maximize Nash product over the core. Relatively simple, but not consistent.

- Solution: $\sigma^*(N) = \Theta^*(N) = \underset{x \in U^*(N)}{\operatorname{arg max}} \prod_{j \in N} x_j.$
- Unwieldy, because of the recursion.
- **■** Shortcuts:
- 1 Maximize Nash product over the core. Relatively simple, but not consistent.
- 2 Assume each coalition blocks with unconstrained Nash solution. That is,

define
$$\Psi(S) = \operatorname*{arg\,max}_{x \in F(S)} \prod_{j \in S} x_j$$
, and then let:

 $U^{\text{\tiny na\"ive}}(S) \equiv \{x \in F(S) | x \text{ is unblocked by any } (T,y) \text{ with } T \subset S \text{ and } y \in \Psi(T)\}$

- Solution: $\sigma^*(N) = \Theta^*(N) = \underset{x \in U^*(N)}{\operatorname{arg max}} \prod_{j \in N} x_j.$
- Unwieldy, because of the recursion.
- **■** Shortcuts:
- 1 Maximize Nash product over the core. Relatively simple, but not consistent.
- 2 Assume each coalition blocks with unconstrained Nash solution. That is,

define
$$\Psi(S) = \underset{x \in F(S)}{\operatorname{arg \, max}} \prod_{j \in S} x_j$$
, and then let:

$$U^{\text{\tiny na\"ive}}(S) \equiv \{x \in F(S) | x \text{ is unblocked by any } (T,y) \text{ with } T \subset S \text{ and } y \in \Psi(T)\}$$

Super simple (especially if Ψ is a singleton), but also inconsistent.

Example 3: 3-player game.

- d=0, and $F(S)=\{0_S\}$ for all S except:
- $F(\{i\}) = \{\zeta_1\} = \{1.1\}$
- $F(\{1,2\}) = \{(1,1), (1.2,0.8)\}$ not convex
- $F(N) = \{x \in \mathbb{R}^3_+ \mid \sum_i x_i = 2.1\}$

Example 3: 3-player game.

- d=0, and $F(S)=\{0_S\}$ for all S except:
- $F(\{i\}) = \{\zeta_1\} = \{1.1\}$
- $F(\{1,2\}) = \{(1,1), (1.2,0.8)\}$ not convex
- $F(N) = \{x \in \mathbb{R}^3_+ \mid \sum_i x_i = 2.1\}$

In this example naive blocking does not give the same solution as the recursive solution.

It's not surprising that the naive solution doesn't work.

- It's not surprising that the naive solution doesn't work.
- But if F(S) is convex for every S, it does!

Theorem 2

Assume F(S) nonempty compact and convex for every coalition S. Then $U^*(S)=U^{ ext{naive}}(S)$, and so the internally consistent Nash solution need only guard against the threats posed by the unconstrained Nash solutions of its subcoalitions:

$$\sigma^*(S) = \underset{x \in U^*(S)}{\arg \max} \prod_{j \in S} x_j = \underset{x \in U^{\text{naïve}}(S)}{\arg \max} \prod_{j \in S} x_j.$$

TU Games

TU game: There is an affine transform of payoffs such that d=0 and such that for each S, there is v(S) with

$$F(S) = \{ x \in \mathbb{R}^S \mid \sum_{i \in S} v(\{i\}) \le \sum_{i \in S} x_i \le v(S) \}.$$

TU Games

TU game: There is an affine transform of payoffs such that d=0 and such that for each S, there is v(S) with

$$F(S) = \{ x \in \mathbb{R}^S \mid \sum_{i \in S} v(\{i\}) \le \sum_{i \in S} x_i \le v(S) \}.$$

- Consider x, y in \mathbb{R}^k_+ with $x_i \leq x_{i+1}$ and $y_i \leq y_{i+1}$ for all $i=1,\ldots,k-1$.
- x majorizes y if $x \neq y$ and $\sum_{i=1}^{j} x_i \geq \sum_{i=1}^{j} y_i$ for every $j = 1, \dots, k$.
- For $A \subset \mathbb{R}^k$, let L(A) be its set of unmajorized or Lorenz-maximal elements.

TU Games

TU game: There is an affine transform of payoffs such that d=0 and such that for each S, there is v(S) with

$$F(S) = \{ x \in \mathbb{R}^S \mid \sum_{i \in S} v(\{i\}) \le \sum_{i \in S} x_i \le v(S) \}.$$

- Consider x, y in \mathbb{R}^k_+ with $x_i \leq x_{i+1}$ and $y_i \leq y_{i+1}$ for all $i=1,\ldots,k-1$.
- * x majorizes y if $x \neq y$ and $\sum_{i=1}^{j} x_i \geq \sum_{i=1}^{j} y_i$ for every $j = 1, \dots, k$.
- For $A \subset \mathbb{R}^k$, let L(A) be its set of unmajorized or Lorenz-maximal elements.
- Dutta and Ray (1989, 1991) use these ideas to define a solution that respects egalitarianism as well as coalitional threats.

- **Egalitarianism with participation constraints:**
- 1 $E(\{i\}) = \{v(i)\}.$

- **■** Egalitarianism with participation constraints:
- 1 $E(\{i\}) = \{v(i)\}.$
- **2** Fix S. Assume E(T) defined for every $T \subset S$. Define:

 $U^e(S) \equiv \{x \in F(S) | x \text{ is unblocked by any } (T,y) \text{ with } T \subset S \text{ and } y \in E(T)\}.$

- **■** Egalitarianism with participation constraints:
- 1 $E(\{i\}) = \{v(i)\}.$
- **2** Fix S. Assume E(T) defined for every $T \subset S$. Define:

$$U^e(S) \equiv \{x \in F(S) | x \text{ is unblocked by any } (T,y) \text{ with } T \subset S \text{ and } y \in E(T)\}.$$

3 Set $E(S) = L(U^e(S))$.

Theorem 3

In a TU game, the internally consistent Nash solution is a subset of the constrained egalitarian solution for every coalition S:

$$\sigma^*(S) \subseteq E(S)$$
.

Theorem 3

In a TU game, the internally consistent Nash solution is a subset of the constrained egalitarian solution for every coalition S:

$$\sigma^*(S) \subseteq E(S)$$
.

Suppose additionally that a TU game is superadditive. Then for all S, $\sigma^*(S)$ is nonempty, and is found by maximizing the Nash product over the set of allocations that are unblocked by any subcoalition using equal division.

Summary

- Axiomatization of Nash bargaining with coalitional threats.
- Solution maxes Nash product net of disagreement payoffs
- But treats all coalitional threats as "conventional" constraints.

Summary

- Axiomatization of Nash bargaining with coalitional threats.
- Solution maxes Nash product net of disagreement payoffs
- But treats all coalitional threats as "conventional" constraints.
- We endogenize coalitional threats:
- Recursively applying the coalitional Nash solution to every subcoalition.
- Simple characterization for games with convex payoff sets:
 - max Nash product over allocations unblocked by unconstrained Nash product.