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Nash meets vN-M: games with coalitional threats

Endogenizing coalitional threats

TU games and constrained egalitarianism



Nash (1950)

2-player “game” (F, d)

F ⊆ R2 feasible payo�s

d ∈ F disagreement point: payo�s if no agreement

Domain restriction:

F nonempty compact convex with x� d for some x ∈ F

Solution:

Ψ(F, d) ∈ F for every (F, d)
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Nash (1950)

Axioms on Solution:

Pareto Optimality

Symmetry: [d1 = d2] + [symmetric F ]⇒ [Ψ1(F, d) = Ψ2(F, d)]

Invariance: A�ne payo� transforms generate the same solution transform

IIA: [F ′ ⊆ F ] + [Ψ(F, d) ∈ F ′]⇒ [Ψ(F ′, d) = Ψ(F, d)]

Theorem (Nash)
Ψ satisfies these four axioms if and only if for all (F, d):

Ψ(F, d) = arg max
x∈F,x≥d

(x1 − d1)(x2 − d2)
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Coalitional Threats

n-player “game” with coalitional threats: G = (F,Θ, d)

F ⊆ Rn feasible payo�s;

d ∈ Rn disagreement point: payo�s if no agreement at all;

Θ = {(Θ(S))S⊂N}, where:

Θ(S) ⊂ RS are sets of threats for each subcoalition S
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Domain

Domain restrictions:

F nonempty compact with x� d for some x ∈ F .

Θ(S) nonempty compact with y ≥ dS for every y ∈ Θ(S).

Remarks:

1 Domain allows for nonconvex feasible sets.

2 S is ine�ective if θ(S) = {dS}, and e�ective otherwise.

3 It’s possible that ζi ≡ max Θ({i}) > di.
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Solution

x ∈ F is blocked by threat (S, y) if y ∈ Θ(S) and y � xS .

Unblocked set:

U(G) ≡ {x ∈ F |x is not blocked by any threat (S, y)}.

A solution with coalitional threats σ assigns to every G:

σ(G) ⊆ U(G) with σ(G) 6= ∅ whenever U(G) 6= ∅.

Remark:

Allow solution to be multi-valued:

Coalitional threats⇒ nonconvexities.
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Standard(ish) Axioms

[Par] σ(G) is Pareto optimal in U(G) (and therefore in F ).

[Inv] [G′ an a�ne transform of G]⇒ [σ(G′) same a�ne transform of σ(G)].

[Sym] Suppose that every subcoalition is ine�ective and di = dj for all i, j ∈ N .

If, for some permutation π of N , y(π) ≡ (yπ(1), . . . , yπ(n)) ∈ F for any y ∈ F ,

then x(π) ≡ (xπ(1), . . . , xπ(n)) ∈ σ(G) for any x ∈ σ(G).

[IIA] If F ′ ⊆ F , then for any (Θ, d), σ(F ′,Θ, d) = σ(F,Θ, d) ∩ F ′ whenever this

intersection is nonempty.

[UHC] If Gk = (F k,Θk, dk) converges in the (product) Hausdor� metric to

G = (F,Θ, d), and xk ∈ σ(Gk) for all k with xk → x, then x ∈ σ(G).
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Expansion Axiom

Consider G such that F = {x, y}, d = 0 and all coalitions ine�ective.

By invariance, if x ∈ σ(F ) then for all λ� 1, λ⊗ x ∈ σ(λ⊗ F ).

[Exp]:

x1

x2

x

y
Threats

[x ∈ σ({x, y},Θ, 0)]⇒ [λ⊗ x ∈ σ(λ⊗ {x, y},Θ, 0) for some λ� 1].
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Characterization

Theorem 1 (Coalitional Nash Solution)
A solution σ(G) satisfies axioms [Par], [Inv], [Sym], [IIA], [UHC] and [Exp] for

every game G if and only if

σ(G) = arg max
x∈U(G)

∏
j∈N

[xj − dj ].

An asymmetry:

The solution subtracts disagreement points, but no coalitional threat.

The latter appear as “conventional” constraints.
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Asymmetry

The asymmetry is particularly stark across di and ζi ≡ max Θ({i}):

x1

x2

d

x1 x2 = k
(x1 - d1) x2 = k

x1

x2
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arg maxx∈F {(x1 − d1)(x2 − d2)|x ≥ d} if d = ζ arg maxx∈F {(x1 − d1)(x2 − d2)|x ≥ ζ} if d ≤ ζ

Do you think that di = ζi by definition? If so, subtract ζi, but no other

coalitional worth is treated the same way.
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Noncooperative vs Axiomatic Bargaining

This schizophrenia o�en comes up in noncooperative bargaining models
E.g. Binmore-Shaked-Sutton (1989), Chatterjee-Dutta-Ray-Sengupta (1993), Compte-Jehiel (2010).

Binmore, Shaked and Sutton (1989):

“The attraction of split-the-di�erence lies in the fact that a larger outside
option seems to confer greater bargaining power. But how can a bargainer use
his outside option to gain leverage? By threatening to play the deal-me-out
card. When is such a threat credible? Only when dealing himself out gives the
bargainer a bigger payo� than dealing himself in. It follows that the
agreement that would be reached without outside options is immune to
deal-me-out threats, unless the deal assigns one of the bargainers less than
he can get elsewhere” [emphasis ours].

We obtain the same solution axiomatically.
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The Role of the Expansion Axiom

Axiom [Exp] is independent and cannot be dropped from Theorem 1.

Example 1:

Normalize d = 0 using [Inv].

For each i and subcoalition S 3 i, ai(S) ≡ mean payo� to i over Pareto

frontier of S, given uniform distribution, and ai ≡mean of ai(S) over all S 3 i.

Define the solution

φ(G) = arg max
x∈U(G)

∏
j∈N

[xj − aj ].

φ satisfies [Par], [Inv], [Sym], [IIA] and [UHC], but not [Exp].
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For each i and subcoalition S 3 i, ai(S) ≡ mean payo� to i over Pareto
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Details for Example 1

N = {1, 2} with d = 0:

ζ1 = 1 and ζ2 = 0, so a = (1, 0).

F = {y, z} where y = (2, 2) and z = (3, 1). Both unblocked.

(y1 − 1)y2 = 2 and (z1 − 1)z2 = 2, so φ({y, z}) = {y, z}.

No expansion λ� 1 can maintain this indi�erence:

(λ1y1 − 1)λ2y2 > (λ1z1 − 1)λ2z2 for all (λ1, λ2)� (1, 1).

By Theorem 1, [Exp] eliminates not just this objective function but everything

else except our coalitional Nash solution.

Can construct more complex violations even if we insist on d = ζ .



Details for Example 1

N = {1, 2} with d = 0:

ζ1 = 1 and ζ2 = 0, so a = (1, 0).

F = {y, z} where y = (2, 2) and z = (3, 1). Both unblocked.

(y1 − 1)y2 = 2 and (z1 − 1)z2 = 2, so φ({y, z}) = {y, z}.

No expansion λ� 1 can maintain this indi�erence:

(λ1y1 − 1)λ2y2 > (λ1z1 − 1)λ2z2 for all (λ1, λ2)� (1, 1).

By Theorem 1, [Exp] eliminates not just this objective function but everything

else except our coalitional Nash solution.

Can construct more complex violations even if we insist on d = ζ .



Details for Example 1

N = {1, 2} with d = 0:

ζ1 = 1 and ζ2 = 0, so a = (1, 0).

F = {y, z} where y = (2, 2) and z = (3, 1). Both unblocked.

(y1 − 1)y2 = 2 and (z1 − 1)z2 = 2, so φ({y, z}) = {y, z}.

No expansion λ� 1 can maintain this indi�erence:

(λ1y1 − 1)λ2y2 > (λ1z1 − 1)λ2z2 for all (λ1, λ2)� (1, 1).

By Theorem 1, [Exp] eliminates not just this objective function but everything

else except our coalitional Nash solution.

Can construct more complex violations even if we insist on d = ζ .



Details for Example 1

N = {1, 2} with d = 0:

ζ1 = 1 and ζ2 = 0, so a = (1, 0).

F = {y, z} where y = (2, 2) and z = (3, 1). Both unblocked.

(y1 − 1)y2 = 2 and (z1 − 1)z2 = 2, so φ({y, z}) = {y, z}.

No expansion λ� 1 can maintain this indi�erence:

(λ1y1 − 1)λ2y2 > (λ1z1 − 1)λ2z2 for all (λ1, λ2)� (1, 1).

By Theorem 1, [Exp] eliminates not just this objective function but everything

else except our coalitional Nash solution.

Can construct more complex violations even if we insist on d = ζ .



Internally Consistent Threats

Example 2: N = {1, 2, 3}, TU game.

v(N) = 1, v({1, 2}) = 0.8, and v(S) = 0 for all other S.

Unblocked set = Core = {x ∈ R3
+ | x1 + x2 + x3 = 1;x1 + x2 ≥ 0.8}

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(0.4, 0.4, 0.2)

Unblocked set

x2

x1

x3

σ(N) = (0.4, 0.4, 0.2)



Internally Consistent Threats

Example 2: N = {1, 2, 3}, TU game.

v(N) = 1, v({1, 2}) = 0.8, and v(S) = 0 for all other S.

Unblocked set = Core = {x ∈ R3
+ | x1 + x2 + x3 = 1;x1 + x2 ≥ 0.8}

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(0.4, 0.4, 0.2)

Unblocked set

x2

x1

x3

σ(N) = (0.4, 0.4, 0.2)



Internally Consistent Threats

Example 2: N = {1, 2, 3}, TU game.

v(N) = 1, v({1, 2}) = 0.8, and v(S) = 0 for all other S.

Unblocked set = Core = {x ∈ R3
+ | x1 + x2 + x3 = 1;x1 + x2 ≥ 0.8}

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(0.4, 0.4, 0.2)

Unblocked set

x2

x1

x3

σ(N) = (0.4, 0.4, 0.2)



Internally Consistent Threats

Example 2, contd.: Are all allocations for {1, 2} “credible”, e.g., (0.8, 0)?

One approach: impose the same coalitional Nash procedure on subcoalitions.

Then only “credible block” is (0.4, 0.4), and so:

U(N) = {x ∈ F | x ≥ 0 and max{x1, x2} ≥ 0.4}.

(0.4, 0.3, 0.3) (0.3, 0.4, 0.3)

(1, 0, 0)

(0, 1,  0)

(0, 0, 1)

Unblocked set

x2

x1

x3

σ(N) = {(0.4, 0.3, 0.3), (0.3, 0.4, 0.3)}
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Internally Consistent Coalitional Nash Solution

Start with F = {F (S)S⊆N} non-empty compact for all S.

Assume that if x 6= dS for some x ∈ F (S), then y � d for some y ∈ F (S).

Recursively define Θ∗.

1 Θ∗({i}) = {ζi}, where ζi = maxF ({i}).

2 Fix S. Assume Θ∗(T ) non-empty compact for every T ⊂ S. Define:

U∗(S) ≡ {x ∈ F (S)|x is unblocked by any (T, y) with T ⊂ S and y ∈ Θ∗(T )}.

3 If U∗(S) is empty, set Θ∗(S) = {dS} = {0S} and σ∗(S) = ∅.

If U∗(S) is nonempty, it is compact: Set σ∗(S) = Θ∗(S) = arg max
x∈U∗(S)

∏
j∈N

xj .

4 Keep going: up to N .
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Internally Consistent Coalitional Nash Solution

Solution: σ∗(N) = Θ∗(N) = arg max
x∈U∗(N)

∏
j∈N

xj .

Unwieldy, because of the recursion.

Shortcuts:

1 Maximize Nash product over the core. Relatively simple, but not consistent.

2 Assume each coalition blocks with unconstrained Nash solution. That is,

define Ψ(S) = arg max
x∈F (S)

∏
j∈S

xj , and then let:

U naı̈ve(S) ≡ {x ∈ F (S)|x is unblocked by any (T, y) with T ⊂ S and y ∈ Ψ(T )}

Super simple (especially if Ψ is a singleton), but also inconsistent.
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Näıve Blocking

Example 3: 3-player game.

d = 0, and F (S) = {0S} for all S except:

F ({i}) = {ζ1} = {1.1}

F ({1, 2}) = {(1, 1), (1.2, 0.8)} – not convex

F (N) = {x ∈ R3
+ |

∑
i xi = 2.1}

In this example naive blocking does not give the same solution as the recursive

solution.
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Näıve Blocking

It’s not surprising that the naive solution doesn’t work.

But if F (S) is convex for every S, it does!

Theorem 2
Assume F (S) nonempty compact and convex for every coalition S. Then

U∗(S) = U naı̈ve(S), and so the internally consistent Nash solution need only

guard against the threats posed by the unconstrained Nash solutions of its

subcoalitions:

σ∗(S) = arg max
x∈U∗(S)

∏
j∈S

xj = arg max
x∈Unaı̈ve(S)

∏
j∈S

xj .
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TU Games

TU game: There is an a�ne transform of payo�s such that d = 0 and such that

for each S, there is v(S) with

F (S) = {x ∈ RS |
∑
i∈S

v({i}) ≤
∑
i∈S

xi ≤ v(S)}.

Consider x, y in Rk+ with xi ≤ xi+1 and yi ≤ yi+1 for all i = 1, . . . , k − 1.

x majorizes y if x 6= y and
∑j
i=1 xi ≥

∑j
i=1 yi for every j = 1, . . . , k.

For A ⊂ Rk, let L(A) be its set of unmajorized or Lorenz-maximal elements.

Dutta and Ray (1989, 1991) use these ideas to define a solution that respects

egalitarianism as well as coalitional threats.
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Constrained Egalitarianism in TU Games

Egalitarianism with participation constraints:

1 E({i}) = {v(i)}.

2 Fix S. Assume E(T ) defined for every T ⊂ S. Define:

Ue(S) ≡ {x ∈ F (S)|x is unblocked by any (T, y) with T ⊂ S and y ∈ E(T )}.

3 Set E(S) = L(Ue(S)).
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Constrained Egalitarianism in TU Games

Theorem 3
In a TU game, the internally consistent Nash solution is a subset of the

constrained egalitarian solution for every coalition S:

σ∗(S) ⊆ E(S).

Suppose additionally that a TU game is superadditive. Then for all S, σ∗(S) is

nonempty, and is found by maximizing the Nash product over the set of

allocations that are unblocked by any subcoalition using equal division.
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Summary

Axiomatization of Nash bargaining with coalitional threats.

Solution maxes Nash product net of disagreement payo�s

But treats all coalitional threats as “conventional” constraints.

We endogenize coalitional threats:

Recursively applying the coalitional Nash solution to every subcoalition.

Simple characterization for games with convex payo� sets:

max Nash product over allocations unblocked by unconstrained Nash product.
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