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Introduction

Multiproduct firms selling horizontally differentiated products are ubiquitous
in real-world markets

They feature prominently in
▶ the structural IO literature (Berry, Levinsohn, and Pakes, 1995; Nevo, 2000;

2001; Miller and Weinberg, 2017)
▶ the international trade literature (Bernard, Redding, and Schott, 2010; 2011;

Mayer, Melitz, and Ottaviano, 2014; Hottman, Redding, and Weinstein, 2016)

Due to technical difficulties (e.g., failure of quasi-concavity / supermodularity
/ log-supermodularity), there has been relatively little theoretical work on
multiproduct-firm oligopoly with horizontal product differentiation

We use a potential games approach to establish equilibrium existence in a
large class of multiproduct-firm pricing games

Also characterize class of demand systems such that multiproduct-firm
pricing games admit a potential

Class of demand system allows for (price-dependent) patterns of
complementarities, which have recently received much attention in

▶ the structural IO literature (Gentzkow, 2007)
▶ the theoretical IO literature (Rey and Tirole, 2019)
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Multiproduct Oligopoly Pricing with IIA Demand

Demand side:

Finite set of differentiated products N .

Representative consumer has quasi-linear indirect utility

y + V (p) = y +Ψ
(∑

j∈N

hj(pj)
)

Roy’s identity gives us the demand for product i :

Di (p) = −h′i (pi )Ψ
′
(∑

j

hj(pj)
)

The demand system has the IIA property as Di (p)/Dj(p) = h′i (pi )/h
′
j(pj) is

independent of pk for k ̸= i , j

Examples:
▶ If Ψ(H) = log(1 + H) and hj(pj) = eβj−αpj , then demand system is logit
▶ If Ψ(H) = logH and hj(pj) = ajp

1−σ
j , then demand system is CES
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Multiproduct Oligopoly Pricing with IIA Demand

In Nocke and Schutz (2018), we show that the demand system can be derived
from multistage discrete/continuous choice if and only if:

(i) Each hi is C1, strictly positive, strictly decreasing, and log-convex.

(ii) Ψ is C1, Ψ′ is non-negative, and H 7→ HΨ′(H) is non-decreasing.

We assume throughout that conditions (i) and (ii) hold.

Complements vs. substitutes:

∂Di

∂pk
=

>0︷ ︸︸ ︷
(−h′i )

>0︷ ︸︸ ︷
(−h′k)Ψ

′′ (k ̸= i)

Products are (locally) substitutes if Ψ′ is (locally) decreasing, and (locally)
complements if Ψ′ is (locally) increasing.

In particular, products may be, e.g., complements when prices are low, but
substitutes when prices are high.
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Multiproduct Oligopoly Pricing

Supply side:

F , the set of firms, is a partition of N (the set of products).

|F| ≥ 2.

ci > 0: Constant unit cost of product i .

Firm f ’s payoff function:

πf (p) =
∑
k∈f

(pk − ck)(−h′k(pk))Ψ
′

∑
j∈N

hj(pj)

 ∀p ∈ (0,∞]N

Infinite prices are allowed: pk = ∞ =⇒ the firm does not make any profit on
product k.

Firms compete by setting prices simultaneously.
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Existence of an Ordinal Potential

The resulting multiproduct-firm pricing game has an ordinal potential (Monderer
and Shapley, 1996):

W (p) = Ψ′

∑
j∈N

hj(pj)

 ∏
g∈F

∑
k∈g

(pk − ck) (−h′k(pk))

= πf (p)×
∏
g ̸=f

∑
k∈g

(pk − ck) (−h′k(pk))︸ ︷︷ ︸
>0, independent of pf

, ∀f ∈ F

W (·) is indeed an ordinal potential, as

πf (pf ′, p−f )− πf (pf , p−f ) > 0 ⇐⇒ W (pf ′, p−f )−W (pf , p−f ) > 0

The ordinal potential is useful because it captures deviation incentives:
Firm f has a strict incentive to deviate from pf to pf ′ (holding p−f fixed) if
and only if the deviation strictly raises the value of the potential function.
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Using the Potential Function

Suppose that p∗ solves maximization problem maxp W (p).

Then, if firm f unilaterally deviates from that price vector, the value of W
decreases, and thus πf decreases

This implies that p∗ is a pure-strategy Nash equilibrium.

We show that W has a global maximizer under very weak restrictions. This
implies:

Proposition

For any firm partition F and marginal cost vector c , the associated pricing game
has a pure-strategy Nash equilibrium.

New method to compute equilibria: Instead of solving
▶ multidimensional fixed-point problem (best-response analysis)
▶ or a unidimensional fixed-point problem (aggregative-games approach),

simply maximize W .
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Transformed Potentials

Consider the pricing game with logged payoffs:

π̃f ≡ log πf = log

(∑
k∈f

(pk − ck)(−h′k(pk))

)
+ logΨ′

∑
j∈N

hj(pj)

 .

Take the log of the ordinal potential W , and note that, for every f ,

W̃ ≡ logW = π̃f +
∑
g ̸=f

log

∑
k∈g

(pk − ck)(−h′k(pk))

.
Therefore,

W̃ (pf ′, p−f )− W̃ (pf , p−f ) = π̃f (pf ′, p−f )− π̃f (pf , p−f ), ∀f , pf , pf ′, p−f .

So W̃ is a potential for the logged pricing game.

Compared to the weaker concept of ordinal potential, the difference is that
the potential function captures deviation incentives in a cardinal way.
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Transformed Potentials

The demand system D thus has the following property:

There exists a transformation function G (here: G = log) such that, for every
F and (cj)j∈N , the pricing game with payoffs G ◦ πf has a potential.

We say that D has a transformed potential, or a G -potential.

Our goal is now to characterize the class of demand systems admitting a
transformed potential, along with the corresponding transformation functions.

Why not look for demand systems admitting an ordinal potential?

Monderer and Shapley (1996): A smooth normal-form game (N ,A, u) admits
a potential if and only if

∂2ui
∂ai∂aj

=
∂2uj
∂ai∂aj

, ∀i , j . (1)

There is no known analogue of condition (1) for the weaker concept of
ordinal potential (e.g., Ewerhart, 2020).

By contrast, for a given transformation function G , we can apply
condition (1) to G ◦ u to determine whether D has a G -potential.
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Transformed Potentials

Theorem

Let D be a demand system. The following assertions are equivalent:

(a) D admits a transformed potential.

(b) At least one of the following assertions holds true:

(i) The demand system D takes the IIA form

Di (p) = −h′i (pi )Ψ
′(∑

j∈N

hj(pj)
)
.

(ii) The demand system D takes the generalized linear form

Di (p) = −h′i (pi ) +
∑
j ̸=i

αijpj .

If assertion (i) (resp., assertion (ii)) holds, then the logarithm (resp., the identity
function) is an admissible transformation function for demand system D.

Key steps of the proof

Nocke and Schutz (Mannheim) Transformed Potentials ESEM 2024 10 / 17



Transformed Potentials

Recall the definition of D having a transformed potential:

There exists a transformation function G such that, for every F and (cj)j∈N ,
the associated pricing game with payoffs G ◦ πf has a potential.

We now fix the ownership partition F and study the weaker concept of D having
an F-specific transformed potential:

There exists a transformation function G such that, for every c = (cj)j∈N ,
the pricing game with marginal cost vector c , ownership structure F , and
payoffs G ◦ πf has a potential.
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F -Specific Transformed Potentials

Proposition

Let D be a demand system and F a firm partition. The following assertions are
equivalent:

(a) (D,F) admits a transformed potential.

(b) At least one of the following assertions holds true:

(i) The demand system D satisfies the following properties: For
every f , g ∈ F with f ̸= g , i , j ∈ f , and k ∈ g , ∂kDi/Dj = 0
and ∂2ik logDi/Dk = 0.

(ii) The demand system D takes the following form: For any
i ∈ f ∈ F ,

Di (p) = −∂iψf (pf ) +
∑

F ′⊆F :
f∈F ′

∑
ι∈

∏
g∈F′ g :

ι(f )=i

α(ι)
∏

g∈F ′:
g ̸=f

pι(g),

where pf is the vector of prices set by firm f .

If assertion (i) (resp., assertion (ii)) holds, then the logarithm (resp., the identity
function) is an admissible transformation function for demand system D.
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F -Specific Transformed Potentials

Remarks:

Case (ii): This is a generalization of the generalized linear demand system

Case (i): PDEs are hard to integrate; in the special case where |F| = 2, we
obtain:

Di (p) = −∂iψf (pf )Ψ′
(∑

g∈F
ψg (pg )

)
∀i ∈ f ∈ F ,

where ψf and Ψ are arbitrary functions
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F -Specific Transformed Potentials

What about case (i) when |F| ≥ 3?

The following class of indirect utility functions still give rise to an F-specific
log-potential:

V (p) = Ψ
(∑

f∈F

ψf (pf )
)

This can be micro-founded by three-stage discrete / continuous choice:
1 Consumer decides whether to take up the outside option
2 If not, consumer chooses from which firm to purchase
3 Consumer chooses which products to purchase (and how much) from selected

firm

Comments:
▶ Substitution patterns go beyond IIA
▶ Can also obtain more flexible patterns of complementarity / substitutability:

e.g., products can be complements within firms and substitutes across firms
▶ Such demand patterns resemble those implied by one-stop shopping behavior
▶ Nested logit or nested CES is a special case
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F -Specific Transformed Potentials
A richer class, which also gives rise to an F-specific log-potential:

V (p) = Ψ
( ∑

B∈2F\∅

a(B)
∏
f∈B

ψf (pf )
)

This can again be be micro-founded by discrete / continuous choice:
1 Consumer decides whether to take up outside option
2 If not, consumer chooses among all consumption baskets B ∈ 2F \ ∅. If

consumer goes for basket B, he/she receives utility

log a(B) +
∑
f∈B

logψf (pf ) + εB

where the εB terms are i.i.d. Gumbel
3 Conditional on having chosen bundle B, consumer consumes −∂iψf /ψf units

of every product i ∈ f ∈ B

This basket structure gives rise to even richer patterns of complementarity /
substitutability

In the empirical IO literature, this approach has been used to model joint
consumption and complementarities within the discrete choice framework
(Ershov et al. 2023, Wang 2024)
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F -Specific Transformed Potentials

Another class allowing for more flexible substitution patterns:

Let L (set of nests) be a partition of F (set of firms)

The following indirect utility function gives rise to an F-specific log-potential:

V (p) = Ψ
(∑

ℓ∈L

Φℓ
(∑

f∈F

ψf (pf )
))

Again, this can be micro-founded by discrete/continuous choice.

The nested structure and the basket structure can be combined together to
obtain flexible substitution patterns and complex patterns of
complementarities
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Conclusion

A multiproduct-firm pricing game based on an IIA demand system has a log
potential.

Therefore, any such pricing game has a Nash equilibrium.

The potential games approach allows us to handle price-dependent patterns
of complementarity / substitutability.

Conversely, if a demand system D has a transformed potential, then D takes:
▶ Either the generalized linear form,
▶ or the IIA form.

The weaker concept of an F-specific transformed potential permits richer
patterns of complementarity / substitutability by allowing for a nest structure
and a basket structure
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Transformed Potentials
Key steps of the proof:

Let ϵ(π) = −πG ′′(π)/G ′(π) be the curvature of G .

Condition (1):

∀f ̸= g , ∀(i , j) ∈ f × g ,
∂2G (πf )

∂pi∂pj
=
∂2G (πg )

∂pi∂pj
.

Therefore,
∂3G (πf )

∂ci∂pi∂pj
= 0.

This gives us a parameterized ordinary differential equation:
For every profit level π, products i ̸= j , and price vector p such that
piDi (p) > π,

∂jDi

(
Di + π

∂iDi

Di

)(
ϵ′(π) +

ϵ(π)(1− ϵ(π))

π

)
= ∂2ijDi (1− ϵ(π))

where Di and its derivatives are evaluated at p.

Solving the parameterized ODE (and doing a few other things), we find that
G (π) must be affine in (π, log π).

Nocke and Schutz (Mannheim) Transformed Potentials ESEM 2024 1 / 4



Transformed Potentials

Key steps of the proof (Cont’d):

Suppose G (π) = A+ Cπ:

Then, condition (1) boils down to

∀(i , j , k) ∈ N 3s.t. k ̸= i , j , ∂2jkDi = 0.

Thus, Di is additively separable:

Di (p) =
∑
j∈N

hij(pj)

Slutsky symmetry: For i ̸= j ,

h′ij(pj) = ∂jDi = ∂iDj = h′ji (pi )

Hence, h′ij(·) is constant, and substitution effects are thus linear.

Therefore, D takes the generalized linear form.
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Transformed Potentials
Key steps of the proof (Cont’d):

Suppose G (π) = A+ B log π:

Then, condition (1) boils down to

∀(i , j , k) ∈ N 3 s.t. k ̸= i , j , ∂k(Di/Dj) = 0 (2)

∀(i , j) ∈ N 2, ∀(k , l) ∈ (N \ {i , j})2 ∂2ik log(Dj/Dl) = 0.

Suppose first |N | ≥ 3.

Letting V be an indirect utility function for D, (2) can be rewritten as:

∀(i , j , k) ∈ N 3 s.t. k ̸= i , j , ∂k(∂iV /∂jV ) = 0

Thus, V is strongly separable with respect to the partition {{i}}i∈N .

By Theorem 1 in Goldman and Uzawa (1964) / Proposition 1 in Anderson,
Erkal, and Piccinin (2019), V must take the form

V (p) = Ψ

∑
j∈N

hj(pj)
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Transformed Potentials
Key steps of the proof (Cont’d):

If |N | = 2, then condition (2) no longer has bite.

We are then left with a single PDE:

∂212 log
D1

D2
= 0.

Hence, log(D1/D2) is additively separable in (p1, p2):

log
D1(p)

D2(p)
= ϕ1(p1)− ϕ2(p2) ⇒ D1(p)

expϕ1(p1)
=

D2(p)

expϕ2(p2)

Letting hi be an antiderivative of expϕi , we obtain:

∂1V

∂1(h1(p1) + h2(p2))
=

∂2V

∂2(h1(p1) + h2(p2))

By Lemma 1 in Goldman and Uzawa (1964), V is thus a transformation of
h1(p1) + h2(p2).

This means that V takes the form

V (p) = Ψ (h1(p1) + h2(p2))

Back
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