Did R&D Misallocation Contribute to Slower Growth?

August 28, 2024

Nils H. Lehr, IMF

US Economic Growth Has Slowed Down Despite Continued Investment in R&D

Annual TFP Growth

2005 - 2018

US Economic Growth Has Slowed Down Despite Continued Investment in R&D

Annual TFP Growth

2005 - 2018

Resource Allocation Matters in R&D

• Core equation in endogenous growth:

Economic Growth = Agg. R&D Investment \times Agg. R&D Productivity

• R&D investment has remained steady \Rightarrow Declining R&D Productivity

Agg. R&D Productivity \approx Avg. R&D Productivity \times R&D Allocation

- This paper: Investigate the role of R&D (mis)allocation due to frictions (DeRidder, 2023; Manera, 2022; Aghion et al., 2023)

• Growing literature on declining R&D productivity (Bloom et al. 2020; DeRidder 2023; Aghion et al. 2023; Olmsted-Rumsey 2023; Akcigit and Ates 2021, ...)

25% of the Slowdown in US Economic Growth **Can Be Explained by Rising R&D Misallocation**

- Firms hire researchers to create new ideas
 - Ideas create profits for firms
 - Ideas improve productivity \Rightarrow economic growth

- Firms hire researchers to create new ideas
 - Ideas create profits for firms
 - Ideas improve productivity \Rightarrow economic growth
- <u>Private</u> "frictions" may prevent the efficient allocation of R&D resources
 - Captured by "R&D wedge" \propto marginal/ average R&D return

- Firms hire researchers to create new ideas
 - Ideas create profits for firms
 - Ideas improve productivity \Rightarrow economic growth
- <u>Private</u> "frictions" may prevent the efficient allocation of R&D resources
 - Captured by "R&D wedge" \propto marginal/ average R&D return
- **Result:** Economic growth rate decreasing in dispersion in R&D wedges • Intuition: Differences in marginal R&D returns imply "gains from trade"

- Firms hire researchers to create new ideas
 - Ideas create profits for firms
 - Ideas improve productivity \Rightarrow economic growth
- <u>Private</u> "frictions" may prevent the efficient allocation of R&D resources
 - Captured by "R&D wedge" \propto marginal/ average R&D return
- Result: Economic growth rate decreasing in dispersion in R&D wedges
 - Intuition: Differences in marginal R&D returns imply "gains from trade"
- Derive summary statistic for the effect of private frictions on growth
 - **R&D** <u>allocative</u> efficiency $\in [0,1]$

Aggregate output: $Y_t = A_t \cdot L_{P,t}$

Aggregate output: $Y_t = A_t \cdot L_{P_t}$

Innovative firms $i \in [0,1]$ hire inventors ℓ_{it} at wage W_t

Produce inventions $z_{it} = \varphi_{it} \cdot \ell_{it}^{\gamma}$ and value them at V_{it}

Input choice is subject to wedge Δ_{ii}

_t s.t.
$$\frac{\partial z_{it}}{\partial \ell_{it}} \cdot V_{it} = (1 + \Delta_{it}) \cdot W_t$$

Aggregate output: $Y_t = A_t \cdot L_{P,t}$

Innovative firms $i \in [0,1]$ hire inventors ℓ_{it} at wage W_t

Produce inventions $z_{it} = \varphi_{it} \cdot \ell_{it}^{\gamma}$ and value them at V_{it}

Input choice is subject to wedge Δ_{it}

R&D labor market clearing: $L_t = \int_0^1 \ell_{it} \cdot di$

t s.t.
$$\frac{\partial z_{it}}{\partial \ell_{it}} \cdot V_{it} = (1 + \Delta_{it}) \cdot W_t$$

Aggregate output: $Y_t = A_t \cdot L_{P,t}$

Innovative firms $i \in [0,1]$ hire inventors ℓ_{it} at wage W_t

Produce inventions $z_{it} = \varphi_{it} \cdot \ell_{it}^{\gamma}$ and value them at V_{it}

Input choice is subject to wedge Δ_{it}

R&D labor market clearing: $L_t = \int_0^1 \ell_{it}$

s.t.
$$\frac{\partial z_{it}}{\partial \ell_{it}} \cdot V_{it} = (1 + \Delta_{it}) \cdot W_t$$

it $\cdot di$

Aggregate output: $Y_t = A_t \cdot L_{P,t}$

Innovative firms $i \in [0,1]$ hire inventors ℓ_{it} at wage W_t

Produce inventions $z_{it} = \varphi_{it} \cdot \ell_{it}^{\gamma}$ and value them at V_{it}

Input choice is subject to wedge Δ_{it}

R&D labor market clearing: $L_t = \int_0^1 \ell_{it} \cdot di$

t s.t.
$$\frac{\partial z_{it}}{\partial \ell_{it}} \cdot V_{it} = (1 + \Delta_{it}) \cdot W_t$$

An (Semi-) Endogenous Growth Model Aggregate output: $Y_t = A_t \cdot L_{P,t}$ Innovative firms $i \in [0,1]$ hire inventors ℓ_{it} at wage W_t

Produce inventions $z_{it} = \varphi_{it} \cdot \ell_{it}^{\gamma}$ and value them at V_{it}

Input choice is subject to wedge Δ_{it}

R&D labor market clearing: $L_t = \int_0^1 \ell_{it} \cdot di$ $=\frac{A_{t+1}-A_t}{dt}=A_t^{-\phi}\cdot\int_{t}^{1}z_i$ Growth: $g_t =$

, s.t.
$$\frac{\partial z_{it}}{\partial \ell_{it}} \cdot V_{it} = (1 + \Delta_{it}) \cdot W_t$$

$$Y_{it} \cdot V_{it} \cdot \zeta_{it} \cdot di$$

An (Semi-) Endogenous Growth Model Aggregate output: $Y_t = A_t \cdot L_{P,t}$ Innovative firms $i \in [0,1]$ hire inventors ℓ_{it} at wage W_t Produce inventions $z_{it} = \varphi_{it} \cdot \ell_{it}^{\gamma}$ and value them at V_{it}

Input choice is subject to wedge Δ_{it}

R&D labor market clearing: $L_t = \int_0^1 \ell_{it} \cdot di$ Private values of the second se Growth: $g_t =$ A_t

t s.t.
$$\frac{\partial z_{it}}{\partial \ell_{it}} \cdot V_{it} = (1 + \Delta_{it}) \cdot W_t$$

An (Semi-) Endogenous Growth Model Aggregate output: $Y_t = A_t \cdot L_{P,t}$ Innovative firms $i \in [0,1]$ hire inventors ℓ_{it} at wage W_t

Produce inventions $z_{it} = \varphi_{it} \cdot \ell_{it}^{\gamma}$ and value them at V_{it}

Input choice is subject to wedge Δ_{it}

R&D labor market clearing: $L_t = \int_0^1 \ell_{it} \cdot di$ $=\frac{A_{t+1}-A_t}{dt}=A_t^{-\phi}\cdot\int_{t}^{1}z_i$ Growth: $g_t =$

, s.t.
$$\frac{\partial z_{it}}{\partial \ell_{it}} \cdot V_{it} = (1 + \Delta_{it}) \cdot W_t$$

$$Y_{it} \cdot V_{it} \cdot \zeta_{it} \cdot di$$

An (Semi-) Endogenous Growth Model Aggregate output: $Y_t = A_t \cdot L_{P,t}$

Innovative firms $i \in [0,1]$ hire inventors ℓ_{it} at wage W_t

Produce inventions $z_{it} = \varphi_{it} \cdot \ell_{it}^{\gamma}$ and value them at V_{it}

Input choice is subject to wedge Δ_{it}

, s.t.
$$\frac{\partial z_{it}}{\partial \ell_{it}} \cdot V_{it} = (1 + \Delta_{it}) \cdot W_t$$

$$Y_{it} \cdot V_{it} \cdot \zeta_{it} \cdot di$$

An (Semi-) Endogenous Growth Model Aggregate output: $Y_t = A_t \cdot L_{P,t}$ Innovative firms $i \in [0,1]$ hire inventors ℓ_{it} at wage W_t

Produce inventions $z_{it} = \varphi_{it} \cdot \ell_{it}^{\gamma}$ and value them at V_{it}

Input choice is subject to wedge Δ_{it}

R&D labor market clearing: $L_t = \int_0^1 \ell_{it} \cdot di$ $=\frac{A_{t+1}-A_t}{dt}=A_t^{-\phi}\cdot\int_{t}^{1}z_i$ Growth: $g_t =$

, s.t.
$$\frac{\partial z_{it}}{\partial \ell_{it}} \cdot V_{it} = (1 + \Delta_{it}) \cdot W_t$$

$$Y_{it} \cdot V_{it} \cdot \zeta_{it} \cdot di$$

Proposition 1. The *equilibrium* economic growth rate can be expressed as the products of two terms:

where ω_{it} is a weight depending on *private* R&D productivity.

$$\frac{\int_0^1 \omega_{it} \cdot \tilde{\zeta}_{it} \cdot (1 + \Delta_{it})^{-\frac{\gamma}{1 - \gamma}}}{\left(\int_0^1 \omega_{it} \cdot (1 + \Delta_{it})^{-\frac{1}{1 - \gamma}} \cdot di\right)^{\gamma}}$$

Proposition 1. The *equilibrium* economic growth rate can be expressed as the products of two terms:

Frictionless growth rate Depends on R&D productivity, state of technology, etc.

where ω_{it} is a weight depending on *private* R&D productivity.

$$\frac{\int_0^1 \omega_{it} \cdot \tilde{\zeta}_{it} \cdot (1 + \Delta_{it})^{-\frac{\gamma}{1 - \gamma}}}{\left(\int_0^1 \omega_{it} \cdot (1 + \Delta_{it})^{-\frac{1}{1 - \gamma}} \cdot di\right)^{\gamma}}$$

Proposition 1. The *equilibrium* economic growth rate can be expressed as the products of two terms:

Frictionless growth rate Depends on R&D productivity, state of technology, etc.

where ω_{it} is a weight depending on *private* R&D productivity.

R&D Mis. Alloc.

Proposition 1. The *equilibrium* economic growth rate can be expressed as the products of two terms:

Frictionless growth rate Depends on R&D productivity, state of technology, etc.

where ω_{it} is a weight depending on *private* R&D productivity.

Corollary. R&D efficiency declines in R&D wedge dispersion as long as it is not too negatively correlated with $\tilde{\zeta}_{it}$. (Hsieh & Klenow, 2009; Akcigit, Hanley, Stantcheva, 2018; König, Storesletten, Song, Zilibotti, 2022) R&D Mis. Alloc. Proposition 1

$$\frac{\int_{0}^{1} \omega_{it} \cdot \tilde{\zeta}_{it} \cdot (1 + \Delta_{it})^{-\frac{\gamma}{1 - \gamma}}}{\left(\int_{0}^{1} \omega_{it} \cdot (1 + \Delta_{it})^{-\frac{1}{1 - \gamma}} \cdot di\right)^{\gamma}}$$

$$\frac{\text{R&D Efficiency } \Xi_{t}}{\text{Impact of frictions}}$$

Financial statements and patent information

- Data on U.S. listed firms for 1975—2014
- Information from financial statements (Compustat)
 - R&D expenditure, revenue, capital stock, etc.
- Patent information from Kogan et al (2017) and USPTO Patentsview
 - Patent valuations estimated in event study design
 - Forward citations, application year, inventors, etc.
- Restrict sample ex-ante to firms with significant patent and R&D activity
 - >80% of R&D expenditure and patents for U.S. listed firms
 - >40% of R&D expenditure in BEA

Measurement of R&D Wedges

- - R&D Wedge = Scale Factor \cdot
- Measure R&D wedges from 5-year R&D returns

$$\widehat{\text{R&DWedge}_{it}} = \text{Scale Factor}_{j(i)t} \cdot \frac{\sum_{s=0}^{4} \text{Patent Valuations}_{it+s}}{\sum_{s=-1}^{3} \text{R&D Expenditure}_{it+s}}$$

- Key idea: Measure value creation from patent valuations (Pakes, 1985; Griliches, 1990; Cohen et al., 2000; Hall, Jaffe, Trajtenberg, 2005; KPSS, 2017)
- Restrict sample to returns with at least 50 patents
- Residualize w.r.t. industry X year fixed effects

R&D wedges can be measured from average R&D products/ R&D returns

Expected Value Created

R&D Expenditure

Large & Persistent Differences in R&D Returns Simple Model Interprets These as Frictions

Large & Persistent Differences in R&D Returns

Decomp.

Table

Dispersion is Larger in Recent Years Suggesting rising frictions

Estimating R&D Efficiency ... with the sample analog

I estimate R&D efficiency in the data using the sample analog:

$$\hat{\Xi}_{t} = \frac{\sum_{i=1}^{N_{t}} \hat{\omega}_{it} \cdot \left((\widehat{1 + \Delta}_{it})^{\hat{\kappa}} \right)}{\left(\sum_{i=1}^{N_{t}} \hat{\omega}_{it} \cdot \left((\widehat{1 + \Delta}_{it})^{\hat{\kappa}_{t}} \right) \right)}$$

- As a baseline I set $\kappa_t = 1$
 - I present robustness checks estimating κ_t using the citations to sales growth measure over a rolling window
- Counterfactuals for endogenous and semi-endogenous growth model

R&D Efficiency has Declined Consistently

25% of the Slowdown in US Economic Growth **Can Be Explained by Rising R&D Misallocation**

Declining Economic Growth Can be Partly Explained by Declining R&D Efficiency

- *Novel* growth accounting framework suggests a summary statistic for the impact of frictions: R&D allocative efficiency.
 - R&D allocative efficiency is maximized when (adjusted) R&D wedges (marginal returns on R&D investment) are equalized across firms.
- Measure R&D wedges from the average R&D return per dollar
 - Large and persistent differences in R&D returns
 - R&D return dispersion increasing over time
- Model and data combined suggest declining R&D allocative efficiency
 - R&D allocative inefficiency reduces economic growth by 18% on average
 - Declining R&D allocative efficiency can explain 25% of growth slowdown

Thank you!

Feedback: nlehr@imf.org