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Introduction: Background of SPIV and NPIV

« Terminologies
« SPIV: Semiparametric instrumental variable estimator
* NPIV: Nonparametric instrumental variable estimator
« Y: dependent variable; X: endogenous variable; W: instrumental variable

 Recall: Linear IV model

Secondstage Y = B+ Xp+U, E[UW]=0, Estimated by
Firststage X = ~; +Wmy +e Ele|W]=0. 2SLS
. _ _ Estimate the first stage by
SPIV Y b+t XB+U, EUW]=0, nonparametric methods
X = (W)+e ElW]=0. Then plug in the fitted 1V, X = {(X)
* NPIV Y = ¢g(X)+U, E[UW]=0, Estimate BOTH stages by

X = ((W)+e EleW]=0, nonparametric methods

Otsu, Shinoda, and Xu Semi/Nonparametric IV with isotonic first stage



IntrOdUCtion: N P |V X: endogenous variable; W: instrumental variable

* NPIV Secondstage Y = g(X)+U, E[U|W]=0,
Firststage X = ((W)+e Ele(W]=0,

* X is endogenous = E(U|X) # 0
> EY —-gX)[X)#0 = EY|X)# gX)

g(+) cannot be estimated by
regressing Y on X

* W is exogenous = E(U|W) =0

> EY -—gX)IW) =0 =EY|W)=E@X)IW)=ZZ,8E@COIW)
g(-) can be identified, if fxju (:,-) is
complete
* In estimation, we focus on the “elements” of g(x) = X.;2, B; p;(x)
« {p;()};2, are known series functions
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Introduction: NPIV EC(YIW) = E(g(X)|IW)

* The “elements” of a function: series expansion

* The historical result
« Stone-Weierstrass Theorem (Weierstrass, 1885, Stone, 1948)

 For a continuous g(-)
» With polynomial basis p(z) = (1,z,...,
« For any (small) ¢ > 0, there is some sufficiently large K such that

K—l)’

inf sup |g(z) — p(z)'B| < e
B reX

* With L, norm

* For g(-) € L,(X) with /[y h(z)?dz < o0
« With a complete basis in L,(X) p(x) = (p1(x), p2(x),...)

© g(x) = X2, Bipi(x)

* p;(x) is known basis function, and ;s are unknown series coefficients

Semi/Nonparametric IV with isotonic first stage
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Introduction: NPIV E(Y|W) = E(g(OIW)

X: endogenous variable; W: instrumental variable
« g(x) = 221 Bipi(x)

p; (x) is known basis function, and B;'s are unknown series coefficient

NPIV estimation (NP 2SLS)

Choice the tuning parameter for the second stage, the series length K,
First stage:

* Regress p;(X) on W nonparametrically for each i € {1: K,,}, obtaining E(p; (X)|W)
« Nonparametric estimation requires additional tuning parameter(s)

© E(YIW) = E(g(X)IW) ~ ;. B B(p: COIW)

« Second stage:
» Regress Y on E(p;(X)|W) to obtain estimators of {8;};", say {5;}
» NPIV estimator: §(x) = X1 B; pi(x)

Kn
i
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Introduction: NPIV

* First stage:
» Regress p;(X) on W nonparametrically for each i € {1: K,,}, obtaining E(p; (X)|W)
« Nonparametric estimation implies additional tuning parameter(s)

* In the literature, the first stage is usually conducted by series estimation as

well
* Newey and Powell (2003), Blundell, Chen, and Christensen (2007), Horowitz (2011,
2012), among others.

* In this paper, we propose using Isotonic regression to estimate the first
stage
- for both SPIV and NPIV estimation
« We call them the monotone SPIV and monotone NPIV
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Introduction: Isotonic regression

« Monotone increasing conditional mean function

Y=rX)+e¢ where x; < x, = r(xy) < r(xy)

* |sotonic estimation
A nonparametric method to estimate this r(-)

under the assumption of monotonicity

Otsu, Shinoda, and Xu Semi/Nonparametric IV with isotonic first stage



Monotonicity assumption

 Natural conditions of many models applied widely in economics
- Demand function, utility functions..
« CDF function, and functions derived from CDF functions
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Monotone Iinstrumental variable

Secondstage Y = g(X)+U, E[UW]|=0,

_ X: endogenous variable; W: instrumental variable
Firststage X = ((W)+e Ele/W]=0,

* Our approach requires that E(X|W = w) increases in w

* Many examples in economics
« Hardle and Linton (1994), Blundell, Chen, and Kristensen (2007):
X = log family expenditure, W = log gross earnings
« Measurement error problem:
X = a measurement (with error) of X*, W = an independent repeated measurement of X*
* Furthermore, any existing study involving a univariate endogenous variable

and univariate instrumental variables, and utilizing the linear 2SLS methods,
implicitly imposes the monotonicity of E(X|W = w)
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Implement Isotonic estimation

Yi =r(x;)+¢€, wherex; <x,<--<ux,, ande¢;s are independent

n

(F(x1),...,7(x,)) =  argmin S (¥ —r(x)’

i=1

The algorithm: PAVA, the greatest convex minorant
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Implement Isotonic regression

The cumulative sum diagram

R ?s
Y III
Ui
i
/i
Ui
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i
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I/,' Greatest convex minorant
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1
(r (x1), ..., ”(xn)) = argmin Z —r(xi)) No tuning parameters are involved

r(x1)<r(xp)=<- <r(xn)
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Isotonic regression Iin a two-stage process

« As a nonparametric method, isotonic regression has

« Strengths:

* Tuning parameter free

* Require minimum smoothness condition
« Shortcomings:

 a discrete estimator

 slow convergence rate

 Using isotonic regression as the first stage in a two-stage procedure
sometimes could allow us to
e circumvent its shortcomings
« while preserving its strengths
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Motivation for monotone SPIV

« Compared to 2SLS, our proposed SPIV method is more efficient

Secondstage Yy — B1+ X3+ U, E[UW]=0,
Firststage X = ~ +Wry+e, EleW]=0.

2SLS can give a consistent estimator of f = (1, 5,),
even if E(X|W) is not linear in the first stage
but it will be less efficient

Under the monotonicity of E(X|W = w) in w, our monotone SPIV estimator is efficient
» As efficient as ones in Ai and Chen (2003) and Blundell, Chen and Kristensen (2007)

« Compared to other SPIV estimators
« Our method is tuning-parameter-free

Otsu, Shinoda, and Xu Semi/Nonparametric IV with isotonic first stage



Secondstage Y = g(X)+U, E[U|W]=0,

Motivation for monotone NPIV  faaee x - comse Beaw—o

« Our method requires choosing only one tunning parameter (in the case of one
endogenous variable)

» “Series+series” (NP2SLS) methods (implicitly) require more

« Recall the first stage of NPIV estimation
- After the tuning parameter for the second stage, the series length K,,, has been chosen

 Regress p;(X) on W nonparametrically for each i € {1: K,,}, obtaining E(p;(X)|W)

Let I((w) = (l;(w), [,(w),...)" be a complete basis in L, (W)
The first-stage series estimation is

g
pl(X) = Z"}/Zgl)li(W) +e1
=1

J@

p2(X) = Zv?)li(W) + ez There are potentially K,, + 1 tuning parameters

J,SKn)

pr,(X) = > AEL(W) + ex,
 —1
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Secondstage Y = g(X)+U, E[U|W]=0,

Motivation for monotone NPIV  faaee x - comse Beaw—o

* Let l(w) = (l;(w),,(w), ...)" be a complete basis in L,(W)
* The first stage-series estimation is

p2(X) =3 AP L(W) + ey They are potentially K,, + 1 tuning parameters

- In the literature of NPIV, people usually enforce K,, = ,SP = ,(12) = . = ,SK")
 But this practice is rarely justified theoretically

* Itis an implicit choice of K,, + 1 tuning parameters

 In comparison, our proposed method only needs to choose one, K,
« Our first stage Is adaptively handled by isotonic regression
 Qur first stage is truly tuning-parameter-free

Otsu, Shinoda, and Xu Semi/Nonparametric IV with isotonic first stage
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Secondstage Y = [+ XB+U, E[UW]=0,

Theory for monotone SPIV  rissage x = comyre Eewi=0

Assumption 2.1.1. [Sampling/ (i) {Y:, W;, Xi}'_, is an iid sample of (Y, X, W) e Rx X x W,
where X C R, and W is a compact subset of R; (i) X and W are jointly continuously distributed.

Assumption 2.1.2. [Monotonicity] ((w) = E[X|W = w] is a monotone increasing function of

w e W.

Assumption 2.1.3. [Instrument relevance and homoscedasticity/ (i) Var(E[X|W]) #£ 0; (ii)
E[U%|W = w] = o7 for each w € W.

Assumption 2.1.4. [Moment conditions| there exist positive constants co and My such that
E[|U|™W = w] < m! M"%cq and E[|X|"|W = w] < m! M ?cq hold for all integers m > 2
and every w € W.

Notations:
B = (B1,5) Z=C¢W) Z=C_ (W) is the isotonic estimator of {(W)

v(z) = (1,2)v(z) = (1,2)
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Secondstage Y = [+ XB+U, E[UW]=0,

Theory for monotone SPIV  rissage x = comyre Eewi=0

Notations:
B = (B1,02) Z=C¢(W) Z=C(W)is the isotonic estimator of ¢(W)

v(z) = (1,2) v(z) = (1,2)

The monotone SPIV: 3 =E,[v(Z)v(X)] 'E,[v(2)Y] En() = % i=1(")

Theorem 2.1. Under Assumptions 2.1.1 to 2.1./, it holds

V(B — B) % N(0,Q),

where Q = oz Elv(Z)v(Z) 71 attains the semiparametric efficiency bound of estimating 3 (Ai and Chen, 2003
U Y g 3
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Secondstage Y = g(X)+U, E[UW]=0,

Theory for monotone NPIV  sstsage x = cow)+e, Eew] =0,

* Notations and definitions:

qr (w) = B (pp (X)W = w), e () = arg min By [{p(X) = C(W)}].
q(w) = (q(w),. .., qxr, (w)) §(w) = (G (w),. .., dr, (W)

A7 (X) denotes the Holder space defined in Blundell, Chen and Kristensen (2007)

The sieve space: for a vector of unknown sieve coefficient b= (b1,...,bx,)

k=1
T is the conditional /
T = _p(z, w)dz. Recall E(Y|W) = E(g(X)|W
mean operator: (Tv)(w) = | v(@)fxjw=wle, w)dz ecall E(Y[W) = E(g(X)IW)
: . h
The sieve measure of ill-posedness:  p, = sup %

heHn
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Theory for monotone NPIV

Assumption 2.2.1. [Data generating] (i) {Y;, W;, X;}_, is an iid sample of (Y, X, W) €
R x X x W, where X C R, and VW is a compact subset of R; (ii) T' is nonsingular, and the
equation T'v = m has a unique solution v = g almost surely; (iii) for the true function of
interest g, it holds that g € ‘H = A (X) for some r > 2 and sup,cy ¢(z) < K, where K is
the same positive constant in (2.7).

Assumption 2.2.2. [Monotonicity and continuity] For each k € {1: K,}: (i) q; (w) =
E[pr(X)| W = w] is a monotone increasing function of w; (ii) (X, W) has a Lebesgue density
function fxyw, and the marginal density of W, fw(-), satisfies that for some positive con-
stants f and f, it holds f < fw(-) < f allw € W; (iii) there exist b > 0 and M > 0 such that
E[| X|™|W = w] < m! M™2b for all integers m > 2 and almost every w.

Assumption 2.2.3. [Instrument relevance and series order] (i) For each K,,, the largest
eigenvalues of both E [p(X)p(X)'] and E [¢(W)q(W)'] are bounded, and their smallest eigen-
values are bounded away from zero; (ii) K, — oc and K3 /n — 0.

Assumption 2.2.4. [Bounds of projection errors] py - |T (gwn — gun)|| < const-||g — gunll-

Otsu, Shinoda, and Xu Semi/Nonparametric IV with isotonic first stage



Secondstage Y = g(X)+U, E[UW]=0,

Theory for monotone NPIV  sstsage x = cow)+e, Eew] =0,

K, is the series order of the second stage

p(x) = (pi1(z),...,pk, (x)) a vector of complete basis functions for Ls (X) The sieve measure
. : fill- d ;
g () = E(pu(X)|W =w), () =arg min En[{py(X) = (W)}, orfirpose ﬁ’s
q(w) = (@ (w), ..., W) . q(w) = (@ (w),....dk, W) . = e, IThI]
The monotone NPIV: — §() =p(VE, [§(W)p(X)] ' Ea[g(W) Y]  En() = - X4()

Theorem 2.2. Suppose Assumptions 2.2.1 to 2.2.4 hold, then

. . | Kn
1G — gll2= Op (Kn + pn ?) -

The same rate as in Blundell, Chen, Christensen (2007) and Horowitz (2011, 2012)
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Simulation results

X: endogenous variable; W: instrumental variable

An NPIV model:  Second stage Y = X?+¢
First stage X = exp(W)+e, E[eW]=0, W ~ U[-1.213],
e ~ N(0,1).

We _employ the polynomial n Methods K, ISE mean ISE median | K,, ISE mean ISE median
basis: loop  Series+series | 2 6.3849 6.3423 3  0.0186 0.0099

K, —1\/ isotonic+series | 2 6.7102 6.6843 3 0.0129 0.0093
p(z) = (1’:6’ e ® ) series+series | 2 6.3703 6.3516 3  0.0037 0.0022
We try K,, = 2,3,4,and 5, 000 otonic+series | 2 6.6582 6.6374 3 0.0029 0.0020
while the optimal order (for series+series | 2 6.3851 6.3834 3 0.0019 0.0011
the 2" stage) should be K, = 10000 otonic+series | 2 6.6671 6.6566 3 0.0015 0.0010
3 n Methods | K, ISE mean ISE median |k, ISE mean ISE median
(No misspecification, no series+series | 4  76.9304  0.0840 5 6366.3067  0.6196
(unnecessarily) redundant 1000 otonic+series | 4 0.0544 0.0442 5  0.1286 0.0894
regressors) series+series | 4 00432  0.0179 | 5 402.7918  0.6034
The number of Monte-Carlo >000 isotonic+series | 4 0.0202 0.0140 5 0.3070 0.2305
samples in each setting is 10000 series+series 4 0.0229 0.0136 5 8.0989 1.1050
500. isotonic+series | 4 0.0151 0.0121 5 1.0894 0.6934
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Concluding Remarks

« We develop a SPIV and an NPIV estimators, in which the first-stage
conditional means are assumed to be monotone increasing and are
estimated using isotonic regression

* The proposed SPIV estimator Is tuning-parameter-free, and it is efficient in
terms of Ai and Chen (2003)

* The proposed NPIV estimator requires choosing only one tuning
parameter for the second stage. It achieves the same rate as Blundell,
Chen, Christensen (2007)

« For multiple 1V, we model the first stage by
 the monotone partially linear model X = W/é + {(W,) + €, or
* the monotone single index model X = {(6'W) + e.

Thank you!
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Additional results

- Justification of assumption on the monotone basis function
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Secondstage Y = g(X)+U, E[UW]=0,

Theory for monotone NPIV  sstsage x = cow)+e, Eew] =0,
- Justification of assumption on the monotone basis function

Assumption 2.2.2. [Monotonicity and continuity] For each k € {1: K,}: (i) q.(w) =
E[px(X)| W = w] is a monotone increasing function of w;

This assumption can be satisfied by polynomial basis if we assume additionally

Al: For all w € W, the conditional density of ¢|/W = w is symmetrically distributed
around O.
A2: For all w € W, ((w) is non-negative and monotone increasing in w.

A3: Foralli € {1: K,}, o'(w) := E(¢|W = w) is finite and non-decreasing in w.
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Secondstage Y = g(X)+U, E[UW]=0,
Theory for monotone NPIV  sstsage x = cow)+e, Eew] =0,
Al: For all w € W, the conditional density of ¢]W = w is symmetrically distributed
around O.
A2: For all w € W, ((w) is non-negative and monotone increasing in w.

A3: Forallic {1: K,}, o'(w) := E(¢!|IWW = w) is finite and non-decreasing in w.

For the polynomial bases, p;.(X) = X*, we have
Blp (X)W = w] = E[XW = ) k
—E[(C(W) +)* W =w] = ( ( | ) W YRl = w)

1

) ( ( l: )g(W)“eﬂWw)

0<i<k,: is odd

S T

|
o

(]

/ k k—i i _ _
+E > ( i ) CW)™ e W = w Is monotone increasing
0<i<k,1 is even in W

The same arguments can be extended to other series bases
derived from polynomial, such as different kinds of splines
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