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Empirical papers on spillovers often observe a sampled network containing a subset
(undersampling) or superset (oversampling) of true links between individuals.

Fixed choice surveys – ask participants to name M friends/name friends from list of
M others (e.g Harris 2009, Conley & Udry 2010, Oster & Thornton 2012, Banerjee
et al. 2013) – undersample links if maximum degree is greater than M

Proxying links by proximity in some space – assume all individuals in same
classroom/technology class/location/ethnicity interact (e.g Manski 1993, Miguel &
Kremer 2004, Beaman 2011, Bloom et al. 2013, Carrell et al. 2013).

Estimate spillover effects by regressing spillovers on sampled network on outcomes.

Oster & Thornton (2012) ”In addition, given the randomization, we are able to obtain
an unbiased estimate of the impact of additional treatment friends even if we do not
observe all of an individual’s friends.”
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Here, I:

1. show that spillover estimates from undersampled/oversampled links are
(economically significantly) biased, often upwards – sampling induces dependence
between observed and unobserved spillovers size of bias .

2. show how researchers can construct unbiased estimators or assess robustness of
estimates to number of missing links without conditioning on network formation
model, and

3. apply to re-estimates of spillovers of climate shocks on firm-level production
networks from Barrot & Sauvagnat (2016) – estimates are 1.5-2 times too large
due to sampling bias.
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Empirical literature
Education Rapoport & Horvath (1961), Harris (2009), Calvó-Armengol et al. (2009),
Carrell et al. (2013). Development Miguel & Kremer (2004), Banerjee et al. (2013),
Oster & Thornton (2012). Innovation Jaffe (1986), Foster & Rosenzweig (1995),
Bloom et al. (2013). Labour Munshi (2003), Beaman (2011), ...

Econometric literature
Construct unbiased estimates without throwing away data (Chandrasekhar & Lewis
2016) or conditioning on a specific network formation model (Breza et al. 2020,
Herstad 2023, Yauck 2022, Zhang 2023, Hseih et al. 2024, e.g). Nest cases in (Griffith
2022, Lewbel et al. 2022) for cases presented there.

Closely related to problem of endogenous exposure to exogenous shocks in
design-based estimation of causal effects (Borusyak & Hull 2023) – can construct
unbiased estimates without knowing counterfactual exposure process.
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Sampling

4 / 20



Sampling Linear models Extensions Simulations Application: production networks Conclusions References

True network G ∗, sampled network G , unobserved adjacency matrix B.

Treatment variable X , outcome Yi = h((G ∗X )i ) (Aronow & Samii 2021).

G ∗ = G + B =⇒ G ∗X = GX + BX

=⇒ (GX )i =

{
(G ∗X )i − (BX )i if incorrectly sampled,

(G ∗X )i else.

Undersampling =⇒
∑

j Bij bigger when
∑

j Gij bigger; oversampling =⇒
∑

j Bij

bigger when
∑

j Gij smaller.

Therefore even if X is i.i.d. often

E (BX ) ̸= 0, plim N−1(GX )′BX ̸= 0

sampling induces dependence between observed and unobserved spillovers – plus
Yi = h((G ∗X )i ) gives non-classical measurement error.
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Figure: Undersampling on a line network
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Linear models
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Sampling biases linear regression estimates. Assume: A1) Lindenberg conditions, A2)
BX ⊥ ϵ|G ∗X .

DGP: Y = α+ Xγ + G ∗Xβ + ϵ. Sample analogue: Y = α+ Xγ + GXβ.

Estimator: β̂ OLS = ((GX )
′
GX )−1(GX )

′
Y .

E (β̂ OLS) = β + βE (((GX )′(GX ))−1((GX )′BX )).

Proposition

Assume A1), A2).

Bias: E (β̂ OLS − β) = E (A−1(GX )′BXβ)

Inconsistency: plim β̂ OLS − β = plim A−1((GX )′BX )β,

where A := (GX )′(GX ).
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We can rescale OLS estimates by the dependence between observed and
unobserved spillovers.

Proposition

Assume A1), A2). The estimator

β̂ = (I + η)−1β̂ OLS where η = E (A−1(GX )′BX ) (1)

is an unbiased and consistent estimator of β

E (β̂) = β, and plim β̂ = β.

In practice, make conditional independence assumption (that we will relax later)
A3) (G ∗,B) ⊥ X (e.g RCT on network) – then E ((GX )′BX ) = NdGdB X̄ 2.

Only need one more survey question – ‘how many friends do you have?’
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What if you cannot get information on the true mean degree?

Robustness to missingness: β̂ OLS > τ ⇐⇒ dB <
( 1

NA−1X̄ 2dG

) β̂ OLS − τ

τ
.

Bounds: dB ∈ [dB
min, d

B
max] =⇒ β ∈

[ β̂ ols

I + η(dB
max)

,
β̂ ols

I + η(dB
min)

]
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Extensions
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Might instead fit the non-linear model (Blume et al. 2015)

DGP: Y = λG ∗Y + Xβ + ϵ, sample analogue Y = λGY + Xβ (2)

by two-stage least-squares using treatment of sampled friends of sampled friends as
instruments (Kelejian & Prucha 1998).

Proposition

Make A2) and standard SAR assumptions. Let P denote a projection matrix,
Z 2SLS = [GY ,X ], H2SLS = [X ,GX ,G ′GX , ....]. The two-stage least-squares estimator

θ̂ 2SLS =

(
λ̂ 2SLS

β̂ 2SLS

)
= (Z

′
PHZ )

−1Z
′
PHY .

is biased and inconsistent.
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Reduced form:Y = λ(G (I − λG )−1Xβ) + Xβ + η, where

η = G (I − λG )−1ϵ+ λBY + G (I − λG )−1λB(I − λG ∗)−1(Xβ + ϵ).

Instrument exclusion restriction fails as

Cov(G (I − λG )−1X , η) ̸= 0

Solution

1. construct corrected instruments G (I − λ(G + B))−1X (in practice use
expectation for units sampled incorrectly) – gets rid of third term in η

2. then left with same problem as linear model (unobserved BY also affected by
instruments) – so rescale estimates as before.
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How do we construct E ((GX )′BX ) when (G ∗,B) ̸⊥ X without fitting a network
formation model?

If we have a copula C (x , d), we can sample

E (di |xi ) =
∫ 1

0
F−1
D (

∂C (ux , ud ; θ)

∂ux
|ux=FX (xi ))dUd .

Two step estimator.

1. Fit relevant copulas C (F−1
X ,F−1

G , θ1) to compute B̂X .

2. Compute debiased estimator β̂ given B̂X .

Requires distributional assumptions (similar to Borusyak & Hull 2023), but we often
have a good idea what the degree distribution should be (e.g Bacilieri et al. 2023, for
production networks).

12 / 20



Sampling Linear models Extensions Simulations Application: production networks Conclusions References

Simulations
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Test size of bias and performance of new estimators on simulated networks sampled
using common sampling rules.

N = 1000 agents with di ∼ U(0, 10) connected uniformly at random. Single binary
treatment Xi ∈ {0.1} distributed i.i.d across population (RCT on network)
Xi ∼ B(0.3).

Sample networks using fixed choice design with M = 5 (undersampling, as in Add
Health Datatset Harris 2009) and by assuming that each individual is connected to
exactly 10 others (oversampling, as in Miguel & Kremer 2004).

13 / 20



Sampling Linear models Extensions Simulations Application: production networks Conclusions References

Figure: Simulated spillover estimates from fixed choice design, M=5 (Add Health)

(a) OLS estimates (b) SAR estimates
Notes: Red line denotes true parameter values of 0.8 and 0.3 respectively. N = 1000, di ∼ U(0, 10),

Xi ∼ B(0.3), M = 5.

Beginning Linear estimators
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Figure: Spillover estimates from oversampled network (spatial spillovers)

(a) OLS estimates (b) SAR estimates
Notes: Red line denotes true parameter values of 0.8 and 0.3 respectively. N = 1000, di ∼ U(0, 10),

Xi ∼ B(0.3). Each individual has 10 sampled neighbours.
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Application: production networks
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Barrot & Sauvagnat (2016) study how effect of idiosyncratic shocks propagate in
production networks running the regression

∆SALESit,t−4 = α+ β SUPPLIER HITit−4 + Xiγ + ϵit ,

Use self-reported large suppliers of US public firms from Compustat – mean number of
suppliers is 1.38, with a median of 0.000, evidence the dataset is undersampled
(Herskovic et al. 2020).

SUPPLIER HITit−4 is a dummy that takes 1 if GX > 0 – can apply our results here.
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Take dG , and p(SHOCKj ,t−4 = 1) from their paper, construct ¯A−1 = 0.07
dB from

1. more complete dataset covering similar firms (Factset)

2. estimated tail exponent of degree dist. adjusting for sampling from Herskovic
et al. (2020), and

3. estimated tail exponent of degree dist. of complete (Belgian) production network
from Bacilieri et al. (2023).
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Table: Debiased spillover estimates

Barrot & Sauvagnat (2016) Factset Herskovic et al. (2020) Belgium

dB 0 1.2 1.32 26.27
Estimate -0.031 - 0.0159 -0.0151 -0.00160
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Table: Mean missing links required to reject null of by significance level

Reported 1% 5% 10%

Threshold -0.031 -0.0225 -0.01764 -0.01476
dB 0 0.474 0.953 1.39
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Conclusions
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Have shown that network over-and-under sampling biases conventional linear and
nonlinear estimators for spillover effects and that the bias is large enough to matter in
practice.

Have introduced debiased estimators based on the average number of unobserved links
– requires one additional question in a survey

Have applied the estimators to construct unbiased estimates of the propagation of
climate shocks in US firm-firm production network – sampling bias causes existing
estimates to be 1.5-2 times larger than they should be.
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Hseih, C.-S., Hsu, Y.-C., Ko, S., Ková̌ŕık, J. & Logan, T. (2024), ‘Non-representative sampled
networks: Estimation of network structural properties by weighting’.

Jaffe, A. (1986), ‘Technological opportunity and spillovers of research-and-development -
evidence from firms patents, profits, and market value’, American Economic Review
76(5), 984–1001.

Kelejian, H. H. & Prucha, I. (1998), ‘A generalized spatial two-stage least squares procedure
for estimating a spatial autoregressive model with autoregressive disturbances’, The Journal
of Real Estate Finance and Economics 17(1), 99–121.

Lewbel, A., Qu, X. & Tang, X. (2022), ‘Estimating Social Network Models with Missing Links’,
Mimeo .

20 / 20



Sampling Linear models Extensions Simulations Application: production networks Conclusions References

References V

Manski, C. F. (1993), ‘Identification of Endogenous Social Effects: The Reflection Problem’,
The Review of Economic Studies 60(3), 531–542.

Miguel, E. & Kremer, M. (2004), ‘Worms: Identifying impacts on education and health in the
presence of treatment externalities’, Econometrica 72(1), 159–217.

Munshi, K. (2003), ‘Networks in the modern economy: Mexican migrants in the u. s. labor
market’, The Quarterly Journal of Economics 118(2), 549–599.

Newman, M. (2010), Networks, Oxford University Press, Oxford.

Oster, E. & Thornton, R. (2012), ‘Determinants of technology adoption: Peer effects in
menstrual cup take-up.’, Journal of the European Economic Association 10(6), 1263–1293.

Rapoport, A. & Horvath, W. J. (1961), ‘A study of a large sociogram’, Behavioral Science
6(4), 279–291.

Yauck, M. (2022), ‘On the estimation of peer effects for sampled networks’.

Zhang, L. (2023), ‘Spillovers of program benefits with missing network links’.

20 / 20



Sampling Linear models Extensions Simulations Application: production networks Conclusions References

Example: ‘fixed choice’ design (Newman 2010, Coleman et al. 1957, Calvó-Armengol
et al. 2009, Oster & Thornton 2012, Banerjee et al. 2013)

(GX )i =

{
(G ∗X )i − (BX )i if di > m

(G ∗X )i if di ≤ m.

Consider X ∼ B(p) i.i.d across nodes (e.g randomised intervention) and individuals
report each link with probability q (Griffith 2022). Then

E (GX )i =

{
5
di

∑
j g

∗
ijp if

∑
j g

∗
ij > 5,∑

j g
∗
ijp if

∑
j g

∗
ij ≤ 5

, and E (BX )i =

{
di−m
di

∑
j g

∗
ijp if

∑
j g

∗
ij > 5,

0 if
∑

j g
∗
ij ≤ 5.

Therefore E (BX ),E ((GX )′BX ) > 0.
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Assumption (OLS assumptions)

Assume the following about our data generating process ??

1. (Y ,G ∗,B,X ) are independently but not identically distributed over i ,

2. E (ϵ|G ∗,X ) = 0

3. E (G ∗Xi ) = ξi , V (G ∗Xi ) = r2i , and lim
∑N

i=1 E(|G∗Xi−ξi |2+δ)

(
∑N

i=1 r
2
i )

2+δ
2

= 0 for some δ > 2,

4. E (BXi ) = νi , V (BXi ) = s2i , and lim
∑N

i=1 E(|BXi−νi |2+δ)

(
∑N

i=1 s
2
i )

2+δ
2

= 0 for some δ > 2,

5. ϵ are idependent and not identically distributed over i such that for some δ > 0
E (|u2i |1+δ) < ∞ with conditional variance matrix

E (ϵϵ′|(G ∗ − B)X ) = Ω

which is diagonal.

6. plim 1
N ((G

∗ − B)X )′ϵϵ′((G ∗ − B)X ) exists, is finite, and is positive definite.
Additionally, for some δ > 0 E (|ϵ2i ((G ∗ − B)X )ij((G

∗ − B)X )ik |1+δ) < ∞ for all
j , k.
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Assume that

1. (Y ,G ∗,B,X ) are independently but not identically distributed over i ,

2. E (ϵ|G ∗,X ) = 0

3. ϵ are independent and not identically distributed over i such that for some δ > 0
E (|u2i |1+δ) < ∞ with conditional variance matrix

E (ϵϵ′|(G ∗ − B)X ) = Ω

which is diagonal.

4.

plim N−1Z ′PHZ = QZZ

plim N−1Z ′PHZB = QZB

plim N−1Z ′PH = QZH

which are each finite nonsingular.

5. |λ| < 1
||G || ,

1
||G∗|| for any matrix norm ||.||.
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