
Optimal disease mitigation with endogenous network
response

Ozan Candogana Michael Königb,c Kieran Marrayb,e Frank Takesd,e

aUniversity of Chicago

bVrije Universiteit Amsterdam

cETH Zurich

dLeiden Institute for Advanced Computer Science

eStatistics Netherlands

European Economic Association Summer Meeting 2024



Overview

Motivation:
Individuals often adjust connections in response to spread of disease (see e.g Gupta et al.
2020, Chowell & Nishiura 2014, McKusick et al. 1985) – contact structure co-evolves with
spread of disease (cf. Acemoglu et al. 2024, Carnehl et al. 2023).

Here:
Introduce rewiring into standard SIR model of spread of disease on a network –
susceptible individuals rewire links from infectious to prevent contracting disease.

Use model to formulate optimal lockdown problem with endogenous network structure –
neglecting rewiring leads to suboptimally tight policy, and both initial network structure
and rewiring interact to improve efficiency of policy.

Apply to second wave of Covid-19 in the Netherlands, building population-scale initial
contact network for flu-like infectious diseases by combining registry data and contact
surveys.
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Related literature

Economics (theoretical) Optimal policy (Acemoglu et al. 2024, 2021, Birge et al. 2022,
Cianfanelli et al. 2021), ‘behavioural’ SIRs (Atkeson et al. 2021, Bisin & Moro 2022,
Goolsbee & Syverson 2021, Aguirregabiria et al. 2021).

Epidemiology/networks (theoretical) SIS process on adaptive networks (Gross et al.
2006), simulations of adaptation in SIR models (Lagorio et al. 2011).

Empirical literature Covid-19 (e.g Gupta et al. 2021), Ebola (e.g Tuncer et al. 2018),
SARS (e.g WHO 2006), HIV (e.g McKusick et al. 1985), 1918 flu pandemic (e.g Bootsma
& Ferguson 2007).
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Model

N individuals in continuous time t ∈ [0, T ] on time-varying contact network Gt.

Compartments: S, I(H), R,D s.t St + It +Rt +Dt = 1.

m(A,B) – number of links between compartment A and B divided by N .

Infectious infect susceptible neighbours at rate β, recover at rate γ.

Add rewiring – susceptibles rewire links to infectious to another susceptible at rate w –
prefer not to infect susceptible neighbours

Reduced form representation of behaviour when individuals have a preference for certain
level of socialisation and negative preference for socialising with the infectious/infecting
others. Formal microfoundations

Vital dynamics (for stability analysis) – natural birth/death rates λ, µ link birth/death
at rate κ, ν. 3 / 20



Events

(a) Infection, rate β per I-S link (b) Recovery, rate γ per I node

(c) Rewiring, rate w per I-S link

Figure: Different events within our model
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Mean-field dynamics of this jump process can be described with a set of ordinary
differential equations (Kurz 1971) . Effect

Disease dynamics

dS

dt
= −βm(I, S)(t)

dI

dt
= βm(I, S)(t)− γI(t),

dR

dt
= δrH(t) + γ(I(t)−H(t)),

H = ιI(t),

dD

dt
= δdH(t).

Network dynamics

dm(S, S)

dt
= wm(I, S)(t)

− 2β
m(I, S)(t)m(S, S)(t)

S(t)
,

dm(I, S)

dt
= β

m(I, S)(t)

S(t)
(2m(S, S)(t)−m(I, S)(t))

− (γ + w)m(I, S)(t).
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Figure: Rewiring slows spread of disease and growth of deaths.

(a) Infections (b) Deaths

Notes: Left panel shows paths of infections. Right panel shows time paths of deaths. Parameters are:
β = 0.038, γ = 0.2, w ∈ {0, 0.1, 0.2}, δr = 0.19, δd = 0.01, ι = 0.076, S(0) = 0.99, I(0) = 0.01, R(0) = 0.0

and average degree d = 10.

Back
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Can introduce multiple groups k ∈ K and group-group lockdowns Lkj ∈ [0, 1].

dSk

dt
=

∑
∈K

βm(Sk, Ij)(t)Lkj(t)

dIk
dt

=
∑
j∈K

βm(Sk, Ij)(t)Lkj(t)− γIk(t),

dRk

dt
= δrkHk(t) + γ(Ik(t)−Hk(t))

dm(Sk, Sj)

dt
= w

Sk(t)∑
k′∈K Sk′(t)

∑
k′∈K

m(Ik′ , Sk)(t)Lk′k(t) + w
Sj(t)∑

k′∈K Sk′(t)

∑
k′∈K

m(Ik′ , Sj)(t)Lk′j(t)

−
∑

k′∈K βm(Ik′ , Sk)(t)Lk′k(t)m(Sk, Sj)(t)

Sk(t)
−

∑
k′∈K βm(Ik′ , Sj)(t)Lk′j(t)m(Sj , Sk)(t)

Sj(t)

dm(Ik, Sj)

dt
=

1

Sk(t)

∑
k′∈K

βLk′k(t)m(Ik′ , Sk)(t)m(Sk, Sj)(t)

− 1

Sj(t)

∑
k′∈K

βLk′j(t)m(Ik′ , Sj)(t)m(Sj , Ik)(t)− (γ + w)m(Ik, Sj)(t),
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Stability analysis

Can use Jacobian of our model to study the stability of a disease-free steady state – what
happens when we introduce ”patient zero” given structure of connections between groups
and when people rewire

Theorem 1.
Let Θ be a symmetric K ×K matrix with elements

βLijm(Si,Sj)√
SiSj

. Then the disease-free

equilibrium is stable if and only if Θ̂ ⪯ cI where c = γ + w + ν + 2µ.

Corollary 2.

Set K = 1, L = 1, ν + 2µ ≈ 0. Then

R0 =
βm(S, S)

S(γ + w)
.

Rewiring acts similarly to recovery, reducing number of secondary infections.
Picture Nonlinear effects
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Optimal policy

Imagine planner trying to target lockdowns across groups to keep disease-free equilibrium
stable (prevent the disease from spreading/keep R0 < 1).

Can set up a planner’s problem as a semidefinite program (Boyd & Vandenberghe 2004)
given our model

min
Lkj

C(L)

s.t. Θ̂(L) ⪯ (γ + w)I

0 ≤ Lkj ≤ 1

k, j = 1, . . . ,K.

Increasing rewiring rate relaxes constraint

As constraint is K ×K, can solve problem of which connections to lock down between
many groups to lock down with standard software (3098 groups solves in approx 3-4 days
in with Convex.jl and SCS)
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Optimal policy

Set C(L) = −
∑

k,j Lkjsk – planner want to minimise total amount of individuals locked
down.

Can incorporate trade-offs from limited disease spread up to finite time (e.g up to
vaccination roll-outs Acemoglu et al. 2021) by considering relaxations of stability of
disease free equilibrium

Θ̂(L) ⪯ (γ + w)I+ ϵ =⇒ R0 ≤ 1 + δ

Gives Pareto frontier of possible points policymaker can achieve given preferences without
solving complicated non-convex optimisation problem as in Acemoglu et al. (2021).

Can also incorporate targeting different types of connections/ layers in the contact
network (e.g school closures)

C(L) = −
∑
l∈L

∑
k,j

Ll
kjsk.
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Estimation

Issue – how can we estimate rewiring rate when network dynamics are unobserved?

Theorem 3.
Denote aggregate number of new cases Ct. Let the initial conditions be given by
[Sk(0), Ik(0), Rk(0),m(Sk′ , Sk)(0), m(Ik′ , Sk)(0)] for k, k′ ∈ K. Then our system of ODEs
defines a bijective mapping θ → R3

+:

(β, γ, w) 7→ {
∑
k∈K

Sk(t),
∑
k∈K

Ik(t), C(t)}Tt=0,

and the parameters (β, γ, w) ∈ θ are point identified given the initial conditions.

Structural estimator: θ̂ = arg max(Xt −X(t, θ))′W (Xt −X(t, θ))

Xt = [
∑
k∈K

Skt,
∑
k∈K

Ikt, Ct], and X(t, θ) = [
∑
k∈K

S(t),
∑
k∈K

I(t), β
∑
k,j∈K

m(Ik, Sj)(t)]
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Empirical example

Study interplay of network-based targeting and endogeneity for optimal policy by
estimating parameters and then solving different control problems.

Consider:

1. how targeting based on network structure between fine-grained groups compares to
uniform lockdowns

2. how network endogeneity changes optimal targeted lockdowns

3. what are the trade-offs between deaths and economic damages when a planner
targets based on the network, and how rewiring affects these trade offs.

Setting – second wave of Covid-19 in the Netherlands from 6th of August 2020 to 19th of
November 2020, using data from National Institute of Public Health and Environment
(RIVM).
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Network data

Construct a population-scale social network from Statistics Netherlands registry data
(van der Laan 2022, Bokányi et al. 2023)

17.6 million nodes, five layers of connections: household, family, work, school,
neighbourhood.

Reweight links by types of contact in POLYMOD contact surveys for flu-like infectious
diseases to build population-level contact network.

Aggregate spatially by municipality/wijken to form 380/3098 groups – gives system of
289,940/19,204,502 non-linear differential equations.
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Figure: Contacts per individual per day for flu-like infectious diseases between municipalities in
the Netherlands. Darker weights indicate more contacts. Connections containing more than 12000
links omitted for ease of reading, and to preserve privacy of indviduals in small municipalities.
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Table: Estimates of infection, recovery, and rewiring rates,
second wave of Covid-19.

With rewiring Without rewiring
(1) (2)

Infection rate (β) 0.0296∗∗∗ 0.0207∗∗∗

(0.00579) (0.000645)
Recovery rate (γ) 0.191∗∗∗ 0.174∗∗∗

(0.00986) (0.00748)
Rewiring rate (w) 0.0917∗

(0.0617)

Notes: Covariance matrix estimated using standard GMM sand-
wich estimator with forward-mode autodifferentiation. Standard
errors in parentheses. Significance levels: * p < 0.10, ** p < 0.05,
*** p < 0.01.
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Optimal lockdowns

Figure: Targeted lockdowns by municipality-municipality pair for Covid-19 in the Netherlands
with estimated parameters. The dashed line gives the optimal uniform lockdown level.

Targeting based on network increases efficiency – mean proportion contacts allowed 0.834
vs 0.454 without.
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Optimal lockdowns

(a) Municipality degree (b) Municipality eigenvector centrality

Figure: Relationship between municipality log degree/centrality and optimal lockdown levels.

Allow fewer contacts the more connected/central (correlations −0.789,−0.478)
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Optimal targeted lockdowns

(a) Proportion contacts allowed, rewiring. (b) Proportion contacts allowed, no rewiring.

Figure: Lightest color denotes the most contacts allowed and darkest denotes the fewest contacts
allowed.

Rewiring reduces lockdown intensity (mean 7.78% more contacts with rewiring than
without), mostly in moderately connected municipalities.
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Pareto frontier

Figure: Pareto frontier representing trade-offs between epidemic spread and lockdown intensities
faced by policymakers. Points represent relaxations ϵ ∈ {0, 0.05, ..., 0.35}.

Rewiring, and more fine-grained targeting allow planner to relax constraint much more
efficiently than without rewiring.
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Conclusion

Introduce a model of spread of disease on a network when individuals adjust contacts in
response to spread of disease.

Show how to use the model to estimate the rate at which individuals adjust contacts and
optimal targeted lockdowns even as the number of groups become large.

Use the model to study how endogenous behaviour and heterogeneous contact structure
interact to shape optimal policy in the context of Covid-19 in the Netherlands,
constructing a population-scale contact network for flu-like infectious diseases from
registry data to do so.

20 / 20



References I

Acemoglu, D., Chernozukhov, V., Werning, I. & Whinston, M. (2021), ‘Optimal targeted
lockdowns in a multigroup SIR model’, American Economic Review: Insights 3, 487–502.

Acemoglu, D., Makhdoumi, A., Malekian, A. & Ozdaglar, A. (2024), ‘Testing, voluntary social
distancing, and the spread of an infection’, Operations Research 72(2), 533–548.

Aguirregabiria, V., Gu, J., Luo, Y. & Mira, P. (2021), ‘Polarization and public health: Partisan
differences in social distancing during the Coronavirus pandemic’, Annals of Economics and
Statistics pp. 179–210.

Atkeson, A., Kopecky, K. & Zha, T. (2021), ‘Behavior and the transmission of covid-19’, American
Economic Association Papers and Proceedings 111, 356–360.

Birge, J. R., Candogan, O. & Feng, Y. (2022), ‘Controlling epidemic spread: Reducing economic
losses with targeted closures’, Management Science 68(5), 3175–3195.

Bisin, A. & Moro, A. (2022), ‘Spatial-SIR with network structure and behavior: Lockdown rules
and the lucas critique’, Journal of Economic Behavior & Organization 198, 370–388.

Blume, L. (1993), ‘The statistical mechanics of strategic interactions’, Games and Economic
Behaviour 5(3), 387–424.

20 / 20



References II
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Readjustment possibilities arrive at rate ρ per link (Blume 1993).

πS > 0 denotes socialization utility, η > 0 gives infection cost.

π0 = πS − βη + ε0,

π1 = πS − c+ ε1.

Rewire if π1 > π0.
Back
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Figure: Comparison of mean-field ODEs for the epidemic dynamics mean jump-process
dynamics. DE denotes paths from system of ODEs. NRM denotes means from Monte-Carlo
simulation of jump process using the next-reaction method.

Back
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(a) (b)

Figure: The color gradient denotes the proportion of the population who have been infected with
the disease at T = 100, 000 for a given pair β,w and fixed γ. Fixed parameters are: S(0) = 0.999,
I(0) = 0.001, R(0) = 0, q = 0, v = 0, T = 100, 000. In the left panel, we set d = 5, and γ = 0.2. In
the right panel, we set d = 2.5, and γ = 0.1. We use a grid β from 0 to 0.1 at intervals of 0.005,
and a grid w from 0 to 0.4 at intervals of 0.005.
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