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Abstract

This study examines the impact of artificial intelligence (AI) exposure on the
emergence of new work, employment, and wages in the United States from 2010 to
2022, mobilizing novel indices at the occupational and industry level. I differentiate
between AI technologies that automate tasks and those that augment industry and
occupational outputs. Using instrumental variable estimators, the analysis reveals
that augmentation AI exposure promotes the creation of new work and increases
employment, but it does not affect wages. Conversely, the findings indicate that
automation AI exposure has a detrimental effect on hourly wages without signific-
antly influencing new work emergence or employment levels. Further heterogeneity
analysis demonstrates that the effects of both augmentation and automation AI ex-
posures are contingent upon the educational requirements of occupations and the
specific types of AI technologies involved.
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1 Introduction

Artificial intelligence (AI) has seen substantial advancements in technology and perform-
ance over the past decade (Tegmark, 2018). Today, AI algorithms surpass human per-
formance in certain tasks (Kiela et al., 2021; Maslej et al., 2024). This rapid progress
has generated significant anxiety among workers about potential job displacement by AI
(Gallup, 2023). Unlike previous wave of digital technologies, AI can perform non-routine
tasks across most occupations and industries (Autor, 2022; Brynjolfsson et al., 2018).
Despite significant advancements, assessing AI’s labor market impact remains challenging
due to insufficient data on AI adoption and commercial use (Seamans and Raj, 2018).
Consequently, policymakers lack the necessary guidance to adapt public policies to AI-
induced changes.

Building on the task-based framework (Acemoglu and Autor, 2011; Autor et al., 2003),
recent frameworks have explored the effects of technological changes on the labor market
(Acemoglu and Restrepo, 2018a, 2018b; Autor et al., 2024). These studies identify two
main effects of technological changes. On one hand, Automation reallocates capital and
labor towards capital, reducing labor demand and wages. However, it also increases
productivity, which can have a positive effect on the labor demand and wages. On the
other hand, the reinstatement effect creates new tasks for which human labor has a
comparative advantage, thus increasing labor demand and wages. While these frameworks
have explained the impacts of technologies like robotization, empirical evidence for AI
remains limited, leaving a gap in understanding AI’s role in these countervailing effects
(Autor, 2022).

This study leverages novel measures of AI exposure to examine its effects on new work
emergence, employment, and wages in the United States from 2010 to 2022. Guided by
the task-based framework, I investigate whether AI exposure, which may substitute labor
in task performance, reduces wages and labor demand. Furthermore, I explore whether
AI exposure that augments occupational and industry outputs fosters the emergence of
new work and increases labor demand and wages.

The analysis relies on three unique data sources. First, I develop a longitudinal meas-
ure of occupational AI exposure for task automation, based on Stack Overflow queries, a
leading Q&A forum for developers. I identify AI-related questions and map them to oc-
cupational abilities necessary to perform tasks according to the Occupational Information
Network (O*NET). The mapping is achieve with Semantic Textual Similarity, a natural
language processing tool. I compute an occupational-level automation AI exposure score
by tracking the yearly number of questions from 2010 to 2022.

The second data source measures AI exposure that augments occupational and in-
dustry outputs. Using a method similar to Autor et al. (2024), I compute an augmenta-
tion AI exposure score at the occupational-industry level by assessing the overlap between
AI-related queries on Stack Overflow and micro-titles for occupations and industries from
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the Census Alphabetical Index (CAI). Micro-titles describe goods and services render by
occupation and industry.

The third data source tracks the emergence of new work at the occupational level.
Building on Lin (2011) and extended by Autor et al. (2024) and Kim (2022), I use the
"alternate titles" rubric in O*NET to identify new work within occupations by comparing
updates from 2015 to 2022. Alternate titles are micro-titles referring to the notion of jobs
and describing someone’s position in more detail than occupations. For instance, the
micro-titles "Sprinkler Design Engineer" and "Remote Pilot" were added in 2018 and
2021, respectively.

To analyze AI exposure’s impact on employment and wages, I match AI exposure
measures with data from the Occupational Employment and Wage Statistics (OEWS)
provided by the US Bureau of Labor Statistics (BLS). It offers detailed information on
average hourly wages and employment size by industry and occupation.

Using these data sources, I provide new descriptive evidence on AI exposure and the
emergence of new work. First, analytical non-routine tasks and decision-making skills
are positively correlated to AI exposure, whereas routine manual task has a negative
relationship. Second, occupations exposed to AI differ from those affected by robots and
computers. Third, occupations exposed to automation AI differ augmentation AI are not
similar. Fourth, high-paid occupations are more exposed to AI that substitutes human
labor, while augmentation AI exposure is mainly concentrated among STEM occupations.
Finally, STEM occupations exhibit the highest percentage of new work, with 24% of job
titles in "Computer and Mathematical" occupations added between 2015 and 2022.

My main findings, based on IV estimators, are as follows. First, augmentation AI
exposure increases the creation of new work and employment size, but has no discernible
effect on wages. A one standard deviation increase in augmentation AI exposure raises
the share of new work by 0.03 and employment size by 9.5%. Conversely, automation
AI exposure negatively impacts hourly wages, with no significant effect on new work
or employment size. Specifically, hourly wages decrease by 16.0% with a one standard
deviation increase in automation AI exposure.

Second, heterogeneous analysis reveals underlying mechanisms by distinguishing oc-
cupations based on educational requirements. Automation AI exposure reduces hourly
wages only for low-skilled occupations. Evidence suggests that augmentation AI exposure
has a positive effect on the emergence of new work and wages only for high-skilled occupa-
tions. These results align with the predictions of skill-biased technical change hypothesis,
where the labor supply for high-skilled workers is limited.

Finally, the effect of AI exposure varies according to AI technology types. Exposure
to Computer Vision has a lower impact compared to Language Processing and Modeling,
and Machine Learning and Deep Learning. This discrepancy can be explained by the
varying degrees of technological advancement, with Computer Vision lagging behind in
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performance.
These results have several important economic implications. First, AI can perform

tasks that were previously shielded from technological changes, necessitating a shift in
focus from routine tasks to analytical non-routine tasks and decision-making skills when
studying AI’s effects. Second, as AI performs different tasks compared to robots and
computers, occupations exposed to AI differ from those impacted by robotization and
computerization. Third, the labor market effects of AI depend on its application: AI that
augments output positively influences labor market outcomes, while AI that automates
tasks has detrimental effects. Fourth, AI exposure can contribute to rising wage inequal-
ity, negatively affecting wages for low-skilled occupations while benefiting high-skilled
occupations.

My paper contributes to three strands of economic literature. First, the literature
proposing AI exposure indices. Brynjolfsson et al. (2018) develop a forward-looking index
measuring the extent to which tasks in occupations could be suitable for machine learning
algorithms, a subfield of AI, in the near future. Felten et al. (2018, 2021, 2023a, 2023b)
leverage the AI Progress Measurement project by the Electronic Frontier Foundation
(EFF) to measure exposure in 10 AI applications, and Engberg et al. (2024) extends
this work to create a longitudinal version for 2010-2023. Webb (2020) uses patent data
to quantify how much each occupation involves tasks that AI can perform. Tolan et
al. (2021) develop an index linking AI research intensity to occupations using expert
assessments. Lastly, Eloundou et al. (2023) create an index measuring exposure to large
language models, such as ChatGPT. While these measures rely on the current and future
capabilities of AI-algorithms, they fail to measure AI adoption.

I contribute to this strand of literature by proposing indices that are more closely
aligned with the notion of AI adoption by leveraging developer questions. For this purpose,
I suggest a new data source to track AI exposure: queries on Stack Overflow.

Second, this work speaks to the large and growing literature studying the effect of
technological changes on the labor market (Acemoglu and Restrepo, 2020; Autor and
Dorn, 2013; Autor et al., 2003; Goos and Manning, 2007; Goos et al., 2009; Graetz and
Michaels, 2015; Krueger, 1993; Machin and Reenen, 1998; Michaels et al., 2014). Closer
to my paper, Acemoglu et al. (2022) find no significant relationship between AI exposure
and employment and wage growth at the occupational level. In contrast, Fossen and
Sorgner (2022) use micro-data to find a positive relationship between AI exposure and
wage growth. Babina et al. (2024) show that firms investing in AI experience increased
employment growth, and Bonfiglioli et al. (2023) demonstrate that AI exposure negatively
affects employment across U.S. commuting zones. Field experiments by Brynjolfsson et
al. (2023), Noy and Zhang (2023) and Peng et al. (2023) find that AI exposure generates
productivity gains. However, none of these papers distinguish between AI that automates
tasks and AI complementing work. It has been shown that this distinction is crucial
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to fully understand the effect of technological changes (Acemoglu and Restrepo, 2018a,
2018b; Autor et al., 2024).

My paper contributes to this literature by disentangling the effects of AI that substi-
tutes labor and AI that complements output, a distinction that has not been previously
made.

Lin (2011) uses the Census Alphabetical Indexes of Industries and Occupations to
show that new work emerges in areas dense with college graduates and industry variety.
Atalay et al. (2020) analyze job ads from 1950 to 2000 to explore changes in job titles,
reflecting real changes in occupational tasks. Kim (2022) examines the impact of trade
on new work emergence, while Acemoglu and Restrepo (2019) link new task creation to
labor demand. Autor et al. (2024) combine the Census Alphabetical Indexes with patent
data to investigate innovation’s impact on new work, finding that task-complementing
innovations are associated with new work emergence. None of these papers focus on AI,
a technology expected to be an important factor in creating new work.

Unlike these studies, my paper focuses specifically on the emergence of new work
driven by artificial intelligence.

The rest of the study is organized as follows. Section 2 describes the data and explains
how the different indices are created. In section 3, I validate the measures of AI exposure
with previous indices. Section 4 explores which occupations are exposed to AI and where
new work emerges. In section 5, I investigate the effect of AI exposure on new work,
employment, and wages. I provide heterogeneity analysis and robustness checks in section
6. I conclude in section 7.

2 Data and measurement

In this section, I present the data sources and methodology used to construct the measures
of AI exposure for automation and augmentation, as well as the measure of new work.

Figure 1 provides an overview of the construction of automation and augmentation
AI exposures. To track AI development from 2010 to 2022, I exploit questions about
AI asked on Stack Overflow, a Q&A website specializing in coding issues. To measure
AI that substitutes tasks in occupations, these questions are matched to the abilities
required for task performance as specified in the 2010 O*NET, a comprehensive dictionary
describing occupational content in the United States. For augmentation AI (i.e., AI that
complements output), I link AI-related questions from Stack Overflow to outputs produced
at the micro-occupation and micro-industry levels, according to the Census Alphabetical
Indexes of Industries and Occupations from the US Census Bureau. These indices are
then merged with information on wages and employment size by occupation and industry
from the U.S. Bureau of Labor Statistics.

The measure of new work is derived from updates to the "alternate titles" rubric in
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O*NET from 2015 to 2022. After extensively cleaning the dataset to ensure that new
work reflects new tasks and specializations rather than simple renaming or rewording, I
perform a year-by-year comparison of alternate titles to identify new work.

2.1 Automation AI exposure

This section elaborates on the methodology used to construct the measure of automation
AI exposure at the occupational level from 2010 to 2022. This measure is derived from two
primary data sources: AI-related questions on Stack Overflow and occupational require-
ments from O*NET. Detailed descriptions of these data sources and the methodology for
constructing the index are available in Appendix A.

To track the implementation of AI algorithms in the economy, I analyze questions
asked on Stack Overflow between 2010 and 2022. Stack Overflow, established in 2008, is
the leading Q&A platform for programming issues, with over 24 million questions asked
and 20 million users as of early 2023. Approximately 80% of these users report that coding
is part of their job responsibilities (Stack Overflow, 2022).

Each member of Stack Overflow can freely post questions, which must be tagged with
3-5 keywords related to technologies or tasks (e.g., scikit-learn, Python, text-to-speech,
regex). These tags facilitate the classification of questions into categories. The community
provides answers and comments to suggest solutions. Members also vote on the relevance
of questions and answers.

By identifying and analyzing AI-related questions, I capture the types of AI algorithms
developers implement for their organizations. The assumption here is that developers
typically implement AI algorithms for their employers rather than for personal use.

For occupational content, I rely on the O*NET database, a comprehensive resource
describing occupations across the US economy through various descriptors (Peterson et al.,
2001). This database has been widely used in the literature to measure the task content
of occupations (see, for instance, Acemoglu and Autor, 2011; Blinder, 2009; Brynjolfsson
et al., 2018; Felten et al., 2021; Firpo et al., 2011; Peri and Sparber, 2009). This study
uses O*NET 15.0, released in July 2010, ensuring that occupational descriptors are not
influenced by the AI development measured in this research.

Following Felten et al. (2018, 2021), I measure occupational content using 52 abilities
(e.g., oral comprehension, fluency of ideas, finger dexterity). Abilities represent funda-
mental capacities required to perform a wide range of tasks (Carroll, 1993; Fleishman,
1984). O*NET 15.0 provides detailed descriptions of 855 occupations in terms of these
abilities. Each occupation-ability pair is assigned an importance and level score, indic-
ating the significance and required proficiency of the ability for the occupation. These
scores are based on surveys conducted with incumbent workers.

Abilities are chosen over other descriptors to measure AI exposure because AI al-
gorithms are often described in broad terms, making them more analogous to general
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abilities rather than specific tasks or activities. This alignment allows for a more accurate
and comprehensive assessment of how AI impacts various occupational requirements.1

Using abilities to measure the content of occupations for the index of automation AI
exposure involves a conceptual assumption. Specifically, it is assumed that firms mobilize
abilities derived from AI algorithms as inputs to perform tasks traditionally carried out by
human labor. This assumption is consistent with the O*NET documentation, which states
that each occupation requires a specific combination of abilities to effectively perform its
tasks (Peterson et al., 2001). By aligning AI capabilities with occupational abilities,
this approach provides a robust framework for assessing the impact of AI on different
occupations.

The first step in constructing the index of automation AI exposure is to determine
the location of Stack Overflow members and retain those living in the United States
and its closest trading partners. The identification of member locations is conducted
through a four-step process. First, I use the place of living mentioned in the members’
profiles.Second, when the place of living is missing, I use ChatGPT to extract any geo-
graphical information from the members’ personal descriptions.2 Third, if both the place
of living and personal descriptions are unavailable, I refer to the personal website domain.
Fourth, the geographical information obtained from the previous steps is then passed to
Google Maps to identify the country of living. Finally, I focus on members who live in
the United States and its primary trading partners to ensure the accurate tracking of
AI algorithm development relevant to the US market.3 It is well-documented that in-
ternational trade and the activities of multinational companies play a significant role in
technological transfers (Bilir and Morales, 2020; Buera and Oberfield, 2020; Keller and
Yeaple, 2013).

Next, I identify AI-related tags on Stack Overflow to pinpoint AI-related questions
and subsequently match them to occupational requirements. Out of approximately 60,000
tags on Stack Overflow, the identification of those directly related to AI is performed in
three steps. I start by searching for AI keywords in the tags’ names and their technical
descriptions provided by Stack Overflow. The list of keywords is derived from Alekseeva
et al. (2021) and supplemented with additional keywords from computer science and
technology literature. This step yields a conservative number of AI-related tags, limited by
the comprehensiveness of the keywords list. Then, I identify additional tags that are used
in conjunction with those identified in the first step to ensure the inclusion of the latest

1There is no guidance in the literature regarding the descriptors of the occupations that should be
used to measure AI exposure. While Webb (2020) relies on the description of more than 18 000 tasks
performed within occupations, Felten et al. (2018, 2021) use 52 abilities required to perform occupations.
In contrast, Brynjolfsson et al. (2018) and Eloundou et al. (2023) take advantage of 2069 detailed work
activities, which are merged to tasks performed in occupations.

2I use ChatGPT 3.5 Turbo.
3The closest trading partners include Bermuda, Canada, China, France, Germany, India, Ireland, Italy,

Japan, Mexico, The Netherlands, Singapore, South Korea, Switzerland, Thailand, the United Kingdom,
and Vietnam.
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AI technologies. This broader search captures a more comprehensive set of AI-related
tags, although some may not be directly related to AI (e.g., Python). Finally, I employ
ChatGPT to verify which of the identified tags are directly related to AI. This step refines
the list to ensure accuracy in identifying AI-specific tags. Through this methodology, I
identify 1182 AI-related tags encompassing 181 233 questions.

Then, to integrate the information from Stack Overflow with the abilities required
in occupations, I construct a transition matrix that links the descriptions of AI-related
tags to the descriptions of abilities.4 This transition matrix is populated using cosine
similarity measures, which quantify the semantic similarity between the description of an
AI-related tag and the description of an ability. The cosine similarity score ranges from -1
to 1, where 1 indicates identical meanings, -1 signifies opposite meanings, and 0 denotes
orthogonality. Negative scores are replaced with 0, as an AI algorithm is unlikely to be
used to perform an ability that is conceptually opposite. The cosine similarity measures
are calculated for each pair of tag-ability descriptions using sentence embeddings generated
by the Sentence-BERT model. Sentence-BERT creates embeddings in a 768-dimensional
vector space (Reimers and Gurevych, 2019).5

To compute the index of automation AI exposure, I integrate the information from
Stack Overflow and O*NET through a five-step process. In this initial step, I consider the
votes attached to AI-related questions in 2022 and smooth these scores over time using
a yearly decay factor.6 A decay factor of 50% is applied, meaning that the impact of a
question is halved for each additional year since its publication. This approach acknow-
ledges that new technologies frequently emerge, rendering older questions less relevant.
The formula for calculating the smoothed score of an AI-related question for a specific
year is:

Sqt = Vq2022 ∗
0.5(t−k)∑2022

k 0.5(2022−k)
(1)

Where Sqt is the smoothed vote score for question q in year t, Vq2022 represents the
votes the question received in 2022, and k is the year of publication. To illustrate the
decay factor, a question published in 2020 with a score of 10 in 2022 has a smoothed score
of 5.7, 2.9, and 1.4 in 2020, 2021, and 2022, respectively. This step give a table containing
a smoothed yearly score for each AI-related question between its year of publication and
2022.

In the second step, I aim to calculate a yearly AI exposure score for each AI-related
4The AI-related tags’ descriptions are sourced from ChatGPT, given that the descriptions provided

by Stack Overflow are often highly technical and do not adequately convey the practical purposes that
developers pursue when utilizing these technologies. Therefore, I leveraged ChatGPT to articulate the
tasks that developers aim to accomplish with these tags.

5I utilize the "all-mpnet-base-v2" model.
6Questions with a negative score are excluded as they are deemed uninformative by the Stack Overflow

community.
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tag. To accomplish this, I divide the smoothed scores from equation 1 by the number of
tags attached to each question, thereby avoiding double counting. These adjusted scores
are then aggregated at the tag level as follows:

STgt =
∑
q∈Qg

Sqt

nq

(2)

Here, STgt represents the AI exposure score for the AI-related tag g in year t. Qg

denotes the set of questions tagged with g and nq indicates the number of tags attached
to question q. This method yields a yearly AI exposure score for each AI-related tag from
2010 to 2022.

Third, I utilize the yearly tag scores from equation (2) in conjunction with the trans-
ition matrix to compute the exposure to AI at the ability level:

Aat =

∑t
2010

∑1182
g=1 STgt ∗ Cag

1182
(3)

In this equation, Aat measures the exposure to AI for the ability a in year t. The
numerator represents the cumulative sum of yearly tag scores, weighted by the cosine
similarity measures Cag between the descriptions of the tags and the ability a. This
weighting gives greater significance to yearly tag scores where the tag’s description closely
aligns with the ability’s description. The denominator, consisting of the total number of
AI-related tags, normalizes this sum to produce an average exposure score at the ability
level for each year.

Fourth, I use the yearly ability AI exposure and the importance and level scores
provided by O*NET to compute the automation AI exposure index at the occupational
level. The computation is as follows:

AI_autoot =
52∑
a=1

Aat ∗ Lao ∗ Iao∑52
a=1 Lao ∗ Iao

(4)

Here, AI_autoot represents the automation AI exposure for occupation o in year t.
This index is the weighted average of the abilities’ AI exposure scores from equation (3),
where the weights are the importance Ioa and level Loa scores, reflecting the varying re-
quirements for abilities across occupations.7 To account for the differing requirements
across occupations, the weights are rescaled between 0 and 1, as commonly done in the
literature (Brynjolfsson et al., 2018; Felten et al., 2021; Webb, 2020).8 Since the import-
ance and level scores are fixed at their 2010 values, all variations in AI_autoot are driven
by the changes in questions asked on Stack Overflow over time.

7Higher importance and level scores indicate that an ability is crucial and frequently used within an
occupation, while lower scores suggest that the ability is less relevant.

8Some occupations necessitate higher scores for many abilities, resulting in a larger total score.
Without rescaling, this would disproportionately increase the AI exposure for these occupations com-
pared to those with lower total scores.
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Finally, I convert the index into the 2018 Standard Occupational Classification (SOC)
system by using crosswalks from O*NET and computing the simple mean at the 6-digit
level.9 Additionally, I standardize the AI exposure index using the Z-score to facilitate
interpretation of the results. A negative Z-score indicates that AI exposure is below
the average, while a positive Z-score indicates above-average exposure. Ultimately, this
methodology yields automation AI exposure scores for 758 occupations from 2010 to 2022.

Figure 2 presents the exposure to AI automation at the ability level for 2022 (see
equation 3). The figure reveals a clear distinction between cognitive abilities and other
types of abilities. Cognitive abilities are significantly more exposed to AI than phys-
ical, psychomotor, and sensory abilities, corroborating previous findings in the literature
(Felten et al., 2021). Among the most exposed abilities are those related to combining
information and extracting patterns, such as speed of closure and deductive reasoning.
This is expected, given that AI algorithms excel at these tasks. Additionally, abilities
related to understanding spoken words and sentences, such as oral comprehension, are
also highly exposed.

Conversely, the least exposed abilities include sensory abilities (e.g., auditory attention
and far vision), psychomotor abilities (e.g., multilimb coordination), and physical abilities
(e.g., stamina and gross body equilibrium). These abilities are less susceptible to AI
automation due to their reliance on physical and sensory inputs that AI currently finds
challenging to replicate.

Table 1 presents the occupations most and least exposed to AI automation. The most
exposed occupations are predominantly white-collar that require advanced educational
degrees and high levels of cognitive abilities. Among these, "Purchasing Agents, Except
Wholesale, Retail, and Farm Products," "Judges, Magistrate Judges, and Magistrates,"
and "Clinical and Counseling Psychologists" exhibit the highest scores. Conversely, the 20
least exposed occupations are exclusively blue-collar demanding substantial physical and
psychomotor abilities. Occupations such as "Dancers," "Helpers–Painters, Paperhangers,
Plasterers, and Stucco Masons," and "Structural Iron and Steel Workers" have the lowest
scores. These findings align with those of Felten et al. (2018, 2021), who identified similar
patterns in AI exposure across various occupations.

2.2 Augmentation AI exposure

The methodology used to create the index of augmentation AI exposure closely mirrors
that employed for the index of automation AI exposure. The key difference lies in the
use of micro-titles for occupations and industries instead of abilities. Autor et al. (2024)
demonstrate that micro-titles effectively capture the services rendered in occupations and
industries rather than the specific tasks required to render these services. They also show

9ONET classifies occupations using a more granular 8-digit system, whereas the SOC system used in
official statistics and surveys employs a 6-digit classification.
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that micro-titles can be employed to measure technologies that complement occupations
and industries. By maintaining the rest of the methodology consistent, I ensure that any
differences observed between automation AI exposure and augmentation AI exposure are
attributable solely to the use of micro-titles instead of abilities, rather than methodological
discrepancies.

Micro-titles are sourced from the Census Alphabetical Indexes of Industries and Oc-
cupations (CAI). The CAI provides a comprehensive list of micro-industry and micro-
occupational titles reported by respondents of Census Bureau demographic surveys. Each
micro-industry title is assigned a NAICS code, and each micro-occupational title is as-
signed a SOC code by the Census Bureau. For this study, I use the 2010 CAI, which
includes 30 801 micro-occupational titles (e.g., Supervisor waterworks, Candle molder
hand, Audit machine operator) and 22 001 micro-industry titles (e.g., Aluminum rolling
and drawing, Bus washes, Yacht cleaning). Utilizing micro-titles from 2010 ensures that
all variations in augmentation AI exposure are attributable to changes in the questions
on Stack Overflow over time.

To construct the index of augmentation AI exposure, I follow a similar procedure
to that used for automation AI exposure. First, I identify the locations of Stack Over-
flow members and retain questions using AI-related tags from members residing in the
United States and its most significant trading partners. I then smooth the vote scores.
Next, I integrate information from Stack Overflow and the CAI by creating two transition
matrices: one linking AI-related tags with micro-industry titles and another linking AI-
related tags with micro-occupational titles. Subsequently, I compute the augmentation
AI exposure separately for industries and occupations and then average these exposures
at the occupation-industry level. This process results in augmentation AI exposure meas-
urements at the 6-digit 2018 SOC and 4-digit 2022 NAICS levels for the period 2010-2022.
A more detailed explanation is provided in Appendix A.5.

Table 2 presents the occupations most and least exposed to augmentation AI. Among
the most exposed occupations, those related to computers are highly represented, includ-
ing "Computer and Information Research Scientists," "Computer Systems Analysts," and
"Computer Programmers." In contrast, the least exposed occupations are more diverse
and include roles requiring substantial physical effort, such as "Rock Splitters, Quarry,"
"Pourers and Casters, Metal," and "Stonemasons," as well as specialist physicians like
"Oral and Maxillofacial Surgeons," "Orthodontists," and "Dental Hygienists."

Many variants were tested throughout the development of the automation AI exposure
and augmentation AI exposure indices. However, none of these variants altered the results
of this study. The creation of these indices involves several methodological choices that
warrant discussion, such as the selection of AI-related tags and the locations of Stack
Overflow members. Nevertheless, altering these parameters by adopting more or less
restrictive definitions does not impact the observed effects of AI on new work, employment,
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and wages.

2.3 New work

The measure of new work is constructed by comparing the "alternate titles" rubric and its
updates in O*NET between 2015 and 2022. The "alternate titles" rubric was introduced
in version 20.1 of O*NET in 2015. Alternate titles are micro-titles developed to enhance
keyword searches in O*NET (Gregory and Lewis, 2015). These micro-titles are closely
related to the concept of jobs and provide a more detailed description of specific positions
within occupations.

In O*NET 27.1, the latest version for 2022, there are 52 772 entries (42 889 unique
alternate titles) covering 1016 occupations. For example, the occupation "Software De-
veloper" includes 132 alternate titles, such as "Application Developer," "Artificial Intelli-
gence Specialist," and "Computer Software Engineer." These alternate titles are distinct
from one another and provide a more granular level of detail compared to the broader
occupation categories. On average, there are 52 alternate titles per occupation, with most
occupations having between 10 and 100 micro-titles.

O*NET and the alternate titles are regularly updated, with O*NET receiving two
updates in 2015 and four updates per year subsequently. Analysis of the alternate titles
reveals that there is typically one major update per year, along with several minor updates.
Five sources are utilized to identify new alternate titles: incumbents and occupational
experts, employer job postings, submitted job titles in the occupational code assignment
process, analysis of search term data from customers, and requests from representative
groups such as associations and professional organizations. When a new micro-title is
identified, occupational analysts undergo a multi-step review process before adding it to
the alternate titles. This review ensures that new alternate titles are not already present
in the database, are sufficiently familiar to be included, and adhere to style and formatting
guidelines.

A major challenge in measuring new work is distinguishing alternate titles that reflect
task creation and specialization from those resulting from mere renaming or rewording.
To address this, I extensively clean the alternate titles to ensure that the measurement
captures only new work attributable to specialization and task creation.

The data cleaning process consists of several steps. First, I convert alternate titles to
lowercase, replace acronyms with their full meanings, expand abbreviations, and remove
stop words and punctuation. Then, I convert plural words to their singular forms and
standardize gendered words to male forms, as male words are more commonly used in
O*NET. Next, I retain unique words within alternate titles and order the remaining
words alphabetically. Finally, I eliminate duplicate alternate titles within occupations.
This cleaning process results in 49 749 unique entries for the period 2015-2022, compared
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to the initial 52 729 entries, highlighting the importance of thorough data cleaning.10

I identify new work by comparing the cleaned versions of alternate titles within occu-
pations across two years. This process involves exact matching of alternate titles between
years t and t-1, supplemented by fuzzy matching based on the meanings of the alternate
titles. Fuzzy matching is necessary because the wording of some alternate titles might
change over time, even if the task content remains the same.

For instance, in the occupation "Nuclear Technicians" (SOC 19-4051), the altern-
ate titles "Nuclear Technician Worker" and "Nuclear Technician" appear in 2016, while
"Nuclear Operating Technician" and "Nuclear Reactor Technician" were already present
in 2015. The titles appearing in 2016 are broader and do not reflect changes in task
content or specialization. Similarly, in 2019, the title "Medical Transport Driver" was
added to the occupation "Ambulance Drivers and Attendants, Except Emergency Med-
ical Technicians" (SOC 53-3011), even though "Transport Medic," "Medical Driver," and
"Driver Medic" were already present. Approximate matching ensures that these new titles
are considered variations of existing ones, rather than being incorrectly identified as new
work.

Fuzzy matching relies on Semantic Textual Similarity. To achieve this, I use the
sentence-BERT model to create sentence embeddings for each alternate title (Reimers
and Gurevych, 2019). Then, I compute the cosine similarity measures for each pair of
alternate titles within occupations. The cosine similarity scores range from -1 (indic-
ating opposite meanings) to 1 (indicating identical meanings). Two alternate titles are
considered identical if their similarity measure is 0.7 or higher. This threshold was determ-
ined by examining the matching results.11 A threshold set too high would not sufficiently
account for rewording, causing some alternate titles to erroneously appear as new work
despite no changes in task content. Conversely, a low threshold would fail to capture
genuine instances of new work.

For example, the alternate title "Medical Transport Driver" has a similarity score of
0.72 with "Transport Medic," 0.84 with "Medical Driver," and 0.79 with "Driver Medic."
Therefore, "Medical Transport Driver" is not considered new work when it was added in
2019.

Between 2015 and 2022, 2159 instances of new work were added within occupations,
averaging 308 new work additions per year. This figure is slightly below the estimates
reported by Autor et al. (2024). Using updates from the Census Alphabetical Index of
Occupations, Autor et al. (2024) identified 28 315 instances of new work during the period

10In 2020, O*NET updated its occupational classification to align with the 2018 Standard Occupational
Classification provided by the US Bureau of Labor Statistics. This update introduced new occupations
and involved splitting and merging some existing ones. To address these changes, I use the crosswalk
provided by O*NET and perform a double matching between alternate titles in the previous classification
with those in the updated version, as well as between the O*NET-SOC 2010 codes and the O*NET-SOC
2019 codes.

11The following thresholds were tested: 0.95, 0.90, 0.80, 0.70, 0.60, and 0.50. The choice of threshold
does not affect the results concerning the effect of AI exposure on the creation of new work.
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from 1940 to 2018, corresponding to an average of 363 new work additions per year.
Table 3 provides examples of new alternate titles added to O*NET between 2015 and

2022. Some new work can be directly attributed to technological advancements, such as
"Autonomous Vehicle Design Engineer" introduced in 2018 and "Remote Pilot" in 2021.
Other new work reflects emerging services unrelated to technological changes, such as
"Culinary Artist" added in 2020 and "Cat Groomer" in 2022.

2.4 Wages and employment data

Data on wages and employment are sourced from the Occupational Employment and
Wage Statistics (OEWS) database (BLS, 2023), maintained by the US Bureau of Labor
Statistics (BLS). This database, built on establishment-based data series, provides more
accurate estimates for wages and employment at the occupational level compared to house-
hold surveys (Acemoglu et al., 2022).

The OEWS provides annual employment and wage estimates for industry-occupation
cells. In the May 2022 version, the database includes 831 occupations (at the 6-digit
level) and 247 industries (at the 4-digit level). On average, each industry encompasses
147 occupations, and each occupation is represented in 44 distinct industries.

Wage estimates represent straight-time gross pay, excluding premium pay. I rely on the
mean hourly wage, adjusted to 2022 dollars.12 The data includes part-time and full-time
employees who are paid a wage or salary. Data from establishments in farm industries
and those in the Public Administration sector are excluded from the sample.13

I use wage and employment estimates from 2010 to 2022. However, the classifications
for occupations and industries have changed over time. The occupation classification was
updated in 2018, while the industry classification has been updated three times (2012,
2017, and 2022). To ensure consistency in occupation and industry groups over time, I
use crosswalks provided by the BLS and the US Census Bureau.

Finally, I construct a balanced panel dataset by merging the AI exposure indices with
information from the BLS. I retain only observations for occupations that are consist-
ently present within industries throughout the entire period. The final dataset comprises
230 204 observations for analyzing the effect of AI exposure on wages and employment
from 2010 to 2022, and 141 664 observations for examining the impact of AI on new
work from 2015 to 2022. These observations cover 672 distinct occupations across 244
industries. For 2022, this dataset represents 72% of US employees.

Table 4 provides descriptive statistics on wages and employment size. The mean hourly
wage is 34.6 with a standard deviation of 18.8. On average, an occupation-industry cell
has 5993 individuals.

12Hourly wages are computed by dividing total wages by total worked hours.
13Excluded industries correspond to the following NAICS codes: 111, 112, 1131, 1132, 114, 1153, 814,

and 92.
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3 Comparison with previous proxies

In this section, I compare the AI exposure measures developed in this study with other
indices proposed in the literature. First, I analyze the relationship with indices measuring
AI exposure. Next, I examine indices that measure various tasks and skills impacted by
previous waves of digital technologies. Finally, I explore the relationships with exposures
to factors that have influenced labor demand in recent decades, including offshorability,
software, and robots.

Table 5 presents the results of estimating the relationships between the AI exposure
indices developed in this study and other AI indices proposed in the literature, using OLS
estimators. To facilitate interpretation, the indices are converted into percentile ranks.

Columns 1 to 3 use the automation AI exposure index as the dependent variable.
Automation AI exposure appears closely aligned with the index suggested by Felten et
al. (2021), with a point estimate of 0.97 (column 1). This result is unsurprising since
the methodologies for producing these two indices are similar, both relying on abilities
to describe the content of occupations. Additionally, Felten et al. (2021) focus on AI
applications that have experienced the fastest growth since 2010 and are believed to be
more likely used in the medium term. There is significant overlap between their AI
applications and the AI-related tags on Stack Overflow.

The correlation with the index from Brynjolfsson et al. (2018) is statistically significant
but relatively weak (point estimate of 0.23) (column 2). This can be explained by the
nature of their index, which focuses solely on machine learning, a subfield of AI, whereas
this study employs a broader concept of AI.

The relationship between the measure of automation AI exposure and the index from
Webb (2020) is not statistically significant (column 3). This discrepancy may be due to
Webb (2020) using patents to measure AI exposure. AI systems are often protected as
trade secrets, and protecting them under copyright and patent laws presents challenges
(Foss-Solbrekk, 2021; Hattenbach and Snyder, 2018; Hu and Jiang, 2019). Furthermore,
AI algorithms might be published as open source. Therefore, patents may reflect only a
limited aspect of AI adoption due to these varied protection strategies.

Columns 4 to 6 present the relationships when the dependent variable is the augment-
ation AI exposure measure. The association with Felten et al. (2021) and Brynjolfsson
et al. (2018) is much weaker than for automation AI exposure and is not significant for
the latter (columns 4 and 5, respectively). These results indicate that augmentation AI
exposure captures a different aspect of AI exposure compared to these previous indices.
Specifically, Felten et al. (2021) and Brynjolfsson et al. (2018) focus on measuring AI
that can perform tasks, rather than AI that complements output at the occupational and
industry level.

Regarding Webb (2020), the coefficient is 0.31 and is significantly different from zero.
This result suggests that firms might be more likely to patent AI algorithms that com-
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plement labor rather than replace it.
Table 6 explores the relationships between the AI exposure measures developed in this

study and indices measuring different types of tasks and skills, all converted into percentile
ranks. Previous research has shown that routine tasks are more likely to be automated
by computers and robots because they are easier to codify (Acemoglu and Autor, 2011;
Autor, 2015; Autor et al., 2003). In contrast, the demand for decision-making skills
has increased in recent decades and has been relatively insulated from previous waves
of automation (Deming, 2021). However, these decision-making skills are likely to be
affected by AI algorithms (Agrawal et al., 2019; Choi et al., 2023; Shin et al., 2023).

Panel A presents the results when the response variable is the automation AI expos-
ure.14 In column 1, the routine task index shows a negative relationship with exposure to
automation AI (point estimate of -0.47). This negative association indicates that AI can
automate tasks distinct from those affected by previous waves of digital technologies.

In columns 2 to 6, the routine task index is decomposed into subcategories. Routine
manual and routine cognitive tasks are negatively associated with AI automation expos-
ure (point estimates of -0.79 and -0.16, respectively) (columns 2 and 3). While Eloundou
et al. (2023) find a negative association between their measure of AI exposure and routine
manual tasks, they detect a positive association with routine cognitive tasks. Column 4
shows a negative relationship between automation AI exposure and non-routine manual
tasks (point estimate -0.89). Interestingly, the association is positive for non-routine inter-
personal and non-routine analytical tasks (columns 5 and 6). Instead of being automated,
these tasks have been complemented by previous waves of automation (Autor, 2022), and
the skills required to perform them have been in demand (Deming, 2017; Deming and
Kahn, 2018). Finally, automation AI exposure is also positively associated with decision-
making skills (column 7), suggesting that these skills are at risk of automation due to
AI.

In Panel B, augmentation AI exposure is used as the response variable. Overall, the
associations are smaller than for automation AI exposure and are sometimes not stat-
istically significant, highlighting the differences between automation AI exposure and
augmentation AI exposure. Augmentation AI exposure is negatively associated with the
routine task index and routine manual tasks (point estimates: -0.13 and -0.08, respect-
ively) (columns 1 and 2). Conversely, it has a positive relationship with non-routine
analytical tasks (point estimate: 0.29) (column 6). This result suggests that occupations
relying on non-routine analytical tasks might benefit from AI, similar to the effects seen
with robotization and computerization (Autor, 2022). Column 7 shows a positive associ-
ation between the measure of augmentation AI exposure and decision-making skills (point
estimate: 0.18).

In Table 7, I analyze the relationship between indices of AI exposure and measures
14The indices related to the routine task index (columns 1 to 6) are constructed following Acemoglu

and Autor (2011). The measure of decision-making is based on Deming (2021).
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of offshorability, software utilization, and robotics. Columns 1 to 3 present the results
where automation AI exposure serves as the dependent variable. In Column 1, the results
indicate a positive association with being exposed to offshorability (point estimate: 0.61).
This finding implies that occupations vulnerable to offshorability are also susceptible to
automation AI exposure. Conversely, occupations with high exposure to software are less
likely to face automation AI exposure (Column 2). The significant negative coefficient
for robot exposure (Column 3, point estimate: -0.73) further supports the notion that
occupations impacted by automation AI exposure differ from those affected by earlier
waves of automation.

Columns 4 to 6 shift the focus to augmentation AI exposure as the dependent variable.
Here, the exposure to software emerges as the sole index with a positive and statistically
significant association with augmentation AI exposure (Column 5). This result high-
lights that software-intensive occupations are more likely to benefit from augmentation
AI technologies.

This section offers several critical implications. Firstly, it validates the use of Stack
Overflow queries as a method for tracking AI development within the economy. The
comparison of these measures with those found in existing literature demonstrates that the
constructed indices for automation AI and augmentation AI exposure are consistent and
reliable. Secondly, the findings provide evidence that AI impacts distinct tasks and skills
compared to robots and traditional computers. Notably, there is a significant relationship
between AI exposure and the prominence of analytical non-routine tasks and decision-
making skills. Consequently, future research on the impact of AI should concentrate on
these specific tasks and skills to gain a more nuanced understanding of AI’s economic
effects.

4 AI exposure and new work

In this section, I first provide descriptive statistics showing which occupations are more
exposed to automation AI and augmentation AI. I look at the exposure by broad occupa-
tion groups, wages, and educational requirements. In a second subsection, I study where
new work emerges. Similarly to AI exposure, I study the emergence of new work by broad
occupation groups, wages, and educational requirements.

4.1 Which occupations are more exposed to AI?

Figure 3 Panel A shows the exposure to automation AI by broad occupations for 2022.
Management, business, legal, and STEM occupations are the most exposed to AI auto-
mation in 2022. "Office and Administrative Support" and "Educational instruction and
Library" occupations also have a high exposure to AI automation. On the contrary,
occupations relying on physical activities appear less exposed (e.g., "Farming, Fishing,
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and Forestry", "Construction and Extraction", and "Transportation and Material Mov-
ing"). This result reflects the differences in ability requirements. Management, Business,
Legal, and STEM occupations rely more on cognitive abilities, which are more exposed
to automation AI (see Figure 2).

Similarly, Figure 3 Panel B documents the exposure to augmentation AI by broad
occupations. In 2022, STEM occupations have the highest exposure to augmentation AI.
On the other hand, occupations in "Sales and Related", "Food Preparation and Serving
Related", and "Personal and Care Service" are the least exposed.

I dig deeper into AI exposure at the occupational level by looking at the overlap
between automation AI and augmentation AI exposure. Figure 4 displays the scatterplot
using automation AI exposure for the x-axis and augmentation AI exposure for the y-axis,
both in percentile rank. A weak positive relationship emerges from this figure. This result
has two important implications. First, it shows that occupations exposed to augmentation
AI exposure and automation AI exposure can be different. Some occupations could mit-
igate the adverse effect of automation due to AI by using AI to complement their output
(top right corner of the figure). Other occupations could gain from augmentation AI and
not be hurt by automation AI (top left corner). Occupations in the bottom right might
be negatively affected by automation AI and not gain from augmentation AI. Occupation
on the bottom left should not be directly affected by AI exposure. The second implication
is that AI seems different from previous historical innovations. Autor et al. (2024) show
a similar figure for the relationship between exposure to automation and augmentation
innovations at the occupation level between 1980 and 2018. They find a much stronger
positive relationship.

Now, I explore the exposure to AI by the characteristics of the occupations. Fig-
ure 5 presents the average exposure to automation AI (Panel A) and augmentation AI
(Panel B) by typical entry-level education.15 I distinguish between occupations having a
typical-level education equal to or below an associate’s degree and those having higher
requirements. This distinction reflects that decision-making skills are often necessary for
occupations requiring a Bachelor’s degree or higher (Deming, 2021). Those skills are more
likely to be affected by AI exposure (Agrawal et al., 2019; Choi et al., 2023; Shin et al.,
2023). Automation AI exposure increases with the level of educational requirements. Oc-
cupations requiring a lower level of education rely on abilities for which AI is not well
suited, such as near-vision, arm-hand steadiness, finger dexterity, and manual dexterity.
On the contrary, high-skilled occupations depend more on abilities more exposed to auto-
mation AI (e.g., written comprehension, fluency of ideas, or flexibility of closure). These
findings echo results from Eloundou et al. (2023) and Webb (2020), who find a positive
relationship between AI exposure and educational attainment.

Panel B reproduces a similar exercise but for augmentation AI exposure. On average,
15The typical entry-level education comes from the US Bureau of Labor Statistics. It represents the

typical education level most workers need to enter an occupation.
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occupations with a typical entry-level education equal to an associate’s degree or lower
are less exposed to augmentation AI.

Finally, I document the relationships between AI exposure and hourly wages (Figure
6). In both panels, the x-axis represents the average hourly wages for 2022, measured in
percentile rank. Panel A shows a positive relationship between automation AI exposure
and the level of hourly wages. This positive relationship appears much more pronounced
for occupations with an average hourly wage above the median. These findings corroborate
previous results in the literature (Acemoglu et al., 2022; Webb, 2020). In panel B, the
y-axis measures the augmentation AI exposure. The regression line shows a positive
association until the median hourly wages become flat.

This subsection highlights two main findings regarding AI exposure. First, occupations
exposed to automation AI differ from those exposed to augmentation AI, suggesting that
the effect of AI exposure can be heterogeneous. Second, high-paid occupations appear
more exposed to automation AI. This finding points out the difference between automation
induced by AI and recent waves of automation, such as robots, that affect mainly middle-
paid workers (Autor and Dorn, 2013; Autor et al., 2003; Goos and Manning, 2007; Goos
et al., 2009; Michaels et al., 2014).

4.2 Where does new work emerge?

In this subsection, I start by examining where new work emerges. Then, I investigate the
correlation between new work and the measures of AI exposure.

Figure 7 documents the percentage of new work by broad occupation for 2015-2022.
It shows that new work emerges mainly in STEM, business, and managerial occupations.
This result confirms previous findings showing a shift in the emergence of new work
towards high-paid occupations (Autor et al., 2024). The occupation "Computer and
Mathematical" has the highest share of new work: 24% of the alternate titles in 2022
appeared during the last 7 years. This result reflects the recent progress in computer
science and the creation of new tasks in this field. Within this broad occupation, and
not surprisingly, the percentage of new work for the occupations "Data Scientists" and
"Computer and Information Research Scientists" reach 41% and 21%, respectively.

After studying in which occupations new work emerges more frequently, I focus on
the relationships between new work and exposure to AI (Figure 8). Panel A presents the
automation AI exposure (x-axis) against the creation of new work (y-axis), both converted
into percentile rank. The association between both measures is negative and then positive.
Occupations with a middle exposure to automation AI are associated with less creation
of new work. In contrast, Panel B displays a slightly positive relationship between the
emergence of new work and the exposure to augmentation AI. The creation of new work
appears slightly more important as occupational AI exposure increases.

This subsection provides evidence of where new work emerges. New work emerges
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more often in high-skilled occupations. This result supports the findings in Autor et
al. (2024), which show that the locus of new task creation has shifted toward high-paid
occupations in recent years. Interestingly, the emergence of new work appears to be more
important in occupations facing higher augmentation AI exposure.

5 Labor market effect of AI exposure

In this section, I examine the impact of AI exposure on three key labor market outcomes:
the emergence of new work, employment levels, and wages. The analysis begins with a de-
tailed description of the empirical strategy employed to assess these effects. Subsequently,
I present the main findings, elucidating the relationship between AI exposure and each of
these labor market outcomes.

5.1 Empirical strategy

To investigate the effect of AI exposure on the emergence of new work, I employ fixed effect
estimators. This methodological choice allows for the full exploitation of the dataset’s
information by examining yearly variations in AI exposure. The fixed effects regression
model I use is specified as follows:

Σt
2015NewWorkot
Worko2015

= β1auto_AIot + β2augm_AIoit + β3log(Empoit)+

αoi + γit + δt + εoit

(5)

In this equation, o indexes occupation, i industry, and t year. The dependent variable
is the cumulative share of new work. By considering the cumulative share, I assume that
a job is tagged as new from the year it first appears in the O*NET database onward.
Given the short window of the dataset, this implies that a job is considered new for a
maximum of six years. This duration is shorter than that used by Autor et al. (2024),
who define a job as new for a maximum of ten years.

AI_autoot represents the measure of automation AI exposure, which varies at the
occupation-year level (6-digit). This measure is derived from equation (4). AI_augmit

denotes the score for augmentation AI exposure at the occupation-industry-year level
(6-digit for occupations and 4-digit for industries), as computed in equation (??). To
facilitate the interpretation of the results, both AI indices are standardized to have a
mean of zero and a standard deviation of one.

I introduce a set of fixed effects to control for unobserved characteristics. The match
between occupations (6-digit) and industries (4-digit) is controlled by α, while δ accounts
for temporary shocks. Additionally, I capture temporary shocks at the industry level
(3-digit) with γ. This fixed effect absorbs factors that have influenced labor market
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outcomes over recent decades, such as robotization and trade (Acemoglu and Restrepo,
2020; Acemoglu et al., 2016; Autor et al., 2013; Graetz and Michaels, 2015; Pierce and
Schott, 2016). By incorporating fixed effects at the 3-digit industry-year level (n=84), I
achieve a more granular control over the impact of robotization compared to most studies
analyzing robots using data from the International Federation of Robotics (IFR). The
IFR data typically measures robot adoption across approximately 20 broad industries.

I also control for the logarithm of employment size, and ε represents the idiosyncratic
error term. The estimations are weighted by employment size, and standard errors are
clustered at both the occupational and industry levels.

The coefficients of interest are β1 and β2. It is hypothesized that new work will emerge
in occupations where AI augments output, while automation AI exposure is not expected
to significantly influence the creation of new work (Autor et al., 2024).

To examine the impact of AI exposure on employment and wages, I estimate the
following fixed effects regression:

log(y)oit = β1auto_AIot + β2augm_AIoit+

αoi + γit + δt + εoit
(6)

In this context, y represents either employment size or hourly wages. When estimating
the effect of AI exposure on wages, I include an additional control for the logarithm of
employment size.

The coefficients of interest are β1 and β2. The sign of β1 is a priori unknown, since
it depends on which effects is the strongest between the displacement effect and the pro-
ductivity effect (Acemoglu and Restrepo, 2018a, 2018b). Theoretically, the displacement
effect tends to reduce labor demand and wages due to capital’s comparative advantage,
whereas the productivity effect increases the labor demand and wages.

β2 is expected to positively influence wages and employment. Technological changes
that complement output have been shown to increase labor demand by creating new
tasks and work where labor holds a comparative advantage (Acemoglu and Restrepo,
2019; Autor et al., 2024).

The estimated effects of AI exposures on the outcomes might be biased due to endo-
geneity issues. The identification of the effect of AI exposures on labor market outcomes
relies on the assumption that automation AI and augmentation AI exposure measures are
orthogonal to the error term. However, this assumption could be questionable for two
main reasons. First, the estimates might be affected by reverse causality: higher wages
could attract more AI investments, rather than AI exposure affecting wages. Second,
the results could be biased due to omitted variables; factors such as education policies,
regulatory changes, or industry shifts could simultaneously influence both AI exposure
and the outcome variables.
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To address these identification threats, I estimate the effect of AI exposures on labor
market outcomes using instrumental variables (IV) regressions. The instrumental vari-
ables are constructed by measuring exposure to automation AI and augmentation AI
using Stack Overflow questions from members living outside the United States and its
closest trading partners. This approach is inspired by Acemoglu and Restrepo (2020) and
Acemoglu et al. (2023), who leverage variation from other countries to assess the effect of
robot adoption within a specific country.

The exposure to AI in the rest of the world serves as an exogenous instrument relative
to wages in the United States, as US labor market conditions do not directly influence it.
This mitigates concerns regarding reverse causality and simultaneity. Furthermore, this
instrument captures broad, global patterns and unexpected changes in AI adoption that
impact labor markets across multiple countries simultaneously. These global trends and
shocks in AI adoption provide a source of variation not influenced by factors specific to
the United States.

By excluding the most significant trading partners of the United States, I ensure that
the instrumental variables do not affect US outcomes through trade channels. Moreover,
AI exposure in the rest of the world is correlated with AI exposure in the United States
due to global technological diffusion and interconnectedness in AI advancements. This
correlation satisfies the relevance condition, ensuring that the instrument has predictive
power over the endogenous regressors (see Table 8).

5.2 Results

In this subsection, I present the main results concerning the effect of automation AI and
augmentation AI exposure on new work, employment, and wages.

5.2.1 New work

I report in Table 9 the estimates in equation (5) to test whether automation AI and
augmentation AI exposures affect the emergence of new. Panel A shows the output when
I use fixed effect estimators. In column 1, automation AI exposure is the only variable of
interest included in the estimation, along with controls for the employment size (log) and
fixed effects for years and occupation-industry matching. Automation AI exposure does
not significantly affect the emergence of new work. In column 2, I add further fixed effects
to control for temporary shocks at the industry level. The coefficient for automation AI
exposure decreases and remains insignificant. I test for the effect of augmentation AI
exposure in column 3. I find a positive association between the exposure of augmentation
AI and the share of new work with a point estimate of 0.028 (SE=0.008). This positive
effect is robust and even reinforced by adding further fixed effects (column 4). In column
5, I add the exposures for automation AI and augmentation AI. The point estimates
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for automation AI and augmentation AI exposures reduce compared to when introduced
separately. However, the effect of augmentation AI exposure remains significant (point
estimate = 0.027; SE = 0.008). In column 6, additional fixed effects are introduced in the
estimation. Adding these controls reduces the coefficient of automation AI but increases
the effect of augmentation AI exposure. According to this estimation, an increase of one
standard deviation in augmentation AI exposure raises the cumulative share of new work
by 0.03.

In Panel B, I re-do the same exercise when using IV estimators to mitigate the iden-
tification threats. Using IV estimators does not change the coefficient and the standard
error compared to the fixed effect estimations. Automation AI exposure does seem to
affect significantly the emergence of new work (columns 1 and 2). In contrast, augment-
ation AI exposure shows a positive and significant effect on the emergence of new work
with a point estimate of around 0.03 (SE=0.008) (columns 3 and 4). In columns 5 and 6,
the two measures of AI exposures are included together. Only the augmentation expos-
ure predicts the emergence of new work. The Montiel-Pflueger F-test confirms that the
IV estimations are not concerned by the threat of weak instruments (Olea and Pflueger,
2013). First-stage estimations are available in Appendix B.

Results reported in Table 9 echo the findings in Autor et al. (2024), though they focus
on breakthrough innovations and not exclusively on AI. They find that new occupational
tasks emerge in response to augmenting innovations. They do not find evidence that
automation innovation affects the creation of new work.

5.2.2 Employment

In this subsection, I test whether employment size responds to the exposure to automation
AI and augmentation AI.

Table 10 presents the estimates of equation (6) when employment size (in log) is used.
Fixed effect estimators are used in Panel A. In column 1, only automation AI exposure
is included in the regression with time and industry-occupation fixed effects. The point
estimate is statistically insignificant, suggesting an absence of effect. In column 2, I add
further fixed effects at the industry-year level to control for possible confounders. The
point estimate increases to reach 0.184 (SE = 0.116) but remains insignificant. I test the
effect of augmentation AI exposure in column 3. Augmentation AI exposure positively
and significantly affects employment size (point estimate = 0.089; SE = 0.023). Including
further controls in column 4 slightly increases the point estimate and the standard error,
though the coefficient remains statistically significant at 1%. In Column 5, both measures
of AI exposure are included in the estimation. While the point estimate for automation
AI exposure is divided by more than two, the effect of augmentation AI exposure is only
slightly reduced. In column 6, the complete set of fixed effects is added. The point estimate
for automation AI exposure increases but remains statistically insignificant. In contrast,
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the effect of augmentation AI exposure slightly increases, though it is still significant at
1%. An increase of one standard deviation in the exposure to augmentation AI increases
the employment size by 9.5%.

Panel B displays the results for the IV estimators. Using IV estimators instead of
fixed effects estimators does not significantly affect the point estimates and standard
errors. When automation AI exposure is the only variable of interest included in the
regression (columns 1 and 2), its point estimate is statistically insignificant. In contrast,
augmentation AI exposure positively and significantly affects employment size, regard-
less of the variety of fixed effects introduced (columns 3 and 4). The positive effect of
augmentation AI exposure remains positive and statistically significant when included in
the estimation with the exposure of automation AI (columns 5 and 6). The estimations
pass the Montiel-Pflueger F-test (Olea and Pflueger, 2013), and First-stage estimations
are available in Appendix B.

I provide different results than Acemoglu et al. (2022), who do not find discernible
relationships between AI exposure and employment. In contrast, Bonfiglioli et al. (2023)
estimate robust adverse effects of AI exposure on employment across commuting zones
and time, and Babina et al. (2024) shows that AI-investing firms experience higher growth
employment. Using data for three European countries, Engberg et al. (2024) find mixed
results: an adverse effect of AI exposure on employment in Portugal, a positive one in
Sweden, and no significant effect in Denmark. However, none of these studies distinguish
between AI that augments output and AI used to automate tasks.

Not specifically focusing on AI, but still related to this study, Autor et al. (2024) and
Kogan et al. (2023) find a positive and statistically significant effect of labor-augmenting
technologies and innovations on employment. However, in contrast with this study, Autor
et al. (2024) show a negative effect of automation innovation on employment.

5.2.3 Wages

Now, I turn on the effect of AI exposure on wages. To do so, I estimate the equation (6)
using the hourly wages as the response variable.

Table 11 Panel A shows the estimates when fixed effect estimators are used. Automa-
tion AI exposure shows a negative and statistically significant effect on hourly wages when
only time and industry-occupation fixed effects are included (point estimate = -0.193; SE
= 0.042) (column 1). Including further industry-year fixed effects, reduce the point estim-
ate and the standard deviation to -0.173 and 0.028, respectively (column 2). In column
3, automation AI exposure is replaced by augmentation AI exposure, and I control only
for time and industry-occupation fixed effects. Augmentation AI exposure has a statistic-
ally significant negative point estimate. However, When adding the complete set of fixed
effects, the point estimate of augmentation AI exposure turns statistically insignificant
(column 4). In column 5, both measures of AI exposure are included simultaneously.
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The effect of automation AI exposure appears negative and statistically different from
zero (point estimate = -0.183; SE = 0.038). Augmentation AI exposure has a negative
estimate (-0.012) and is statistically insignificant. In column 6, the whole model is estim-
ated. The point estimate and standard error for automation AI slightly decreases, though
it remains statistically significant: an increase of one standard deviation in automation
AI exposure decreases by 16.0% the hourly wages. In contrast, while the point estim-
ate of augmentation AI exposure increases and its standard error decreases, it remains
statistically insignificant.

Panel B presents the results when using IV estimators. IV estimators do not affect
the point estimates and standard errors. In columns 1 and 2, I include only automation
AI exposure. The point estimate is negative and statistically significant, though both
reduce when the complete set of fixed effects is included (column 2). I explore the effect
of augmentation AI exposure in column 3. I find a negative effect of augmentation AI
exposure on hourly wages (point estimate = -0.021; SE = 0.009). However, once all the
fixed effects are included (column 4), the coefficient becomes statistically insignificant.
Both measures of AI exposure are included in the estimation in columns 5 and 6. Auto-
mation AI exposure negatively affects hourly wages, while augmentation AI exposure is
statistically insignificant but has a positive point estimate.

These results echo the findings in Hui et al. (2023), who find that freelancers offering
tasks in an online platform and competing with ChatGPT experienced a decrease in their
earnings after the release of the large language model. Conversely, Acemoglu et al. (2022)
and Albanesi et al. (2023) do not find a statistically significant effect of AI exposure
on wages. Fossen and Sorgner (2022) shows evidence that an increase in AI exposure
is associated with wage growth. However, these studies use a broad measure of AI and
do not disentangle between automation AI and augmentation AI. Studying the effect of
important innovations, Autor et al. (2024) do not find statistically significant effects of
exposure augmentation innovations and automation innovations on wages.

In summary, this section confirms some predictions of the task-based framework ap-
plied to AI (Acemoglu and Autor, 2011; Acemoglu and Restrepo, 2018b; Autor et al.,
2003, 2024). First, when AI complements output generated by occupations and indus-
tries, it creates new work and tasks. Second, by creating new work and tasks for which
labor has a comparative advantage, augmentation AI exposure increases the demand for
labor. However, the emergence of new work and increased labor demand do not result
in a significant wage increase. This absence of effect on wages might come from the type
of occupations that are complemented and the availability of labor supply. If augment-
ing AI creates new work and tasks in occupations for which there is a labor surplus, new
work can be performed without creating a shortage in the labor market and leaving wages
unaffected. This question is explored in the next section.

Regarding automation AI exposure, it does not affect employment size but reduces
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hourly wages. An explanation could be that AI is adopted to perform some tasks, reducing
the return on labor. However, the performance of AI is not good enough to replace fully
human labor in some tasks, so it does not affect employment size.

6 Extensions and robustness checks

This section starts by exploring heterogeneity analysis in the effect of AI exposure on new
work, employment, and wages. Specifically, I look at whether AI exposure affects occupa-
tions differently according to their educational requirements, helping to understand the
underlying mechanisms in play. Then, I study the effect of AI exposure by distinguishing
the types of AI technologies. Finally, I run several robustness checks.

6.1 Effects of AI by educational requirements

Table 12 shows the effect of augmentation AI and automation AI exposures on the three
labor market outcomes, breaking down by typical entry-level education in occupations.
Results in Panel A rely on fixed effects estimators. Columns 1 and 2 focus on the share
of new work. It shows that automation AI and augmentation AI exposures do not sig-
nificantly affect the share of new work for occupations requiring an Associate’s degree
and a lower level.16. Conversely, augmentation AI exposure appears to positively affect
the share of new work for occupations having a typical entry-level education equal to a
Bachelor’s degree or higher (point estimate = 0.048; SE = 0.009) (column 2).

In columns 3 and 4, I explore the effect of AI exposure on employment size (in log).
When occupations with an educational requirement equal to an Associate’s degree and
lower are retained (column 3), I find a positive effect of augmentation AI exposure with
a point estimate of 0.091 and a standard error of 0.045. In contrast, neither automation
AI exposure nor augmentation AI exposure appears to affect the employment size for
occupations with a Bachelor’s degree and higher (column 4).

Finally, I look at the effect of AI exposure on hourly wages in columns 5 and 6. I find
that automation AI exposure has a negative and statistically significant effect on hourly
wages for occupations requiring an Associate’s degree and lower (column 5): one standard
deviation in the exposure of automation AI decreases hourly wages by 13.6%. Regarding
augmentation AI exposure, it affects significantly high-skilled occupations with a point
estimate of 0.019 and a standard error of 0.005 (column 6).

In Panel B, I re-do the same exercise but using IV estimators. The coefficients and
the standard errors are not significantly affected, and the results remain similar.

These results highlight four economic implications. First, augmentation AI exposure
creates new work for high-skilled occupations, leading to increased wages but not a rise

16Automation AI exposure is statistically significant at 10% only, so I do not consider it.
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in employment size. The inelastic labor supply for these occupations explains the dis-
crepancy between wages and employment. Due to the scarcity and inelasticity of workers
with the necessary skills, firms compete by raising wages to attract talent. Second, evid-
ence suggests that augmentation AI exposure increases employment size for low-skilled
occupations without creating new work or affecting wages. This may reflect that AI,
when used to complement output, generates productivity gains that reduce the prices
of goods and services. The price reduction boosts demand for these goods and services,
increasing labor demand. With an elastic labor supply, this increased demand does not
impact wages. Third, automation AI exposure negatively affects wages for low-skilled
occupations without impacting employment. This can be attributed to the substitution
of labor with capital, which decreases the marginal product of labor, leading to lower
wages. Finally, AI can contribute to rising wage inequality by adversely affecting wages
for low-skilled occupations while increasing wages for high-skilled occupations.

6.2 Effects of AI by type of AI technologies

Table 13 presents the estimates when I distinguish by the type of AI technologies. I charac-
terize the type of AI technologies by grouping the AI-related tags. I rely on their descrip-
tions and K-Means clustering to group AI-related tags together. I distinguish between
three types of AI technologies: Computer Vision, Language Processing and Modeling,
and Machine Learning and Deep Learning.

In Panel A, columns 1 to 3, I present the results when the share of new work is the
response variable and fixed-effects estimators are used. All three types of AI technologies
significantly and positively affect the emergence of new work when the technology is used
to augment the output produced. Conversely, I do not find any effect of automation AI
exposure.

In columns 4 to 6, I look at the effect of AI exposure on employment size (in log). Evid-
ence suggests that Computer Vision technologies do not affect employment size (column
4). Technologies related to Language Processing and Modeling that are used to augment
output positively impact employment size (point estimate = 0.073; SE = 0.033) (column
5). It is also the case of Machine Learning and Deep Learning technologies, with a point
estimate of 0.101 and a standard error of 0.029 (column 6).17

The effect of AI technologies on hourly wages (in log) is explored in columns 7 to
9. Computer Vision shows no discernible effect whether it is used to automate tasks or
augment output (column 7). In contrast, column 8 shows that automation Language Pro-
cessing and Modeling has a negative and statistically significant effect on the hourly wages
(point estimate = -0.072; SE = 0.015). However, augmentation Language Processing and
Modeling does not impact hourly wages. Similar results are found for technologies related

17Automation Machine and Deep Learning exposure is statistically significant at 10% only, so I do not
consider it.
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to Machine Learning and Deep Learning. Those technologies have a negative relationship
with hourly wages when used to automate tasks (point estimate = -0.173; SE = 0.025)
(column 9). No discernible effects are found for augmentation Machine Learning and
Deep Learning exposure.

In Panel B, I rely on IV estimators instead of fixed-effects estimators. These method-
ological changes do not significantly affect the results.

The level of technological advancement may explain these results. Although Computer
Vision has seen rapid improvement over the past decade, its performance remains lower
compared to other AI technologies (Maslej et al., 2024). Machine Learning and Deep
Learning are fundamental to most AI algorithms, making them crucial for the development
of other technologies. This study concludes in 2022, just as ChatGPT was released, which
significantly enhanced language processing and modeling technologies.

6.3 Robustness checks

I perform several robustness checks to ensure that the effects of AI exposures on new
work, employment, and wages are not spurious.

First, I consider placebo treatments where I randomize the relatedness scores in the
transition matrix between abilities and AI-related tags for the construction of automation
AI exposure.18 Similarly, I randomize the relatedness scores between AI-related tags and
occupational and industry micro-titles for augmentation AI exposure.19 The results of the
placebo treatment are presented in Appendix C. I do not find any statistically significant
effects of AI exposure on new work and employment size. I find a positive and statistically
significant effect of automation AI exposure on hourly wages, but the coefficient is too
large to be realistic.

Second, I use the complete database and keep observations even if they are not present
during the whole period and are considered outliers (Appendix D). Using the complete
database slightly increases the positive effect of augmentation AI on the emergence of new
work. The effect of augmentation AI on employment size is not affected. The negative
effect of automation AI on wages is slightly reinforced when I use the complete database.

Third, I use constant weights over time by taking the employment size of the first
year of analysis (i.e., 2015 for the share of new work and 2010 for the employment size
and hourly wages). Results are presented in Appendix E. The point estimate concerning
the positive effect of augmentation AI exposure on the emergence of new work slightly
decreases. Regarding employment size, the point estimates are reduced. The positive
effect of augmentation AI exposure on employment size becomes statistically significant
at only 10%. Automation AI exposure negatively affects hourly wages but with a smaller

18I randomly shuffle the values for Cag in equation (3).
19The values in the transition matrices are randomly shuffled affecting Cig and Cogin equations (7) and

(8), respectively.
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magnitude than baseline estimates.
Finally, I verify that the choice of the wage measure does not affect the results. In

Appendix F, I use the median hourly wages instead of the average. Automation AI
exposure negatively affects hourly wages more than the baseline estimates.

7 Conclusions

In conclusion, this study provides robust evidence on the nuanced effects of AI exposure
on the labor market, emphasizing the importance of distinguishing between automation
and augmentation AI. Utilizing novel measures derived from Stack Overflow data, the
analysis reveals that augmentation AI fosters the emergence of new work and increases
employment size, particularly benefiting high-skilled occupations. Conversely, automation
AI exposure is associated with a decline in wages, disproportionately affecting low-skilled
occupations. These findings align with the skill-biased technological change hypothesis,
underscoring AI’s potential to exacerbate wage inequality.

The implications of these results are manifold. Policymakers must consider tailored
strategies to mitigate the adverse effects of automation AI, particularly for low-skilled
workers, while promoting the beneficial aspects of augmentation AI that can spur job cre-
ation and economic growth. Additionally, this research highlights the need for continuous
monitoring of AI advancements and their diverse impacts across occupations, ensuring
that labor market policies remain adaptive and responsive to technological progress.

This paper contributes significantly to the existing literature by introducing innovat-
ive methods to measure AI exposure and by disentangling the distinct effects of different
types of AI on employment and wages. Future research should build on these findings to
explore the long-term impacts of AI on various economic sectors and to develop compre-
hensive policy frameworks that address the dynamic nature of technological change. The
ongoing evolution of AI technologies necessitates a proactive approach to understanding
and managing their implications for the workforce, ensuring that the benefits of AI are
broadly shared and that potential disruptions are effectively mitigated.
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Figure 1: Linking AI-questions on Stack Overflow to occupations and industries
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Note: The y-axis measures the standardized scores of AI exposure for abilities obtained from equation (3).
Abilities are ranked in decreasing order of the score.
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Figure 3: AI exposure by broad occupation in 2022

Panel A: Automation AI exposure
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Panel B: Augmentation AI exposure
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Note: The figure shows the exposure to automation AI (Panel A) and augmentation AI (Panel B)
for broad occupations in 2022. Augmentation AI exposure is the weighted average exposure at the
occupational level, using employment size in industries as weight. AI scores are the average of the
exposure for occupations weighted by the employment size. Occupations are ranked in decreasing order
of AI exposure. The data includes part-time and full-time employees who are paid a wage or salary. Data
from establishments in farm industries are excluded from the sample (NAICS: 111, 112, 1131, 1132, 114,
1153, and 814), as well as industries within sector 92 Public Administration.
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Figure 4: Correlation between automation AI and augmentation AI exposure, pooled
2010-2022
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Note: The figure shows the relationship between automation AI exposure (x-axis) and augmentation AI
exposure (y-axis) at the occupational level (6-digit). Augmentation AI exposure is the weighted average
exposure at the occupational level, using employment size in industries as weight. The blue line represents
the regression line weighted by the employment size. The regression line has a slope of 0.12 (SE = 0.03)
and an intercept of 0.49 with R2 = 0.01. The data includes part-time and full-time employees who are
paid a wage or salary. Data from establishments in farm industries are excluded from the sample (NAICS:
111, 112, 1131, 1132, 114, 1153, and 814), as well as industries within sector 92 Public Administration.
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Figure 5: AI exposure by typical entry-level education, pooled 2010-2022
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Note: The figure shows the average exposure to automation AI (Panel A) and augmentation AI (Panel
B) by typical entry-level education. Augmentation AI exposure is the weighted average exposure at
the occupational level, using employment size in industries as weight. AI scores are the average of the
exposure for occupations weighted by the employment size. The data includes part-time and full-time
employees who are paid a wage or salary. Data from establishments in farm industries are excluded from
the sample (NAICS: 111, 112, 1131, 1132, 114, 1153, and 814), as well as industries within sector 92
Public Administration.
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Figure 6: AI exposure and wages, pooled 2010-2022
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Panel B: Augmentation occupational AI exposure
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Note: The figure shows the exposure to AI against the average hourly wages, both converted into percent-
ile rank. The dots represent the occupations. The blue line is the smoothed conditional means modeling
with the loess function using 70 points. The grey shadow displays the confidence interval at 0.95. The
data includes part-time and full-time employees who are paid a wage or salary. Data from establishments
in farm industries are excluded from the sample (NAICS: 111, 112, 1131, 1132, 114, 1153, and 814), as
well as industries within sector 92 Public Administration.
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Figure 7: Share of new work by broad occupation, 2015-2022
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Note: The figure shows the percentage of new work by broad occupation between 2015 and 2022.
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Figure 8: AI exposure and new work, pooled 2015-2022
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Panel B: Augmentation occupational AI exposure
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Note: The figure shows the percentage of new workk against the exposure to automation AI (Panel A)
and augmentation AI (Panel B). The dots represent the occupations. The blue line is the smoothed
conditional means modeling with the loess function using 70 points. The grey shadow displays the
confidence interval at 0.95. The data includes part-time and full-time employees who are paid a wage
or salary. Data from establishments in farm industries are excluded from the sample (NAICS: 111, 112,
1131, 1132, 114, 1153, and 814), as well as industries within sector 92 Public Administration.
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Table 1: Occupations with the highest and lowest automation AI exposure, pooled 2010-
2022

Rank Occupation Automation AI score
1 Purchasing Agents, Except Wholesale, Retail, and Farm Products 1.97
2 Judges, Magistrate Judges, and Magistrates 1.91
3 Clinical and Counseling Psychologists 1.85
4 Management Analysts 1.71
5 Law Teachers, Postsecondary 1.70
6 Sociologists 1.66
7 Mathematicians 1.63
8 Environmental Science Teachers, Postsecondary 1.59
9 Mathematical Science Occupations, All Other 1.58
10 Political Scientists 1.58
11 Procurement Clerks 1.57
12 English Language and Literature Teachers, Postsecondary 1.57
13 Health Specialties Teachers, Postsecondary 1.55
14 Geography Teachers, Postsecondary 1.55
15 Psychology Teachers, Postsecondary 1.54
16 Library Science Teachers, Postsecondary 1.53
17 Epidemiologists 1.52
18 Mental Health Counselors 1.52
19 Business Teachers, Postsecondary 1.51
20 Operations Research Analysts 1.51
. . . . . . . . .
739 Tire Builders -1.63
740 Rail Car Repairers -1.64
741 Paperhangers -1.68
742 Plasterers and Stucco Masons -1.69
743 Industrial Truck and Tractor Operators -1.69
744 Floor Sanders and Finishers -1.71
745 Fence Erectors -1.72
746 Dining Room and Cafeteria Attendants and Bartender Helpers -1.74
747 Dishwashers -1.79
748 Terrazzo Workers and Finishers -1.79
749 Insulation Workers, Floor, Ceiling, and Wall -1.82
750 Reinforcing Iron and Rebar Workers -1.84
751 Roof Bolters, Mining -1.86
752 Helpers–Brickmasons, Blockmasons, Stonemasons, and Tile and Marble Setters -1.86
753 Pressers, Textile, Garment, and Related Materials -1.86
754 Helpers–Roofers -1.90
755 Fallers -1.92
756 Structural Iron and Steel Workers -1.97
757 Helpers–Painters, Paperhangers, Plasterers, and Stucco Masons -2.00
758 Dancers -2.17

Note: Occupations are ranked by their score of automation AI exposure at 6-digit Standard Occupational
Classification (SOC) level and computed following equation (4). AI score is standardized to have a mean
of 0 and a standard deviation of 1.
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Table 2: Occupations with the highest and lowest augmentation AI exposure, pooled
2010-2022

Rank Occupation Augmentation AI score
1 Computer and Information Research Scientists 5.81
2 Computer Systems Analysts 4.30
3 Computer Programmers 3.93
4 Software Developers 3.85
5 Computer Network Architects 3.82
6 Software Quality Assurance Analysts and Testers 3.77
7 Computer Hardware Engineers 3.14
8 Veterinary Technologists and Technicians 2.88
9 Web and Digital Interface Designers 2.83
10 Information Security Analysts 2.83
11 Industrial-Organizational Psychologists 2.80
12 Computer Occupations, All Other 2.79
13 Mathematical Science Occupations, All Other 2.70
14 Computer Science Teachers, Postsecondary 2.67
15 Database Architects 2.63
16 Civil Engineering Technologists and Technicians 2.54
17 Environmental Engineering Technologists and Technicians 2.51
18 Web Developers 2.47
19 Computer User Support Specialists 2.39
20 Agricultural Engineers 2.36
. . . . . . . . .
733 Molders, Shapers, and Casters, Except Metal and Plastic -1.51
734 Residential Advisors -1.53
735 Family Medicine Physicians -1.55
736 Cooks, Institution and Cafeteria -1.56
737 Fallers -1.57
738 Rock Splitters, Quarry -1.59
739 First-Line Supervisors of Gambling Services Workers -1.60
740 Pourers and Casters, Metal -1.61
741 Chiropractors -1.63
742 Dental Hygienists -1.63
743 Stonemasons -1.67
744 Tellers -1.75
745 Tapers -1.77
746 Lodging Managers -1.80
747 Morticians, Undertakers, and Funeral Arrangers -1.86
748 Clergy -1.93
749 Dentists, General -2.01
750 Orthodontists -2.10
751 Loan Officers -2.18
752 Oral and Maxillofacial Surgeons -2.18

Note: The table shows the weighted average exposure at the occupational level, using employment size
in industries as weight. Occupations are ranked by their score of augmentation AI exposure at 6-digit
Standard Occupational Classification (SOC) level and computed following equation (9). AI score is
standardized to have a mean of 0 and a standard deviation of 1.
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Table 3: Example of new alternate titles per year, 2016-2022

Year Alternate titles Occupations

2016
Family Reunification Specialist Social and Human Service Assistants (21-1093)

Scrum Master Computer Occupations, All Other (15-1299)

2017
Executive Cyber Leader Chief Executives (11-1011)

Online Health and Fitness Coach Health Education Specialists (21-1091)

2018
Sprinkler Design Technician Civil Engineering Technologists and Technicians (17-3022)

Autonomous Vehicle Design Engineer Engineers, All Other (17-2199)

2019
Safety Research Professional Occupational Health and Safety Technicians (19-5012)

Route Diver Commercial Divers (49-9092)

2020
Blockchain Penetration Tester Computer Occupations, All Other (15-1299)

Culinary Artist Cooks, Private Household (35-2013)

2021
Solar Site Surveyor Surveyors (17-1022)

Remote Pilot Life, Physical, and Social Science Technicians, All Other (19-4099)

2022
Recruiter Sourcing Human Resources Specialists (13-1071)

Cat Groomer Animal Trainers (39-2011)

Note: Examples of new alternate titles added in O*NET per year from 2016 to 2022. Occupations
correspond to the Standard Occupational Classification 2018, and codes are given in parentheses.

Table 4: Descriptive statistics: Wages and employment

Mean SD Min Max

Hourly wages 34.8 18.9 10.0 182.6

Employment size 6070 40 990 30 3 244 470
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Table 5: Relationships with previous AI exposure indices

Automation AI exposure Augmentation AI exposure
(1) (2) (3) (4) (5) (6)

Felten et al. (2021) 0.966*** 0.204***
(0.009) (0.036)

Brynjolfsson et al. (2018) 0.232*** 0.030

(0.036) (0.037)
Webb (2020) −0.021 0.310***

(0.036) (0.035)
Intercept 0.017*** 0.384*** 0.510*** 0.398*** 0.485*** 0.345***

(0.005) (0.021) (0.021) (0.021) (0.021) (0.020)

R2 0.933 0.053 −0.001 0.040 0.000 0.095

Observations 749 749 749 749 749 749

Note: Augmentation AI exposure is the weighted average exposure at the occupational level, using
employment size in industries as weight. Indices are converted into percentile ranks. The indices for
automation AI exposure and augmentation AI exposure are for 2022. Columns 1 to 3 use automation AI
occupation for the dependent variable, while columns 4 to 6 use augmentation AI exposure. The table
shows the results using OLS estimators. ⋆ ⋆ ⋆ Significant at the 1% level; ⋆⋆ significant at the 5% level;
⋆ significant at the 10% level.
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Table 6: AI exposure and Routine tasks indices

(1) (2) (3) (4) (5) (6) (7)

Panel A: Automation AI exposure

Routine task index −0.468***
(0.032)

Routine manual −0.792***
(0.022)

Routine cognitive −0.165***
(0.036)

Non-routine manual −0.892***
(0.016)

Non-routine interpersonal 0.460***
(0.032)

Non-routine analitycal 0.694***
(0.026)

Decision-making 0.592***
(0.029)

Intercept 0.734*** 0.896*** 0.582*** 0.946*** 0.270*** 0.153*** 0.205***
(0.019) (0.013) (0.021) (0.010) (0.019) (0.015) (0.017)

R2 0.218 0.628 0.026 0.796 0.211 0.482 0.349

Panel B: Augmentation AI exposure

Routine task index −0.133***
(0.036)

Routine manual −0.086**
(0.036)

Routine cognitive 0.057

(0.036)
Non-routine manual −0.028

(0.036)
Non-routine interpersonal −0.022

(0.036)
Non-routine analitycal 0.292***

(0.035)
Decision-making 0.178***

(0.036)
Intercept 0.567*** 0.543*** 0.472*** 0.514*** 0.511*** 0.354*** 0.411***

(0.021) (0.021) (0.021) (0.021) (0.021) (0.020) (0.021)
R2 0.016 0.006 0.002 −0.001 −0.001 0.084 0.030

Observations 752 752 752 752 752 752 752

Note: Augmentation AI exposure is the weighted average exposure at the occupational level, using
employment size in industries as weight. The routine and non-routine indices in columns 1 to 6 are
constructed following Acemoglu and Autor (2011). In column 7, the index of decision-making follows
Deming (2021).Indices are converted into percentile ranks. The indices for automation AI exposure (Panel
A) and augmentation AI exposure (Panel B) are for 2022. Panel A uses automation AI occupation for
the dependent variable, while Panel B uses augmentation AI exposure. The table shows the results using
OLS estimators. ⋆ ⋆ ⋆ Significant at the 1% level; ⋆⋆ significant at the 5% level; ⋆ significant at the 10%
level.
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Table 7: Relationships with other factors affecting the labor demand

Automation AI exposure Augmentation AI exposure
(1) (2) (3) (4) (5) (6)

Offshorability 0.611*** 0.049

(0.029) (0.037)
Software exposure −0.340*** 0.239***

(0.034) (0.036)
Robot exposure −0.739*** 0.036

(0.025) (0.037)
Intercept 0.195*** 0.670*** 0.869*** 0.476*** 0.380*** 0.482***

(0.017) (0.020) (0.014) (0.021) (0.021) (0.021)

R2 0.372 0.115 0.546 0.001 0.056 0.000

Observations 749 749 749 749 749 749

Note: Augmentation AI exposure is the weighted average exposure at the occupational level, using
employment size in industries as weight. Indices are converted into percentile ranks. The indices for
automation AI exposure and augmentation AI exposure are for 2022. The indices measuring exposure to
robots and software are sourced from Webb (2020). The index of offshorability is built following Autor
et al. (2013). Columns 1 to 3 use automation AI occupation for the dependent variable, while columns 4
to 6 use augmentation AI exposure. The table shows the results using OLS estimators. ⋆ ⋆ ⋆ Significant
at the 1% level; ⋆⋆ significant at the 5% level; ⋆ significant at the 10% level.

Table 8: Relationships AI exposures and instrumental variables

Automation AI Augmentation AI

Automation AI IV 1.072***
(0.001)

Augmentation AI IV 1.019***
(0.003)

R2 0.999 0.999

Observations 230 204 230 204

Note: The table shows the relationships between the measures of AI exposures and their corresponding
instrumental variables. The estimates are computed using OLS estimators with year fixed effects. ⋆ ⋆ ⋆
Significant at the 1% level; ⋆⋆ significant at the 5% level; ⋆ significant at the 10% level.
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Table 9: Effect of AI exposure on share of new work

1 2 3 4 5 6

Panel A: Fixed effect estimators

Automation AI 0.029 0.006 0.009 0.000

(0.029) (0.024) (0.025) (0.022)
Augmentation AI 0.028*** 0.037*** 0.027*** 0.037***

(0.008) (0.009) (0.008) (0.009)
R2 0.673 0.689 0.688 0.705 0.688 0.705

Panel B: IV estimators

Automation AI 0.030 0.006 0.008 0.000

(0.029) (0.024) (0.025) (0.022)
Augmentation AI 0.028*** 0.037*** 0.028*** 0.037***

(0.008) (0.009) (0.008) (0.009)
R2 0.673 0.689 0.688 0.705 0.688 0.705

Montiel-Pflueger F-test 7× 105 8× 105 3× 104 1× 105

Covariates included:
Employment (log) X X X X X X
Fixed effects:
Year X X X X X X
NAICS*SOC X X X X X X
NAICS*year (3-digit) X X X

Observations 141 664 141 664 141 664 141 664 141 664 141 664

Unique SOC (6-digit) 672 672 672 672 672 672

Unique NAICS (4-digit) 244 244 244 244 244 244

Mean outcome 0.02 0.02 0.02 0.02 0.02 0.02

SD outcome 0.04 0.04 0.04 0.04 0.04 0.04

Note: The table presents the outputs for the regressions (5) when the dependent variable is the cumulative
share of new work. Panel A shows the output when fixed estimators are used, whereas Panel B is when
IV estimators is applied. Augmentation AI exposure and automation AI exposure are standardized to
have a mean of 0 and a standard deviation equal to 1. The estimations are weighted by employment size.
Standard errors are reported in brackets and are clustered at the occupational and industry level. ⋆ ⋆ ⋆
Significant at the 1% level; ⋆⋆ significant at the 5% level; ⋆ significant at the 10% level
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Table 10: Effect of AI exposure on employment (log)

1 2 3 4 5 6

Panel A: Fixed effect estimators

Automation AI 0.113 0.184 0.040 0.160

(0.120) (0.116) (0.108) (0.112)
Augmentation AI 0.089*** 0.094*** 0.087*** 0.091***

(0.023) (0.031) (0.023) (0.030)
R2 0.993 0.994 0.993 0.994 0.993 0.994

Panel B: IV estimators

Automation AI 0.120 0.189 0.044 0.164

(0.121) (0.117) (0.109) (0.113)
Augmentation AI 0.090*** 0.093*** 0.087*** 0.090***

(0.024) (0.031) (0.024) (0.030)
R2 0.993 0.994 0.993 0.994 0.993 0.994

Montiel-Pflueger F-test 5× 105 8× 105 5× 104 1× 105

Fixed effects:
Year X X X X X X
NAICS*SOC X X X X X X
NAICS*year (3-digit) X X X

Observations 230 204 230 204 230 204 230 204 230 204 230 204

Unique SOC (6-digit) 672 672 672 672 672 672

Unique NAICS (4-digit) 244 244 244 244 244 244

Mean outcome 10.9 10.9 10.9 10.9 10.9 10.9

SD outcome 2.1 2.1 2.1 2.1 2.1 2.1

Note: The table presents the outputs for the regressions (6) when the dependent variable is the employ-
ment size in log. Panel A shows the output when fixed estimators are used, whereas Panel B is when
IV estimators is applied. Augmentation AI exposure and automation AI exposure are standardized to
have a mean of 0 and a standard deviation equal to 1. The estimations are weighted by employment size.
Standard errors are reported in brackets and are clustered at the occupational and industry level. ⋆ ⋆ ⋆
Significant at the 1% level; ⋆⋆ significant at the 5% level; ⋆ significant at the 10% level
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Table 11: Effect of AI exposure on hourly wages (log)

1 2 3 4 5 6

Panel A: Fixed effect estimators

Automation AI −0.193*** −0.173*** −0.183*** −0.174***
(0.042) (0.028) (0.038) (0.028)

Augmentation AI −0.021** 0.000 −0.012 0.003

(0.009) (0.006) (0.008) (0.006)
R2 0.994 0.996 0.994 0.995 0.994 0.996

Panel B: IV estimators

Automation AI −0.197*** −0.176*** −0.187*** −0.177***
(0.043) (0.028) (0.038) (0.028)

Augmentation AI −0.022** 0.000 −0.012 0.003

(0.009) (0.006) (0.007) (0.006)
R2 0.994 0.996 0.994 0.995 0.994 0.996

Montiel-Pflueger F-test 9× 106 8× 106 4× 105 4× 105

Covariates included:
Employment (log) X X X X X X
Fixed effects:
Year X X X X X X
NAICS*SOC X X X X X X
NAICS*year (3-digit) X X X

Observations 230 204 230 204 230 204 230 204 230 204 230 204

Unique SOC (6-digit) 672 672 672 672 672 672

Unique NAICS (4-digit) 244 244 244 244 244 244

Mean outcome 3.2 3.2 3.2 3.2 3.2 3.2

SD outcome 0.5 0.5 0.5 0.5 0.5 0.5

Note: The table presents the outputs for the regressions (6) when the dependent variable is the employ-
ment size in log. Panel A shows the output when fixed estimators are used, whereas Panel B is when
IV estimators is applied. Augmentation AI exposure and automation AI exposure are standardized to
have a mean of 0 and a standard deviation equal to 1. The estimations are weighted by employment size.
Standard errors are reported in brackets and are clustered at the occupational and industry level. ⋆ ⋆ ⋆
Significant at the 1% level; ⋆⋆ significant at the 5% level; ⋆ significant at the 10% level
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Table 12: Effect of AI exposure by typical entry-level education in occupations

Share New Work Employment (log) Hourly wages (log)
1 2 3 4 5 6

Associate’s degree
and lower

Bachelor’s degree
and higher

Associate’s degree
and lower

Bachelor’s degree
and higher

Associate’s degree
and lower

Bachelor’s degree
and higher

Panel A: Fixed effect estimators

Automation AI −0.044* 0.090 −0.074 0.312 −0.146*** 0.120

(0.025) (0.082) (0.142) (0.333) (0.036) (0.109)
Augmentation AI 0.012 0.048*** 0.091** 0.046 −0.012 0.019***

(0.014) (0.009) (0.045) (0.037) (0.010) (0.005)
R2 0.716 0.698 0.994 0.993 0.992 0.987

Panel B: IV estimators

Automation AI −0.044* 0.089 −0.070 0.295 −0.148*** 0.125

(0.025) (0.082) (0.143) (0.337) (0.036) (0.112)
Augmentation AI 0.011 0.049*** 0.091** 0.045 −0.012 0.019***

(0.013) (0.010) (0.045) (0.038) (0.010) (0.005)
R2 0.716 0.698 0.994 0.993 0.992 0.987

Covariates included:
Employment (log) X X X X
Fixed effects:
Year X X X X X X
NAICS*SOC X X X X X X
NAICS*year (3-digit) X X X X X X

Observations 89 056 52 608 144 716 85 488 144 716 85 488

Unique SOC (6-digit) 470 202 470 202 470 202

Unique NAICS (4-digit) 244 239 244 239 244 239

Mean outcome 0.02 0.03 11.1 10.1 3.0 3.9

SD outcome 0.03 0.06 2.0 2.0 0.3 0.3

Note: The table presents the outputs for the regressions (5) (columns 1 and 2) and (6) (columns 3-4
and 5-6). In columns 1 and 2, the response variable is the share of new work, in columns 3 and 4 the
employment size (log), and in columns 5 and 6 the hourly wages (log). In column 1, 3, and 5, the sample
size is composed of occupations having a typical entry-level education equal to Associate’s degree or
lower. In columns 2, 4, and 6, only occupations with a typical entry-level education equal to Bachelor’s
degree of higher are retained. Panel A present the results using fixed effect estimators, while Panel B
relies on IV estimators. Standard errors are reported in brackets and are clustered at the occupational
and industry level. ⋆ ⋆ ⋆ Significant at the 1% level; ⋆⋆ significant at the 5% level; ⋆ significant at the
10% level
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Table 13: Effect of AI exposure by AI technologies

Share New Work Employment (log) Hourly wages (log)
1 2 3 4 5 6 7 8 9

Panel A: Fixed effect estimators

Auto. Computer Vision −0.124 0.013 −0.015

(0.098) (0.371) (0.086)
Augm. Computer Vision 0.037*** 0.028 0.009

(0.013) (0.031) (0.006)
Auto. Lang. processing & modeling −0.014 0.019 −0.072***

(0.013) (0.056) (0.015)
Augm. Lang. processing & modeling 0.043*** 0.073** 0.010

(0.012) (0.033) (0.006)
Auto. Machine & Deep Learning 0.008 0.195* −0.173***

(0.019) (0.101) (0.025)
Augm. Machine & Deep Learning 0.032*** 0.101*** −0.001

(0.007) (0.029) (0.005)
R2 0.697 0.703 0.705 0.994 0.994 0.994 0.995 0.996 0.996

Panel B: IV estimators

Auto. Computer Vision −0.118 −0.074 0.068

(0.097) (0.363) (0.092)
Augm. Computer Vision 0.037*** 0.034 0.006

(0.013) (0.031) (0.006)
Auto. Lang. processing & modeling −0.014 0.016 −0.072***

(0.013) (0.056) (0.015)
Augm. Lang. processing & modeling 0.044*** 0.074** 0.010

(0.012) (0.033) (0.006)
Auto. Machine & Deep Learning 0.008 0.198* −0.174***

(0.019) (0.101) (0.025)
Augm. Machine & Deep Learning 0.033*** 0.102*** 0.000

(0.007) (0.029) (0.005)
R2 0.697 0.703 0.705 0.994 0.994 0.994 0.995 0.996 0.996

Covariates included:
Employment (log) X X X X X X
Fixed effects:
Year X X X X X X X X X
NAICS*SOC X X X X X X X X X
NAICS*year (3-digit) X X X X X X X X X

Observations 141 664 141 664 141 664 230 204 230 204 230 204 230 204 230 204 230 204

Unique SOC (6-digit) 672 672 672 672 672 672 672 672 672

Unique NAICS (4-digit) 244 244 244 244 244 244 244 244 244

Mean outcome 0.02 0.02 0.02 10.9 10.9 10.9 3.2 3.2 3.2

SD outcome 0.04 0.04 0.04 2.1 2.1 2.1 0.5 0.5 0.5

Note: The table presents the outputs for the regressions (5) (columns 1, 2, and 3) and (6) (columns
4-6 and 7-9). In columns 1 to 3, the response variable is the share of new work, in columns 4 to 6 the
employment size (log), and in columns 7 to 9 the hourly wages (log). Panel A present the results using
fixed effect estimators, while Panel B relies on IV estimators. Standard errors are reported in brackets
and are clustered at the occupational and industry level. ⋆ ⋆ ⋆ Significant at the 1% level; ⋆⋆ significant
at the 5% level; ⋆ significant at the 10% level
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A Data sources and AI indices

A.1 Stack Overflow

Created in 2008, Stack Overflow is a Q&A website for questions about programming
problems, software algorithms, and software tools for developers. Access to Stack Overflow
is free, and everyone can create an account and start asking, answering, and commenting
on questions. Stack Overflow counts 24 million questions for approximately 35 million
answers and 20 million users at the beginning of 2023.

Stack Overflow is the most famous website for debugging code and the primary source
of help for programmers. In 2022, it received 250 million monthly visitors, more than
three times the monthly visitors of its direct competitors, such as w3schools.com (70.4
million monthly visits) and geeksforgeeks.com (64.7 million monthly visits).20

A key feature of Stack Overflow for this project is the importance of developers among
the website users. A high proportion of developers among the users ensures that the
questions asked on SO are related to algorithms deployed in the labor market and do not
concern leisure. This aspect is crucial for this study since it aims at measuring AI exposure
in the labor market. According to the annual survey conducted by Stack Overflow, 73%
of the users are developers by profession, and 80% write code as part of their work (Stack
Overflow, 2022).

Stack Overflow presents several advantages compared to alternative sources of inform-
ation previously used in the literature, such as patents and surveys filled by workers or
experts in the field of AI (see, for instance, Brynjolfsson et al., 2018; Felten et al., 2021;
Tolan et al., 2021; Webb, 2020). Patents are likely to provide an incomplete measure
of AI exposure for two reasons. First, it has been shown that AI systems are primarily
protected as trade secrets because protecting them under copyright and patent laws en-
counters difficulties (Foss-Solbrekk, 2021; Hattenbach and Snyder, 2018; Hu and Jiang,
2019). Second, there are strong incentives to release AI algorithms in open source. It is
a convenient way to quickly test and prototype AI solutions, allowing developers to gain
insights and iterate without needing extensive in-house development. The release of the
large language model Llama2 by Meta in open-source and the success of the online plat-
form HuggingFace are examples of these incentives. Regarding surveys filled by workers
or experts, they usually have small sample sizes, and the questions asked concern more
often the potential of AI rather than its actual development and implementation in the
economy.

Stack Overflow also comes with some drawbacks. The first drawback concerns AI
20For more details, see Similarweb, an online company measuring online audiences: https://www.

similarweb.com/website/stackoverflow.com/competitors.
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algorithms developed internally by firms, which Stack Over might not capture. However,
this drawback is negligible and should not affect the results of this study. Indeed, an AI
algorithm is built on various sub-algorithms and software; some are likely to be referenced
in Stack Overflow. For instance, a developer aiming to create an internal chatbot for her
company will probably use Python libraries like Tensorflow, NLTK, or Chatterbot. All
these packages are referenced in Stack Overflow, and developers may ask questions about
them during the production of the chatbot. A second potential drawback is the use
of commercial AI solutions by firms. This drawback appears limited since creators of
commercial AI solutions might want to be referenced in Stack Overflow for two reasons:
gaining in popularity and providing support to their clients to debug their code themselves.
As an illustration, 650 tags refer to commercial Google solutions, including AI solutions
such as Google Speech-to-Text, Google Translate, and Google Natural Language.

Data from Stack Overflow has already been used to explore related topics to this study
in computer science and technology research. For instance, questions on Stack Overflow
have been used to analyze topics discussed among developers (Barua et al., 2014; Rosen
and Shihab, 2016; Yang et al., 2016). Moutidis and Williams (2021) rely on Stack Overflow
to document technologies used by developers, and Montandon et al. (2021) use job adverts
published on Stack Overflow to study skills demand from IT companies.

Despite a few recent examples, data from Stack Overflow has been neglected in the
economics literature. Gallea (2023) uses questions asked on Stack Overflow to study the
effect of AI on work dynamics, and del Rio-Chanona et al. (2023) looks at potential threats
of large language models to digital public goods. Closer to my study, the OECD.AI Policy
Observatory develops a set of indicators to measure AI knowledge flows using questions
and answers on Stack Overflow (OECD.AI, 2023).

In this project, I consider only questions asked between 2010 and 2022. While it would
be feasible to add further years, the release of ChatGPT in November 2022 drastically
hurts the attractiveness of the website (del Rio-Chanona et al., 2023), making Stack
Overflow less relevant for more recent years.

A.2 Identifying AI-related questions

The first step in building the measures of AI exposure is to identify AI-related ques-
tions. To do so, I exploit the information the tags attached to the questions provide. I
identify tags about AI and consider any questions attached to these tags as AI-related
(see Appendix ?? for more details).

Tags are keywords that sort the questions into categories. A tag may refer to a
technology, a programming language, or a task developers want to perform. For instance,
the following tags are on Stack Overflow: Python, GitHub, web scraping, indexing, and
Tensorflow. A question requires between 3 to 5 tags to be published. Stack Overflow
counts more than 63 000 tags, which usually come with a short technical description.
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The identification of tags related to AI proceeds in three steps. In the first step, I search
for 164 AI keywords in the tags and their technical descriptions. The list of AI keywords
is based on the keywords identified in Alekseeva et al. (2021), which I complement with
keywords from the computer science and technology literature and AI-specialized websites.
Table A1 presents the list of keywords. I identify934 tags in this step.

This approach has the advantage of being straightforward, but it also has drawbacks.
The identification quality depends on the keywords, and some tags might be missing if
the list of keywords is not comprehensive. This limit is probably more problematic for AI
than any other topic because this field evolves quickly, and new algorithms and methods
appear often.

To mitigate this limitation, I supplement the first identification step with a second
one using tags co-appearance. Tags co-appearance consists of adding to the selection the
tags that appear together in questions with tags identified in the first step. This second
step ensures that all tags related to AI are identified. For instance, the following tags
are added with this procedure: seaborn, csv, imbalanced-data, and scikit-multilearn. In
this step, 21 837 tags are added, and the number of potential tags related to AI reaches
22 771. In the end of this step, I end up with a list of potential AI-related tags.

The second identification step significantly increases the number of potential tags
related to AI and the false positives. False positives concern all tags wrongly classified
as related to AI. For instance, taking the examples found with the tags co-appearance
procedure, the tags seaborn and csv are misclassified and should not considered as related
to AI.

In the last identification step, I drop the false positives from the list of potential tags
related to AI with the help of ChatGPT 3.5 Turbo. For instance, the tag "Python"
is identified during the co-appearance step. Python is widely used among developers
creating AI algorithms, but not exclusively, and, therefore, should be dropped from the
selection. For each tag identified in the first two steps, I ask ChatGPT 3.5 Turbo whether
they are related to AI. I use the following prompt for this task:

I will provide a tag and its description from the website www.stackoverflow.com.
Please return 1 if the tag is related to or used in artificial intelligence and 0
otherwise.

For the final list of AI-related tags, I keep only tags that ChatGPT3.5 Turbo classifies as
related to AI. I end up with 1182 AI-related tags, which encompasses 678 115 questions.21.

Once the AI-related tags are identified, I need to describe the type of tasks that one
wants to perform with them. This information is necessary to match the number of
questions per tag with the abilities required in occupations. I perform this task with
ChatGPT 3.5 Turbo and the following prompt:

21In a previous version of this paper, I made the checking manually and ended up with a lower number
of AI-related tags and questions. Running the analysis with this previous selection of AI-related tags
does not affect the results of this study.
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I will provide an AI-related tag and its description from the website www.stackoverflow.com.
Please describe which tasks someone wants to perform with this tag. The an-
swer must fit into 60 tokens maximum.

I explicitly ask for the type of task one wants to perform with the tag used because this
is the information I need to match AI-related questions with the abilities required for
occupations. The length of the answer is limited to 60 tokens to be consistent with the
length of the descriptors in O*NET.

Figure A1 shows the yearly number of questions asked on Stack Overflow. The number
of questions increases sharply between 2010 and 2017. During this period, AI has seen
considerable progress with the introduction of Generative Adversarial Networks (2014),
Residual Networks (2015), Recurrent Neural Networks (2015), Long Short-Term Memory
(2015), and Transformer Structure (2017). The number of yearly questions stabilizes
around 80 000 from 2017 to 2020 and drops in 2021. In 2022, the number of newly AI-
related questions reaches 73 430.

Figure A2 shows the distribution of questions per AI-related tags. The distribution
is right-skewed, indicating that some tags are highly used. The top 5 AI-related tags
are Tensorflow (79 729 questions), Apache Spark (78 435), OpenCV (69 694), Machine
Learning (52 299), and Keras (40 940).
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Table A1: AI keywords

Activity-Recognition Generative AI Mahout Sdscm
Ai Chatbot Gesture-Recognition Marf Semi-Supervised Learning
Ai Kibit Google Cloud Machine Learning Platform Microsoft Cognitive Toolkit Semantic Driven Subtractive Clustering Method
Antlr Google-Cloud-Ml Microsoft-Cognitive Sentence-Transformers
Apache-Spark-Ml Google-Colaboratory Microsoft-Translator Sentiment Analysis
Apache-Spark-Mllib Google-Speech-Api Midjourney Sentiment Classification
Apertium Gpt-2 Mlpack Sentiment-Analysis
Artificial-Intelligence Gpt-3 Mlpy Sklearn-Pandas
ASR Gpt-4 Modular Audio Recognition Framework Spacy-Transformers
Automatic Speech Recognition Gradient Boosting Moses Speech Recognition
Automl H2O Multilabel-Classification Speech-Recognition
Azure-Cognitive-Services Handwriting-Recognition Mxnet Speech-Synthesis
Azure-Language-Understanding Huggingface-Transformers Named-Entity-Recognition Speech-To-Text
Bert Ibm Watson Natural Language Processing Stable Diffusion
Bert-Language-Model Image Processing Natural Language Toolkit Stanford-Nlp
Caffe Deep Learning Framework Image Recognition Nd4J Supervised Learning
Chatbot Image-Processing Nearest Neighbor Algorithm Support Vector Machines
Chatgpt Image-Segmentation Neural-Network SVM
Chatgpt-Api Information-Extraction NLP Tensor
Classification Information-Retrieval NLTK Tensorflow
Computational Linguistics Ipsoft Amelia Object Recognition Tensorflow2.0
Computer Vision Iris-Recognition Object Tracking Text Mining
Computer-Vision Ithink Object-Detection Text To Speech
Conv-Neural-Network Keras Object-Detection-Api Text-Classification
Copilot Language-Detection Opencv Text-Extraction
Dall-E Languages Modeler Opencv3.0 Text-To-Speech
Decision Trees Large-Language-Model Opennlp Tf.Keras
Deep Learning Latent Dirichlet Allocation Opinion Mining Tokenization
Deep-Learning Latent Semantic Analysis Pattern-Recognition Topic-Modeling
Deeplearning4J Lexalytics Progen Torch
Dialogflow-Es Lexical Acquisition Pybrain Transformer
Distinguo Lexical Semantics Python-Imaging-Library TTS
Edge-Detection Libsvm Pytorch Unsupervised Learning
Emgucv Llama Random-Forest Virtual Agents
Face-Api LSTM R-Caret Visual-Recognition
Face-Detection Machine Learning Recommender Systems Voice-Recognition
Face-Recognition Machine Translation Recurrent-Neural-Network Vowpal
Facial-Identification Machine Vision Reinforcement-Learning Wabbit
Feature-Extraction Machine-Learning Roberta-Language-Model Word2Vec
Feature-Selection Machine-Translation Scikit-Image Word-Embedding
Form-Recognizer Madlib Scikit-Learn Xgboost

Note: This list has been built on the keywords from Alekseeva et al. (2021) and keywords found in the
computer science and technology literature and AI-specialized websites.

Figure A1: Yearly number of AI-related questions asked on Stack overflow
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Figure A2: Distribution of questions per AI-related tag
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A.3 Identifying users location

Identifying the geolocation of the users is possible thanks to the information provided in
the users’ profiles. When one registers to Stack Overflow, she can fill in some information
about herself, including the place of living, a personal description, and a website. The
information in the user profile is filled in voluntarily. However, it is in the interest of the
developers to provide these fields since Stack Overflow has become an important place for
hiring developers.

I proceed in three steps to retrieve the location of the users. First, I use Google Maps
to find the country corresponding to the place of living mentioned by the users. Second,
when the place of living is missing, I ask ChatGPT 3.5 Turbo to extract any information
in the personal description that could be used to geolocate the users.22 Then, I pass this
information to Google Maps and retrieve the country of living. Third, I use the personal
website domain to geolocate users when the place of living and the personal description
are missing.

With this method, 35.2% of the users are geolocated, which counts for 38.0% of the
AI-related questions asked worldwide.

A.4 Job content

The content of the occupations comes from O*NET 15.0, which was released in 2010.
O*NET is a database containing standardized descriptors for the occupations composing
the entire US economy (Peterson et al., 2001). O*NET has been widely used in the
literature to measure the task content of occupations (see, for instance, Acemoglu and

22I use the following prompt: I have some text describing people. I want to know where they live. Please
return information found in the text about where they live. Return "none" if you do not find information.
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Autor, 2011; Blinder, 2009; Brynjolfsson et al., 2018; Felten et al., 2021; Firpo et al.,
2011; Peri and Sparber, 2009).

In O*NET, every occupation comprises a different mix of knowledge, skills, and abil-
ities and performs various activities and tasks. O*NET is continually updated to keep
the occupations’ descriptors aligned with the evolution of the labor market. The up-
date system is based on ratings from responses by sampled workers who fill out O*NET
questionnaires.23

There is no guidance in the literature regarding the descriptors of the occupations
that should be used to measure AI exposure. While Webb (2020) relies on the description
of more than 18 000 tasks performed within occupations, Felten et al. (2018, 2021) use
52 abilities required to perform occupations. In contrast, Brynjolfsson et al. (2018) and
Eloundou et al. (2023) take advantage of 2069 detailed work activities, which are merged
to tasks performed in occupations.

In this paper, I follow Felten et al. (2019, 2021) and use the abilities to describe the
content of occupations. This choice is motivated by the terminology used to describe AI-
related tags in Stack Overflow. They are more frequently defined by their abilities than by
the precise tasks they can perform. For instance, AI-related tags in Stack Overflow include
"Speech Recognition", "Pattern Recognition", and "Image Recognition", which appear
closer to the notion of abilities used in O*NET than tasks or detailed work activities.

O*NET 15.0 describes 855 occupations through the lens of 52 abilities required to
perform occupations. For each occupation, O*NET provides an Importance24 and Level25

scales to measure to what extent an ability is required for this occupation. The abilit-
ies encompass cognitive abilities (e.g., Oral Comprehension and Deductive Reasoning),
psychomotor abilities (e.g., Finger Dexterity and Reaction Time), physical abilities (e.g.,
Static Strength and Dynamic Flexibility), and sensory abilities (e.g., Near Vision and
Auditory Attention).

A.5 Augmentation AI exposure

I start building the index that links each description of AI-related tags with the micro-
industry and micro-occupational titles from CAI. I populated the transition matrices with
cosine similarity measures following the same procedure as for automation AI exposure.
I create sentences embenddings using

I derive the index of augmentation AI exposure for micro-industries by applying the
following equation:

23See Handel (2016) for a detailed description.
24The scale importance indicates the degree of Importance a particular descriptor is to the occupation.

The possible ratings range from "Not Important" (1) to "Extremely Important" (5).
25The scale Level indicates the degree, or point along a continuum, to which a particular descriptor is

required or needed to perform the occupation.
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Iit =

∑t
2010

∑1182
g=1 STgt ∗ Cig

1182
(7)

Where Iit gives the augmentation AI exposure for micro-industry i in year t. STgt is
the yearly-tags scores and comes from equation (2). Cig is the cosine similarity measure
between micro-industry i and tag g.

Similarly, the index of augmentation AI exposure for micro-occupations is given by:

Oot =

∑t
2010

∑1182
g=1 STgt ∗ Cog

1182
(8)

Here, Oot is the exposure to AI that complements micro-occupation o and Cog is the
cosine similarity measure between micro-occupation i and tag g.

Finally, I compute the simple mean at 6-digit 2018 SOC for the augmentation AI ex-
posure for micro-occupations and at 4-digit 2022 NAICS for the augmentation AI exposure
for micro-industries, and I take the average of both scores as follows:26

AI_augmoit =
Iit +Oot

2
(9)

The index of augmentation AI exposure at the occupational*industry level is given by
AI_augmoit, where Iit is given by equation (7) and Oot by equation (8).

B First Stage IV estimators

Table C1: First Stage IV estimators for New Work

Auto AI Auto AI Augm AI Augm AI Auto AI Auto AI Augm AI Augm AI

Automation AI IV 1.025*** 1.026*** 1.026*** 1.026*** −0.105*** −0.066***
(0.001) (0.001) (0.001) (0.001) (0.020) (0.013)

Augmentation AI IV 0.999*** 0.995*** −0.001*** −0.001*** 1.003*** 0.996***
(0.005) (0.003) (0.000) (0.000) (0.005) (0.003)

R2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Observation 141 664 141 664 141 664 141 664 141 664 141 664 141 664 141 664

Employment (log) X X X X X X X X
FE Year X X X X X X X X
FE NAICS*SOC X X X X X X X X
FE NAICS*year (3-digit) X X x X

Unique SOC (6-digit) 672 672 672 672 672 672 672 672

Unique NAICS (4-digit) 244 244 244 244 244 244 244 244

Note: Augmentation AI exposure and automation AI exposure are standardized to have a mean of 0 and
a standard deviation equal to 1. The estimations are weighted by employment size. Standard errors are
reported in brackets and are clustered at the occupational and industry level. ⋆ ⋆ ⋆ Significant at the 1%
level; ⋆⋆ significant at the 5% level; ⋆ significant at the 10% level.

26I use crosswalks provided by the US Census Bureau.
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Table C2: First Stage IV estimators for employment

Auto AI Auto AI Augm AI Augm AI Auto AI Auto AI Augm AI Augm AI

Automation AI IV 1.060*** 1.061*** 1.061*** 1.061*** −0.096*** −0.057***
(0.001) (0.001) (0.001) (0.001) (0.019) (0.013)

Augmentation AI IV 1.011*** 1.008*** −0.001*** −0.001*** 1.016*** 1.010***
(0.004) (0.002) (0.000) (0.000) (0.004) (0.002)

R2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Observation 230 204 230 204 230 204 230 204 230 204 230 204 230 204 230 204

Fixed effects:
FE Year X X X X X X X X
FE NAICS*SOC X X X X X X X X
FE NAICS*year (3-digit) X X x X

Unique SOC (6-digit) 672 672 672 672 672 672 672 672

Unique NAICS (4-digit) 244 244 244 244 244 244 244 244

Note: Augmentation AI exposure and automation AI exposure are standardized to have a mean of 0 and
a standard deviation equal to 1. The estimations are weighted by employment size. Standard errors are
reported in brackets and are clustered at the occupational and industry level. ⋆ ⋆ ⋆ Significant at the 1%
level; ⋆⋆ significant at the 5% level; ⋆ significant at the 10% level.

Table C3: First Stage IV estimators for wages

Auto AI Auto AI Augm AI Augm AI Auto AI Augm AI Auto AI Augm AI

Automation AI IV 1.060*** 1.061*** 1.061*** −0.096*** 1.061*** −0.057***
(0.001) (0.001) (0.001) (0.019) (0.001) (0.013)

Augmentation AI IV 1.011*** 1.008*** −0.001*** 1.016*** −0.001*** 1.010***
(0.004) (0.002) (0.000) (0.004) (0.000) (0.002)

R2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Observation 230 204 230 204 230 204 230 204 230 204 230 204 230 204 230 204

Covariates included:
Employment (log) X X X X X X X X
Fixed effects:
Year X X X X X X X X
NAICS*SOC X X X X X X X X
NAICS*year (3-digit) X X X X

Unique SOC (6-digit) 672 672 672 672 672 672 672 672

Unique NAICS (4-digit) 244 244 244 244 244 244 244 244

Note: Augmentation AI exposure and automation AI exposure are standardized to have a mean of 0 and
a standard deviation equal to 1. The estimations are weighted by employment size. Standard errors are
reported in brackets and are clustered at the occupational and industry level. ⋆ ⋆ ⋆ Significant at the 1%
level; ⋆⋆ significant at the 5% level; ⋆ significant at the 10% level.
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C Placebo AI exposures

Table D1: Effect of AI exposure on share of new work using placebo AI exposures

1 2 3 4 5 6

Placebo Automation AI −0.074 0.016 −0.068 0.012

(0.106) (0.087) (0.107) (0.086)
Placebo Augmentation AI −0.040 −0.030 −0.038 −0.030

(0.034) (0.043) (0.034) (0.043)
R2 0.672 0.689 0.673 0.690 0.673 0.690

Covariates included:
Employment (log) X X X X X X
Fixed effects:
Year X X X X X X
NAICS*SOC X X X X X X
NAICS*year (3-digit) X X X

Observations 141 664 141 664 141 664 141 664 141 664 141 664

Unique SOC (6-digit) 672 672 672 672 672 672

Unique NAICS (4-digit) 244 244 244 244 244 244

Mean outcome 0.02 0.02 0.02 0.02 0.02 0.02

SD outcome 0.04 0.04 0.04 0.04 0.04 0.04

Note: The table presents the outputs for the regressions 5 using fixed effect estimators and when the
dependent variable is the cumulative share of new work. Augmentation AI and automation AI exposures
are placebo measures.The placebo measure for automation AI exposure is constructed by randomly
shuffling the sentence similarity scores between AI-related tags and abilities. Similar procedure is followed
to build placebo augmentation AI exposure for the sentence similarity scores between AI-related tags and
micro-titles for occupations and industries. Augmentation AI exposure and automation AI exposure are
standardized to have a mean of 0 and a standard deviation equal to 1. The estimations are weighted
by employment size. Standard errors are reported in brackets and are clustered at the occupational and
industry level. ⋆ ⋆ ⋆ Significant at the 1% level; ⋆⋆ significant at the 5% level; ⋆ significant at the 10%
level.
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Table D2: Effect of AI exposure on share of employment using placebo AI exposures

1 2 3 4 5 6

Placebo Automation AI −1.330 −1.446 −1.333 −1.465

(0.828) (0.956) (0.835) (0.937)
Placebo Augmentation AI −0.005 −0.077 0.019 −0.104

(0.247) (0.181) (0.249) (0.182)
R2 0.993 0.994 0.993 0.994 0.993 0.994

Fixed effects:
Year X X X X X X
NAICS*SOC X X X X X X
NAICS*year (3-digit) X X X

Observations 230 204 230 204 230 204 230 204 230 204 230 204

Unique SOC (6-digit) 672 672 672 672 672 672

Unique NAICS (4-digit) 244 244 244 244 244 244

Mean outcome 10.9 10.9 10.9 10.9 10.9 10.9

SD outcome 2.1 2.1 2.1 2.1 2.1 2.1

Note: The table presents the outputs for the regressions 5 using fixed effect estimators and when the
dependent variable is the employment size (in log). Augmentation AI and automation AI exposures are
placebo measures.The placebo measure for automation AI exposure is constructed by randomly shuffling
the sentence similarity scores between AI-related tags and abilities. Similar procedure is followed to
build placebo augmentation AI exposure for the sentence similarity scores between AI-related tags and
micro-titles for occupations and industries. Augmentation AI exposure and automation AI exposure are
standardized to have a mean of 0 and a standard deviation equal to 1. The estimations are weighted
by employment size. Standard errors are reported in brackets and are clustered at the occupational and
industry level. ⋆ ⋆ ⋆ Significant at the 1% level; ⋆⋆ significant at the 5% level; ⋆ significant at the 10%
level.
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Table D3: Effect of AI exposure on wages using placebo AI exposures

1 2 3 4 5 6

Placebo Automation AI 1.331*** 0.889*** 1.318*** 0.901***
(0.300) (0.195) (0.285) (0.188)

Placebo Augmentation AI 0.101 0.049 0.077 0.066

(0.083) (0.049) (0.069) (0.047)
R2 0.994 0.996 0.994 0.995 0.994 0.996

Covariates included:
Employment (log) X X X X X X
Fixed effects:
Year X X X X X X
NAICS*SOC X X X X X X
NAICS*year (3-digit) X X X

Observations 230 204 230 204 230 204 230 204 230 204 230 204

Unique SOC (6-digit) 672 672 672 672 672 672

Unique NAICS (4-digit) 244 244 244 244 244 244

Mean outcome 3.2 3.2 3.2 3.2 3.2 3.2

SD outcome 0.5 0.5 0.5 0.5 0.5 0.5

Note: The table presents the outputs for the regressions 5 using fixed effect estimators and when the
dependent variable is the hourly wages (in log). Augmentation AI and automation AI exposures are
placebo measures.The placebo measure for automation AI exposure is constructed by randomly shuffling
the sentence similarity scores between AI-related tags and abilities. Similar procedure is followed to
build placebo augmentation AI exposure for the sentence similarity scores between AI-related tags and
micro-titles for occupations and industries. Augmentation AI exposure and automation AI exposure are
standardized to have a mean of 0 and a standard deviation equal to 1. The estimations are weighted
by employment size. Standard errors are reported in brackets and are clustered at the occupational and
industry level. ⋆ ⋆ ⋆ Significant at the 1% level; ⋆⋆ significant at the 5% level; ⋆ significant at the 10%
level.
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D Full sample

Table E1: Effect of AI exposure on share of new work using the full sample

1 2 3 4 5 6

Automation AI 0.022 0.005 0.003 0.000

(0.029) (0.025) (0.025) (0.022)
Augmentation AI 0.031*** 0.040*** 0.031*** 0.040***

(0.008) (0.009) (0.008) (0.009)
R2 0.655 0.672 0.672 0.689 0.672 0.689

Covariates included:
Employment (log) X X X X X X
Fixed effects:
Year X X X X X X
NAICS*SOC X X X X X X
NAICS*year (3-digit) X X X

Observations 272 300 272 300 272 300 272 300 272 300 272 300

Unique SOC (6-digit) 751 751 751 751 751 751

Unique NAICS (4-digit) 244 244 244 244 244 244

Mean outcome 0.02 0.02 0.02 0.02 0.02 0.02

SD outcome 0.04 0.04 0.04 0.04 0.04 0.04

Note: The table presents the outputs for the regressions (5) using fixed effect estimators and when the
dependent variable is the cumulative share of new work. The database is composed of all observations.
Augmentation AI exposure and automation AI exposure are standardized to have a mean of 0 and a
standard deviation equal to 1. The estimations are weighted by employment size. Standard errors are
reported in brackets and are clustered at the occupational and industry level. ⋆ ⋆ ⋆ Significant at the 1%
level; ⋆⋆ significant at the 5% level; ⋆ significant at the 10% level.
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Table E2: Effect of AI exposure on employment in log using the full sample

1 2 3 4 5 6

Automation AI 0.079 0.219* 0.016 0.199*
(0.118) (0.115) (0.105) (0.111)

Augmentation AI 0.091*** 0.093*** 0.090*** 0.090***
(0.024) (0.031) (0.024) (0.031)

R2 0.992 0.993 0.992 0.993 0.992 0.993

Fixed effects:
Year X X X X X X
NAICS*SOC X X X X X X
NAICS*year (3-digit) X X X

Observations 442 935 442 935 442 935 442 935 442 935 442 935

Unique SOC (6-digit) 752 752 752 752 752 752

Unique NAICS (4-digit) 244 244 244 244 244 244

Mean outcome 10.8 10.8 10.8 10.8 10.8 10.8

SD outcome 2.2 2.2 2.2 2.2 2.2 2.2

Note: The table presents the outputs for the regressions 6 using fixed effect estimators and when the
dependent variable is the employment size. The database is composed of all observations. Augmentation
AI exposure and automation AI exposure are standardized to have a mean of 0 and a standard deviation
equal to 1. The estimations are weighted by employment size. Standard errors are reported in brackets
and are clustered at the occupational and industry level. ⋆ ⋆ ⋆ Significant at the 1% level; ⋆⋆ significant
at the 5% level; ⋆ significant at the 10% level.
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Table E3: Effect of AI exposure on hourly wages in log using unbalanced database

1 2 3 4 5 6

Automation AI −0.197*** −0.186*** −0.189*** −0.187***
(0.042) (0.030) (0.039) (0.031)

Augmentation AI −0.019** 0.002 −0.010 0.005

(0.009) (0.007) (0.008) (0.007)
R2 0.993 0.994 0.992 0.994 0.993 0.994

Covariates included:
Employment (log) X X X X X X
Fixed effects:
Year X X X X X X
NAICS*SOC X X X X X X
NAICS*year (3-digit) X X X

Observations 431 467 431 467 431 467 431 467 431 467 431 467

Unique SOC (6-digit) 695 695 695 695 695 695

Unique NAICS (4-digit) 244 244 244 244 244 244

Mean outcome 3.2 3.2 3.2 3.2 3.2 3.2

SD outcome 0.5 0.5 0.5 0.5 0.5 0.5

Note: The table presents the outputs for the regressions 6 using fixed effect estimators and when the
dependent variable is the hourly wages. The database is composed of all observations. Augmentation AI
exposure and automation AI exposure are standardized to have a mean of 0 and a standard deviation
equal to 1. The estimations are weighted by employment size. Standard errors are reported in brackets
and are clustered at the occupational and industry level. ⋆ ⋆ ⋆ Significant at the 1% level; ⋆⋆ significant
at the 5% level; ⋆ significant at the 10% level.
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E Estimations with constant weights

Table F1: Effect of AI exposure on share of new work with constant weights (employment
size in 2015)

1 2 3 4 5 6

Automation AI 0.023 0.004 0.006 −0.001

(0.028) (0.023) (0.025) (0.022)
Augmentation AI 0.025*** 0.034*** 0.025*** 0.034***

(0.007) (0.008) (0.007) (0.008)
R2 0.667 0.683 0.681 0.698 0.681 0.698

Covariates included:
Employment (log) X X X X X X
Fixed effects:
Year X X X X X X
NAICS*SOC X X X X X X
NAICS*year (3-digit) X X X

Observations 141 664 141 664 141 664 141 664 141 664 141 664

Unique SOC (6-digit) 672 672 672 672 672 672

Unique NAICS (4-digit) 244 244 244 244 244 244

Mean outcome 0.02 0.02 0.02 0.02 0.02 0.02

SD outcome 0.04 0.04 0.04 0.04 0.04 0.04

Note: The table presents the outputs for the regressions 5 using fixed effect estimators and when the
dependent variable is the cumulative share of new work. Augmentation AI exposure and automation AI
exposure are standardized to have a mean of 0 and a standard deviation equal to 1. Standard errors are
reported in brackets and are clustered at the occupational and industry level. ⋆ ⋆ ⋆ Significant at the 1%
level; ⋆⋆ significant at the 5% level; ⋆ significant at the 10% level.
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Table F2: Effect of AI exposure on employment size in log with constant weights

1 2 3 4 5 6

Automation AI 0.055 0.170 0.002 0.153

(0.118) (0.119) (0.110) (0.115)
Augmentation AI 0.069** 0.071** 0.069** 0.068*

(0.027) (0.036) (0.027) (0.035)
R2 0.991 0.992 0.991 0.992 0.991 0.992

Fixed effects:
Year X X X X X X
NAICS*SOC X X X X X X
NAICS*year (3-digit) X X X

Observations 230 204 230 204 230 204 230 204 230 204 230 204

Unique SOC (6-digit) 672 672 672 672 672 672

Unique NAICS (4-digit) 244 244 244 244 244 244

Mean outcome 10.8 10.8 10.8 10.8 10.8 10.8

SD outcome 2.1 2.1 2.1 2.1 2.1 2.1

Note: The table presents the outputs for the regressions 6 using fixed effect estimators and when the
dependent variable is the employment size. Augmentation AI exposure and automation AI exposure are
standardized to have a mean of 0 and a standard deviation equal to 1. Standard errors are reported in
brackets and are clustered at the occupational and industry level. ⋆ ⋆ ⋆ Significant at the 1% level; ⋆⋆
significant at the 5% level; ⋆ significant at the 10% level.
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Table F3: Effect of AI exposure on hourly wages in log with constant weights

1 2 3 4 5 6

Automation AI −0.181*** −0.159*** −0.171*** −0.160***
(0.042) (0.026) (0.038) (0.026)

Augmentation AI −0.021** 0.001 −0.013* 0.003

(0.009) (0.005) (0.008) (0.005)
R2 0.994 0.995 0.994 0.995 0.994 0.995

Covariates included:
Employment (log) X X X X X X
Fixed effects:
Year X X X X X X
NAICS*SOC X X X X X X
NAICS*year (3-digit) X X X

Observations 230 204 230 204 230 204 230 204 230 204 230 204

Unique SOC (6-digit) 672 672 672 672 672 672

Unique NAICS (4-digit) 244 244 244 244 244 244

Mean outcome 3.2 3.2 3.2 3.2 3.2 3.2

SD outcome 0.5 0.5 0.5 0.5 0.5 0.5

Note: The table presents the outputs for the regressions 6 using fixed effect estimators and when the
dependent variable is the hourly wages. Augmentation AI exposure and automation AI exposure are
standardized to have a mean of 0 and a standard deviation equal to 1. Standard errors are reported in
brackets and are clustered at the occupational and industry level. ⋆ ⋆ ⋆ Significant at the 1% level; ⋆⋆
significant at the 5% level; ⋆ significant at the 10% level.

72



F Median hourly wages

Table G1: Effect of AI exposure on median hourly wages in log

1 2 3 4 5 6

Automation AI −0.229*** −0.216*** −0.213*** −0.216***
(0.042) (0.032) (0.039) (0.032)

Augmentation AI −0.029*** −0.003 −0.019** 0.001

(0.010) (0.007) (0.009) (0.007)
R2 0.991 0.994 0.991 0.993 0.992 0.994

Covariates included:
Employment (log) X X X X X X
Fixed effects:
Year X X X X X X
NAICS*SOC X X X X X X
NAICS*year (3-digit) X X X

Observations 229 296 229 296 229 296 229 296 229 296 229 296

Unique SOC (6-digit) 672 672 672 672 672 672

Unique NAICS (4-digit) 244 244 244 244 244 244

Mean outcome 3.1 3.1 3.1 3.1 3.1 3.1

SD outcome 0.5 0.5 0.5 0.5 0.5 0.5

Note: The table presents the outputs for the regressions (6) using fixed effect estimators and the median
hourly wages as dependent variable. The estimations are weighted by employment size. Augmentation
AI exposure and automation AI exposure are standardized to have a mean of 0 and a standard deviation
equal to 1. Standard errors are reported in brackets and are clustered at the occupational and industry
level. ⋆ ⋆ ⋆ Significant at the 1% level; ⋆⋆ significant at the 5% level; ⋆ significant at the 10% level.
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