Equalising Monetary Policy The Earnings Heterogeneity Channel in Action

Martin Groiss

Goethe University Frankfurt

EEA ESEM 2024 - Rotterdam

August 27, 2024

Results and Sub-Channels 0000000

Motivation

- Unconventional monetary policy has unintended effects:
 - \rightarrow direct effects: capital income
 - \rightarrow indirect effects: wages
- Monetary stimulus increases job creation
- > 70% of income from labour earnings (HFCS, 2014)

Earnings Heterogeneity Channel

- Earnings of high-income and low-income workers may respond differently to monetary policy
- Expansionary monetary policy is...
 - equalising: poor households' wages are more affected by recessions through changes in unemployment (Krueger et al., 2010)
 - dis-equalising: poor households' wages are stickier (Ko, 2015), the skill-premium increases (Dolado et al., 2021) and jobs for low-skilled workers (Faia et al., 2023)

Earnings Heterogeneity Channel

- Earnings of high-income and low-income workers may respond differently to monetary policy
- Expansionary monetary policy is...
 - equalising: poor households' wages are more affected by recessions through changes in unemployment (Krueger et al., 2010)
 - dis-equalising: poor households' wages are stickier (Ko, 2015), the skill-premium increases (Dolado et al., 2021) and jobs for low-skilled workers (Faia et al., 2023)
- Coibion et al. (2017) vs Inui et al. (2020)
 → quality of survey data, no unconventional MP

Wage Inequality

Monetary Policy

Results and Sub-Channels 0000000

Research Agenda

Research Question:

How does conventional and unconventional monetary policy affect the quarterly wage distribution and why?

Agenda:

- Create quarterly wage inequality measures with admin data (SIAB)
- Identify exogenous conventional and unconventional monetary policy shocks
- Estimate IRFs in a IV local projection framework
- Decompose of the Earnings Heterogeneity Channel

Wage Inequality

Monetary Policy

Results and Sub-Channels 0000000

SIAB Data

- Stichprobe integrierter Arbeitsmarkt-Biographien (SIAB) by the IAB
- 2% random sample of German labour market participants
- 1975-2019 \rightarrow 1.9 million worker, 72 million observations

Wage Inequality

Monetary Policy

Results and Sub-Channels 0000000

SIAB Data

- Stichprobe integrierter Arbeitsmarkt-Biographien (SIAB) by the IAB
- 2% random sample of German labour market participants
- 1975-2019 \rightarrow 1.9 million worker, 72 million observations

Strengths

- large (sub-)samples
- reliable
- gross wages
- representative

Weaknesses

- top-coded wages
- average wage btw reports

Monetary Policy

Results and Sub-Channels 0000000

Temporal Disaggregation

- Combining known annual wage deciles and within-year sub-sample dynamics
- Litterman (1983): Estimate missing quarterly values of an annual series by quarterly indicator series
 - GLS Regression: $Y_t = CX_q \beta + Cu$
 - Annual value of the *estimated* quarterly series is consistent with the annual series
- Suitable indicators: "employed changers" subsample
 - incumbents with reports during the year unrelated to monetary policy
 - average age, tenure, high education share close to overall sample Table

Wage Inequality

Monetary Policy

Results and Sub-Channels 0000000

Quarterly Wage Inequality

Wage Inequality

Monetary Policy

Results and Sub-Channels 0000000

IV Local Projections

- Estimate IRFs according to Jordà (2005) using instrumental variables
- Cumulative relative change compared to pre-policy change

$$ln(y_{t+h}) - ln(y_{t-1}) = c^{h} + \sum_{p=1}^{P} \alpha_{p}^{h} ln(y_{t-p}) + \beta^{h} \widehat{policy_{t}^{i}} + \phi^{h} X_{t}^{i} + u_{t+h}^{h}, \quad h = 0, 1, ..., H$$

y real gross wage deciles or percentile ratios *policy* Policy Rate change or (3 quarter) Balance Sheet change

X current and lagged HICP, lagged instruments, other monetary policy tool

Monetary Policy

Results and Sub-Channels 0000000

High-frequency Identification

- Exogenous monetary policy shocks: Shock series
 - Data and Euro area application by Altavilla et al. (2019)
 - Changes in OIS rates in a 3h window around ECB announcements
 - Anticipated effects incorporated, controlling for reverse causality, unpredictable
- Target rate, Forward guidance and QE shocks controlled for info effects
- Endogenous monetary tools instrumented by monetary policy shocks:
 - Policy Rate change Target Rate shock
 - Balance Sheet change QE shock and QE announcement (Dedola et al., 2021)

First stage

Macro check 🔵

Wage Inequalit

Monetary Policy

Results and Sub-Channels •000000

Interest Rate cuts boost wages similarly

Wage Inequality

Monetary Policy

Results and Sub-Channels

QE boosts low wages and reduces wage inequality

Wage Inequalit

Monetary Policy

Results and Sub-Channels

Robustness

- All wage deciles / whole wage structure Graph
- Other temporal disaggregation (Chow-Lin, Q1 benchmark) Graph
- 90-10 percentile ratio Graph
- Gini coefficient Graph
- More controls (recession dummy, hartz dummy) and more lags Graph
- Narrative approach (Romer and Romer, 2004) Graph
- Period 2008-Q1 to 2019-Q4 Graph

Wage Inequality

Monetary Policy

Results and Sub-Channels

Sub-Channels

Earnings heterogeneity channel \checkmark

 \rightarrow Why do we observe equalising effects and differences across tools?

Sub-Channels

- Job creation channel
- Job switching channel
- Pure wage channel
- Hours worked channel

Monetary Policy

Results and Sub-Channels

Channel Decomposition - Policy Rates

Monetary Policy

Results and Sub-Channels

Channel Decomposition - Policy Rates

Monetary Policy

Results and Sub-Channels

Channel Decomposition - QE

Conclusion

- Exogenous monetary policy shocks and administrative labour market data
- Lower wages react (i) stronger and (ii) quicker to monetary policy changes
- Interest rate effects are similar across the wage distribution
- QE reduces wage inequality, by affecting mainly the bottom of the distribution
- Main channels: job creation and job switching

Appendix

References

Literature Overview

Heterogeneous Agent Models:

• Gornemann et al. (2016), Dolado et al. (2021), Faia et al. (2023)

Empirical studies (on wage inequality):

- Survey data: Coibion et al. (2017), Furceri et al. (2018), Inui et al. (2020)
- Administrative data: Amberg et al. (2022), Broer et al. (2023), Andersen et al. (2021)
- Unconventional Monetary Policy: Lenza & Slacalek (2018)

Contributions:

- 1. Analysing quarterly dynamics with admin data (SIAB)
- 2. Comparison between conventional and unconventional monetary policy
- 3. Decomposition of the Earnings Heterogeneity Channel

Data preparation

- 1. Transform spell data to quarterly panel
 - splitting the long spells
 - identifying the main spell per period, add other wages
 - defining the main observation per quarter
- 2. Deflate daily gross wages by German CPI
- 3. Sample selection: 20-60 years, non-marginal worker and subsamples: enter, leave, incumbents, employed changer
- 4. Wage percentiles and inequality measures (80-20, 80-50, 50-20 ratio)
- 5. Correction of structural breaks and outlier
- 6. Seasonal adjustment (X-13ARIMA-SEATS)

Temporal Disaggregation - Regression

The annual-frequency GLS regression:

$$Y = CX\beta + Cu \tag{1}$$

$$C = \begin{bmatrix} 1/4 & 1/4 & 1/4 & 1/4 & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1/4 & 1/4 & 1/4 & 1/4 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 1/4 \end{bmatrix}$$

The linear unbiased estimate of quarterly Y_h is given by:

$$\hat{Y}_h = X\hat{\beta} + VC'(CVC')^{-1}[Y - CX\hat{\beta}]$$
(3)

back

(2)

Shares - Employed Changers

► back

Sample Characteristics

	1975-1991	1992-1998	1999-2008	2009-2019	qtr corr	
Average Age						
Average Age	20.12	20.00	40.40	40.04	1.00	
All	38.13	39.08	40.40	42.04	1.00	
Changers	-4.42	-3.22	-3.39	-4.31	0.82	
Employed Changers	-0.32	-0.54	-0.80	-0.79	0.87	
Average Tenure						
All	1 641 69	2 312 43	2 672 18	2 068 48	1.00	
	1,041.09	2,512.45	2,072.10	2,500.40	1.00	
Changers	-949.54	-1,362.84	-1,438.79	-1,738.13	0.78	
Employed Changers	-28.99	-95.22	-59.65	-111.78	0.98	
Higher Education Share						
All	5.81	10.02	13.49	18.54	1.00	
Changers	0.05	-0.13	-0.29	-1.02	0.97	
Employed Changers	-1.06	-0.61	0.68	0.25	0.92	
(Average) Median Wag	le l					
All	83.14	89.29	90.35	89.07	1.00	
Changers	-13.49	-16.82	-17 70	-20.94	0.51	
Employed Changers	-13.49	-10.02	-17.70	-20.94	0.51	
Employed Changers	-3.51	-2.67	-1.08	-4.44	0.67	

Note: This table compares age, tenure, higher education share and median wage of the subsamples "Changers" and "Employed Changers" to the main sample (AlI). Tenure counts the days a worker is employed at a firm. The higher education share shows the sample share of workers with a university or Fachhochschul degree. Wages are the daily gross real wages. The average values are reported for the period 1975-1991 (pre Reunification in SIAB), 1992-1998 (pre Euro), 1999-2008 (pre GFC) and 2009-2019. The last column shows the quarterly correlation with "AlI" over the whole period. Source: factually anonymized SIAB 2019

National Accounts Comparison

Indicator Comparison

Interpolated Wage Deciles

High-frequency Identification - Details

- Exogenous monetary policy shocks by high-frequency approach
 - Isolate the impact of news about monetary policy in a tight window

 MP timeline
 - Unanticipated part of the policy action
 - Euro Area Monetary Policy Event-Study Database (Altavilla et al., 2019)
- PCA to extract 3 relevant factors from different maturities
- Orthogonal rotation for interpretation: Target rate, Forward guidance and QE
- Remove information effects (Jarocinski and Karadi, 2020)
- Weighted average of two monetary policy meetings/shocks (instead of eight)

▶ factor loadings

Monetary Policy Event - timeline

Factor loadings

▶ back

References

Monetary Policy Shocks

Monetary Policy Surprises - detailed

References

First stage - IV local projection

Table: First Stage - IR and QE

	Coef	SE	F-Stat	p-value
80-20 ratio	-0.05	0.02	15.4	0.000
80-50 ratio	-0.04	0.02	11.1	0.003
50-20 ratio	-0.04	0.01	9.2	0.008
20th percentile	-0.04	0.01	14.5	0.000
50th percentile	-0.03	0.01	15.4	0.000
80th percentile	-0.04	0.01	22.5	0.000

Note: First stage regressions of policy rate changes instrumented by Target Rate shocks for the six main dependent variables. The columns show the shock coefficient (1), the Newey West standard error (2), the HAC F-Statistic (3), the p-value of the weak instrument test (4)

	Coef	SE	Coef II	SE	F-Stat	p-value
80-20 ratio 80-50 ratio 50-20 ratio 20th percentile	0.03 0.04 0.03 0.04	0.02 0.02 0.02 0.02	0.44 0.43 0.48 0.50	0.12 0.12 0.11 0.11	15.3 7.3 19.4 21.8	0.000 0.002 0.000 0.000
50th percentile 80th percentile	0.04 0.04	0.02	0.50	0.11 0.12	15.9 4.8	0.000 0.012

Note: First stage regressions of balance sheet changes instrumented by QE shocks and QE announcement dummy for the six main dependent variables. The columns show the shock coefficient (1), the Newey West standard error (2), the announcement dummy coefficient (3), the Newey West standard error (4), the HAC F-Statistic (5), the p-value of the weak instrument test (6)

Macroeconomic consistency check

Note: upper row = interest rate shock, lower row = QE shock • back

Wage structure - Interest Rate Policy

Wage structure - QE

Alternative temporal disaggregation

→ back

90-10 ratio

Figure: Responses of the 90-10 percentile ratio

References

Gini coefficient

Figure: Responses of the Gini coefficient

Robustness - Interest Rate

Robustness - QE

Narrative approach - Interest Rate

Narrative approach - QE

QE - 2008-2019

▶ back

Annual IR effects

Reference

Annual QE effects

Gender Decomposition

Figure: IR & QE effects - Gender differences

References

Age Decomposition

Figure: IR & QE effects - Age differences

References

Education Decomposition

Figure: IR & QE effects - Education differences

References I

- Altavilla, C., Brugnolini, L., Gürkaynak, R. S., Motto, R., and Ragusa, G. (2019). Measuring euro area monetary policy. <u>Journal of Monetary Economics</u>, 108:162–179.
- Amberg, N., Jansson, T., Klein, M., and Picco, A. R. (2022). Five facts about the distributional income effects of monetary policy shocks. <u>American Economic</u> <u>Review: Insights</u>, 4(3):289–304.
- Andersen, A. L., Johannesen, N., Jørgensen, M., and Peydró, J.-L. (2022). Monetary policy and inequality. <u>Univ. of Copenhagen Dept. of Economics Discussion Paper</u>, <u>CEBI Working Paper</u>, 9:22.
- Coibion, O., Gorodnichenko, Y., Küng, L., and Silvia, J. E. (2017). Innocent bystanders? monetary policy and inequality. <u>Journal of Monetary Economics</u>, 88 (2017):70–89.

References II

- Dedola, L., Georgiadis, G., Gräb, J., and Mehl, A. (2021). Does a big bazooka matter? quantitative easing policies and exchange rates. <u>Journal of Monetary</u> Economics.
- Dolado, J. J., Motyovszki, G., and Pappa, E. (2021). Monetary policy and inequality under labor market frictions and capital-skill complementarity. <u>American Economic</u> Journal: Macroeconomics, 13(2):292–332.
- Gertler, M. and Karadi, P. (2015). Monetary policy surprises, credit costs, and economic activity. <u>American Economic Journal: Macroeconomics</u>.
- Gornemann, N., Kuester, K., and Nakajima, M. (2016). Doves for the rich, hawks for the poor? distributional consequences of monetary policy. <u>FED International</u> Finance Discussion Papers.
- Inui, M., Sudo, N., and Yamada, T. (2020). Effects of monetary policy shocks on inequality in Japan. <u>BIS Working paper</u>, no. 17, E-3 (May 2017).

References III

- Jordà, Ò. (2005). Estimation and inference of impulse responses by local projections. American Economic Review, 95(1):161–182.
- Lenza, M. and Slacalek, J. (2018). How does monetary policy affect income and wealth inequality? evidence from quantitative easing in the euro area. <u>ECB</u> Research Bulletin.
- Mitman, K., Broer, T., and Kramer, J. (2022). The curious incidence of monetary policy shocks across the income distribution. <u>CEPR Press Discussion Paper No.</u> <u>17589</u>.