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Setup

We have panel data with two dimensions denoted by j = 1, ...,m and
i = 1, ...n. We can distinguish two sorts of applications:

1 Traditional panel data where we observe the same units over
multiple periods. Example: the effect of union status on wages using
the PSID. j identifies the individual and i the time period.

2 Grouped data where each observation belongs to one group. j
identifies the group and i the individual within the group. Examples:

• Effect of import competition on the within-industry wage distribution.
Individual level data, but the treatment varies at the commuting zone
level (Autor, Dorn and Hanson, 2013).

• Effect of the food stamp program on the distribution of birth weights.
Individual level data, but the treatment varies at the county-time level
(Almond, Hoynes and Schanzenbach, 2011).
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Summary

• We are interested in the effect of both group-level and individual-level
variables on the distribution of an outcome =⇒ quantile regression.

• We suggest quantile versions of traditional panel data estimators
(fixed effects, random effects, between, and Hausman and Taylor
estimators).

• We use the minimum distance approach:
• For each group j regress with quantile regression the outcome on the

individual-level regressors.
• Regress the first stage fitted values on all the regressors with GMM

using the appropriate instruments.

• Simple to implement, flexible, computationally fast, and useful in
various applied fields. Inference is straightforward: cluster-robust
standard errors in the second stage.
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Grouped (IV) Quantile Regression

• Chetverikov et al. (2016) propose a grouped (IV) quantile regression
estimator focusing on the effect of group-level variables. While the
first stage is the same as ours, they use a different approach for the
second stage:
Regress the intercept from the first stage on the group-level variables
using OLS or 2SLS, using one observation per group.

• Obviously, this procedure is not invariant to linear reparametrizations
of the individual-level regressors.

• Using their data generating process, our simulations show that our
estimator has a much lower MSE.

• According to their asymptotic results, all the variance should arise
from the second stage. Their and our estimators should have the
same variance.
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Related Literature

• (IV) Quantile regression: Koenker and Bassett (1978), Chernozhukov
and Hansen (2005). We consider different parameters (conditionally
on the group effects).

• Minimum distance QR: Chamberlain (1994). We incorporate
individual-level regressors and accommodate endogenous regressors
and group effects but require the number of groups to diverge.

• Compared to Chetverikov et al. (2016), we provide a better estimator,
take into account the first-stage variance and also consider
individual-level variables.

• Fixed effects quantile regression: Koenker (2004), Galvao and Wang
(2015), Galvao et al. (2020). A special case of our framework.

• Random effects quantile regression: Galvao and Poirier (2019) use
pooled quantile regression and estimate unconditional parameters.
We suggest a new random effects estimator and a new Hausman test.
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Model

We assume that the τ th conditional quantile function of yij in group j can
be represented by

Q(τ, yij |x1ij , x2j , vj) = x ′1ijβ(τ) + x ′2jγ(τ) + α(τ, vj) (1)

• x1ij is a K1-dimensional vector of individual-level variables.

• x2j is a K2-dimensional vector of group-level variables (includes a
constant).

• vj is an unobserved random vector.

• x1ij and x2j are potentially correlated with α(τ, vj).

• The group unobserved effects are normalized E[α(τ, vj)] = 0.

• zij is a L-dimensional vector of valid instruments, i.e.
E[zijα(τ, vj)] = 0.
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Comments

• Conditional versus unconditional effects

• Moment condition implied by the model

E[zijα(τ, vj)] = E
[
zij
(
Q(τ, yij |x1ij , x2j , vj)− x ′1ijβ(τ)− x ′2jγ(τ)

)]
= 0

• If we allow for heterogeneous coefficients,

E [Q (τ, yij |x1ij , x2j , vj) |x1ij , x2j ] = x ′1ij β̄(τ) + x ′2j γ̄(τ)

• Least-squares versus quantile regression in the second stage. Pons
(2024) considers a version of

Q(θ,Q(τ, yij |x1ij , x2j , vj)|x1ij , x2j) = x ′1ijβ(τ, θ) + x ′2jγ(τ, θ).
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Minimum Distance Quantile Estimator

1 First stage: For each group j and quantile τ , regress yij on the
individual-level variables using quantile regression.

β̂j(τ) ≡
(
β̂0,j , β̂

′
1,j

)′
= argmin

(b0,b1)∈RK1+1

1

n

n∑
i=1

ρτ (yij − b0 − x ′1ijb1) (2)

where ρτ (x) = (τ − 1{x < 0})x for x ∈ R is the check function.

2 Second Stage: Regress the fitted values from the first stage on all
the variables using GMM with the moment condition E[gj(δ, τ)] = 0

where gj(δ, τ) = Zj(Ŷj(τ)− Xjδ(τ)).

δ̂(Ŵ , τ) =
(
X ′ZŴ (τ)Z ′X

)−1
X ′ZŴ (τ)Z ′Ŷ (τ) (3)

Ŵ (τ) is a L× L symmetric weighting matrix and δ = (β′, γ′)′.
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X ′ZŴ (τ)Z ′X

)−1
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Interpretation as a minimum distance estimator

Define

Rj
(K1+1)×K

=

(
0 x ′2j
IK1 0

)
It follows that

δ̂(τ) = argmin
δ

m∑
j=1

(X̃j β̂j(τ)− Xjδ)
′(X̃j β̂j(τ)− Xjδ)

= argmin
δ

m∑
j=1

(β̂j(τ)− Rjδ)
′X̃ ′

j X̃j(β̂j(τ)− Rjδ),

=⇒ A minimum distance estimator. However, it does not correspond to
the textbook definition of a “classical minimum distance” estimator
because some of the variance arises in the second stage.
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Traditional panel data estimators as MD estimators

Consider
yij = x1ijβ + x2jγ + αj + εij

and define ȳj = n−1
∑n

i=1 yij , x̄1j = n−1
∑n

i=1 x1ij , ẏij = yij − ȳj and
ẋ1ij = x1ij − x̄1j .

OLS fitted values of the group-level regressions: ŷij .

We obtain numerically the traditional (average) estimators:

• FE: Regress ŷij on x1ij with instrument ẋ1ij .

• BE: Regress ŷij on x1ij and x2j with instruments x̄j and x2j .

• Pooled: Regress ŷij on x1ij and x2j with OLS.

• RE: Efficient GMM with instruments (ẋ1ij , x̄1j , x2j)

We can proceed similarly with quantile regression.
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Sampling error

δ̂(Ŵ , τ)− δ(τ) =
(
S ′
ZX Ŵ (τ)SZX

)−1
S ′
ZX Ŵ (τ)

× 1

mn

m∑
j=1

n∑
i=1

zij

(
x̃ ′ij(β̂j(τ)− βj(τ)) + αj(τ)

)
where SZX = 1

nm

∑m
j=1

∑n
i=1 zijx

′
ij and x̃ij = (1, x ′1ij)

′.

1 In yellow: first-stage error

2 In blue: second-stage error
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Sampling error (cont.)

δ̂(Ŵ , τ)− δ(τ) =
(
S ′
ZX Ŵ (τ)SZX

)−1
S ′
ZX Ŵ (τ)

×
(

1

mn

m∑
j=1

n∑
i=1

zij x̃
′
ij(β̂j(τ)− βj(τ))︸ ︷︷ ︸

ḡ
(1)
mn (δ̂,τ)

+
1

m

m∑
j=1

z̄jαj(τ)︸ ︷︷ ︸
ḡ
(2)
mn (δ̂,τ)

)

where z̄j := n−1
∑n

i=1 zij

Quantile regression is biased in finite samples =⇒ the number of
observations per group must diverge.

The standard deviation of the first sample mean converges at the 1/
√
nm

rate while the second only at the 1/
√
m rate =⇒ the second component

dominates except if it is exactly zero.
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Asymptotic distribution of the sample moments
Under Assumptions more ,

• If m(log n)2

n → 0,

√
mnḡ

(1)
mn (δ̂, ·)⇝ Z1(·), in l∞(T ),

where Z1(·) is a mean-zero Gaussian process with uniformly
continuous sample paths and covariance function Ω1(τ, τ

′).

• If
√
m(log n)

n → 0

√
mḡ

(2)
mn (δ̂, ·)⇝ Z2(·), in l∞(T ),

where Z2(·) is a mean-zero Gaussian process with uniformly
continuous sample paths and covariance function Ω2(τ, τ

′)

• If m(log n)2

n → 0

sup
τ,τ ′∈T

∥∥∥Cov (ḡ (1)
mn (δ̂, τ), ḡ

(2)
mn (δ̂, τ

′)
)∥∥∥ = op

(
1√
mn

)
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Two cases and two types of instruments

1 Homogeneous groups: Var(αj(τ)) = 0. In this case, Ω2(τ, τ
′) is a

matrix of zeros. All coefficients are estimated at the
√
mn rate.

2 Heterogeneous groups: Var(αj(τ)) > ε > 0. We can distinguish two
sorts of instruments:

• L1 instruments in z1ij satisfy z̄1j = 0 for all j ,
• L2 instruments in z2ij do not satisfy z̄2j = 0 for all j .

=⇒ Only the L2 × L2 bottom-right elements of Ω2(τ) are different from
zero.

=⇒ The elements of δ(τ) that are identified using only z1ij can be
estimated at the 1/

√
mn rate. In contrast, the remaining elements can

only be estimated at the 1/
√
m rate. We denote the first with δ1(τ)

and the second with δ2(τ).

• The asymptotic distribution of the slow coefficients δ̂2(W , τ) are
discontinuous in Var(z̄jαj(τ)) at 0 =⇒ adaptive inference.
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Two examples (with heterogeneous groups)

1 Regressors: x1ij , 1 and x2j . Instruments: ẋ1ij , 1, and x2j . Then,

ΣZX =

Σ11 0 0
Σ21 Σ22 Σ23

Σ31 Σ32 Σ33


The coefficient on x1ij converges at the

√
mn rate while the other

coefficients converge at the
√
m rate.

2 Regressors: x1ij , 1 and x2j . Instruments: ẋ1ij , x̄1j , 1, and x2j .
With a full-rank weighting matrix (e.g. 2SLS), the slow moments will
contaminate the fast coefficients. We avoid that with

W (τ) =

(
W11(τ) anW12(τ)
anW21(τ) anW22(τ)

)
where an(τ) is a sequence that converges to zero.
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Asymptotics with known degree of heterogeneity

• We first derive the asymptotic distribution in three special cases:

1 Strong group-level heterogeneity: δ̂1(W , τ) converges at the
√
mn rate,

δ̂2(W , τ) converges at the
√
m rate.

2 No group-level heterogeneity: both are
√
mn consistent, only the

first-stage variance matters.
3 Weak group-level heterogeneity: both are

√
mn consistent, first- and

second-stage variances matter.

• Consequences

1 Asymptotic distribution is discontinuous in Var(αj(τ)).
2 When there is group-level heterogeneity, the first-stage variance does

not show up in the first-order asymptotic distribution of δ̂2(W , τ).
3 When a coefficient is identified by slow and fast moments, the

first-order asymptotic distribution depends only on the fast moments.

=⇒ Adaptive inference that takes both source of errors into account
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Adaptive inference

• Theorem 3: adaptive asymptotic distribution

diag(Σmn(·))−1/2(δ̂(·)− δ(·))⇝ G(·)

• Asymptotic variance of the sample moments

Ωmn(τ, τ
′) = Ω1(τ, τ

′)/n +Ω2(τ, τ
′)

• We estimate Ωmn(τ, τ
′) with a cluster robust covariance matrix

estimator (which neglects the fact that the dependent variable has
been estimated).

• Proposition 1:

Ω̂ll ′(τ, τ
′) = Ωmn,ll ′(τ, τ

′) + op

(√
Ωmn,ll(τ)Ωmn,l ′l ′(τ ′)

)
.
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Adaptive inference (cont.)

• Inference is adaptive and does not require knowing the rate of
convergence of the estimator. For instance, let η ∈ RK with
||η|| > ϵ > 0. Then, uniformly in Var(αj(τ)),

η′
(
δ̂(τ)− δ(τ)

)
η[

η′V̂δ(τ)η
]1/2 d−→ N(0, 1).

• Following standard GMM arguments, the efficient weighting matrix is

W (τ)∗ = (Ω1(τ)/n +Ω2(τ))
−1 .

• Using Ŵ (τ)∗ = Ω̂(τ)−1 or W (τ)∗ does not change the asymptotic
distribution of the estimator: adaptive efficiency.

• Adaptive overidentification test.
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Grouped IV Quantile Regression

Chetverikov et al. (2016) consider a grouped (IV) quantile regression
model, which fits into our setup. They are only interested in γ(τ). They
suggest a different two-stage estimator:

1 For each group j and quantile τ , regress the yij on x1ij using quantile
regression.

2 Regress the intercept from the first stage on the x2j variables with
OLS or 2SLS, using one observation per group.

In their theoretical results, they assume that we are in the case of strong
group-level heterogeneity. Thus, only the second-stage variance matters.
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Comparison with our estimator

• It is not invariant to linear reparametrization of x1ij .

• When we know the first stage coefficients βj(τ), using our estimator
with ẋ1ij as instrument for x1ij gives numerically the CLP estimator.
=⇒ No difference with respect to the second stage variance.

• On the other hand, the estimator suggested by CLP deals inefficiently
with the first-stage variance. We can write their estimator as a
minimum distance estimator and show that they impose fewer
restrictions and use a less efficient weighting matrix than our
estimator.

• Intuitively, the intercept is the fitted value at x1ij = 0: poorly
estimated and vulnerable to misspecification when outside of the
support of x1ij .
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Simulations

• Simulations for γ̂

• Same DGP as Chetverikov et al. (2016) DGP

• 10’000 Monte Carlo Replications.

• (m, n) = {(200, 25), (200, 200)}
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Simulation Results for γ DGP More results

Table: Bias, Standard Deviation and Relative MSE

Quantile MD CLP Rel. MSE

(m,n) = (200, 25)

0.1 0.024 0.004 0.063

(0.067) (0.285)

0.5 -0.006 0.000 0.086

(0.069) (0.238)

0.9 -0.017 -0.003 0.223

(0.075) (0.164)

(m,n) = (200, 200)

0.1 0.003 -0.003 0.062

(0.025) (0.101)

0.5 -0.001 -0.001 0.222

(0.044) (0.093)

0.9 -0.003 -0.001 0.762

(0.071) (0.082)

Note:

Simulation performed using 10,000 simulations.

Standard deviations in parenthesis.
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The effect of the food stamp program (FSP) on the
distribution of birth weight

• We build on the work Almond et al. (2011) and estimate the
distributional effects.

• 1964: Foot Stamp Act enabled counties to start their own (federally
founded) FSP.

• 1973: amendment to the FSA required all counties to establish a FSP
by 1975.

• We use Natality data from 1968 to 1977 augmented with information
on FSP rollout and county control variables.

• Groups: county-trimester cells.

• We estimate the effect for black and white mothers separately (2.8
and 16 million individual observations, respectively).
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Model

We consider the following model for black and white mothers separately:

Q(τ, bwij |fspj , x1ij , x2j , vj) = fspjγ1(τ) + x1ijβ(τ) + x2jγ2(τ) + α(τ, vj),

where

• bwij is the birth weight of individual i born in county–trimester j .

• fspj is a binary variable indicating that there is a FSP in place.

• x1ij births-specific covariates (e.g., mother’s age, marital status,
gender).

• x2j county-level controls (e.g., annual medial spending, per-capita
income, 1960 county-level characteristics interacted with a linear time
trend) and county , trimester and state × year fixed effects.
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Results - Black Mothers CLP
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Summary and limitations

• If time permits: traditional panel data models

• Summary
• We suggest a general framework for quantile panel data models.
• New random effects quantile estimator, new Hausman test, new

Hausman-Taylor quantile estimator, new grouped (IV) quantile
regression estimator.

• The estimators are straightforward to implement and computationally
fast also in large data sets. We have implemented them in Stata and R.

• Limitations
• Large n asymptotic

(but simulations show good performance with moderate n).
• Cannot accommodate time fixed effects

(but linear, quadratic, etc. trends).
• Conditional quantile effects

(but it is possible to integrate over the group effects).
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Assumptions I

1 Sampling. (i) The processes {(yij , xij , zij) : i ∈ Z} are independent across j .
(ii) For each j , the observations (yij , x1ij , z1ij)i=1,...,n are i.i.d. across i .

2 Covariates. (i) For all j = 1, . . . ,m and all i = 1, . . . , n, ∥xij∥ ≤ C almost
surely. (ii) The eigenvalues of Ei|j [x̃ij x̃

′
ij ] are bounded away from zero and

infinity uniformly across j .

3 Conditional distribution. The conditional distribution Fyij |x1ij (y |x) is twice
differentiable w.r.t. y, with the corresponding derivatives fyij |x1ij (y |x) and
f ′yij |x1ij (y |x). Further, assume that

fmax := sup
j

sup
y∈R,x∈X

|fyij |x1ij (y |x)| < ∞

and

f̄ ′ := sup
j

sup
y∈R,x∈X

|f ′yij |x1ij (y |x)| < ∞.

where X is the support of x1ij
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Assumptions II

4 Bounded density. There exists a constant fmin < fmax such that

0 < fmin ≤ inf
j

inf
τ∈T

inf
x∈X

fyij |x1ij (Q(τ, yij |x)|x).

5 Instruments. (i) For all j = 1, . . . ,m and all i = 1, . . . , n, ||zij || ≤ C a.s.
(ii) For all j = 1, . . . ,m and all i = 1, . . . , n, E[zijαj(τ)] = 0. (iii) For all
j = 1, . . . ,m and all i = 1, . . . , n, yij is independent of zij conditional on
(xij , vj). (iv) As m → ∞, m−1

∑m
j=1 Ei|j [zijx

′
ij ] → ΣZX where the singular

values of ΣZX are bounded from below and from above.

6 group effects. (i) For all j = 1, . . . ,m, E
[
supτ∈T |αj(τ)|4+εC

]
≤ C for

εC > 0. (ii) For some (matrix-valued) function Ω2 : T × T → RL×L,
m−1

∑m
j=1 Ei|j [αj(τ1)αj(τ2)zijz

′
ij ] →p Ω2(τ1, τ2) uniformly over τ1, τ2 ∈ T .

(iii) For all τ1, τ2 ∈ T , |αj(τ2)− αj(τ1)| ≤ C |τ2 − τ1|.

7 Coefficients. For all τ1, τ2 ∈ T and j = 1, . . . ,m,
||βj(τ2)− βj(τ1)|| ≤ C |τ2 − τ1|.
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Assumptions III

8 Growth rates. (a) logm
n → 0, (b)

√
m log n
n → 0, (c) m(log n)2

n → 0.

Back
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Adaptive estimation

Uniformly in τ ∈ T and k ∈ {1, . . . ,K},

δ̂k(τ)− δk(τ) =
m∑
j=1

dj(k, τ) + op (ζ(k , τ))

where

dj(k , τ) = Gk(τ)

(
1

mn
ΣZXj

(
1

n

n∑
i=1

ϕj ,τ (x̃ij , yij)

)
+

1

m
z̄jαj(τ)

)

where

ζ(k , τ) =
1√
mn

+
1√
m

∥∥Gk(τ)Ω2(τ)Gk(τ)
′∥∥1/2 .

Back
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Estimation of the variance

Define the n × 1 vector of residuals ûj(τ) = X̃j β̂j(τ)− Xj δ̂(τ). Then the

covariance matrix of δ̂(τ) is estimated by

V̂δ(τ) =(
X ′ZŴZ ′X

)−1
X ′ZŴ

 m∑
j=1

Z ′
j ûj(τ)ûj(τ)

′Zj

 ŴZ ′X
(
X ′ZŴZ ′X

)−1
.

Back
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Efficient Estimator

Note that
√
mḡnm(δ̂, ·)⇝

Z1(·)
n

+ Z2(·). (4)

Following standard GMM arguments, the efficient weighting matrix is
given by

W (τ)∗ = (Ω1(τ)/n +Ω2(τ))
−1 . (5)

Then under Assumptions ,

√
m(δ̂(Ω̂(·)−1, ·)− δ(·))⇝ G (·)

(
Z1(·)
n

+ Z2(·)
)
, in ℓ∞(T ), (6)
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Proposition

Denote δ̂MD
GMM the coefficient vector of a linear GMM regression of Ŷ on X

with instrument Z. Let δ̂GMM be the coefficient vector of the same GMM
regression but with regressand Y . If C (X̃j) ⊆ C (Zj), then δ̂MD

GMM = δ̂GMM .

Proof: Let P = X̃j(X̃
′
j X̃j)

−1X̃ ′
j . Since C (X̃j) ⊆ C (Zj):

PZj = Zj (7)

The MD estimator with a GMM second stage is:

δ̂MD
GMM =

(
X ′ZWZ ′X

)−1
X ′ZWZ ′Ŷ .
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For δ̂MD
GMM to be equal to δ̂GMM , it suffices that Z ′Ŷ = Z ′Y . Note that

Z ′Ŷ =
n∑

i=1

Zj Ŷj

=
n∑

i=1

Zj X̃j β̂j

=
n∑

i=1

Zj X̃j(X̃
′
j X̃j)

−1X̃ ′
j yj

=
n∑

i=1

(PZj)
′yj

=
n∑

i=1

Z ′
j yj = Z ′Y

back
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DGP of CLP

DGP with unobserved Heterogeneity:

yij = β0(uij) + x1ijβ(uij) + x2jγ(uij) + αj(uij) (8)

αj(uij) = uijηj −
uij
2

(9)

Where

• x1ij and x2j are distributed exp(0.25 · N[0, 1])

• ηj and uij are U[0, 1] distributed.

• γ(uij) = β(uij) =
√
uij and β0(uij) =

uij
2

• True parameters: γ(τ) = β(τ) =
√
τ , α1(τ) =

τ
2 .

Back: Results
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Simulation Results for γ DGP Back

Table: Bias, Standard Deviation and Relative MSE

Quantile MD CLP Rel. MSE

(N, T) = (25, 25)

0.1 0.022 -0.010 0.052

(0.195) (0.860)

0.5 -0.011 0.000 0.088

(0.204) (0.691)

0.9 -0.020 -0.004 0.216

(N, T) = (25, 200)

0.1 0.003 -0.001 0.066

(0.074) (0.291)

0.5 -0.001 -0.001 0.233

(0.134) (0.278)

0.9 -0.001 0.001 0.769

(0.217) (0.247)

Note:

Simulation performed using 10000 simulations.

Standard deviation in parenthesis.

Back: Results
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Simulation Results for γ DGP More results

Table: Properties of the 95% Confidence Intervals

Rel. length Coverage Rate

Quantile MD/CLP MD CLP

(N, T) = (200, 25)

0.1 0.233 0.932 0.948

0.5 0.296 0.945 0.946

0.9 0.475 0.941 0.945

(N, T) = (200, 200)

0.1 0.254 0.947 0.945

0.5 0.483 0.952 0.948

0.9 0.872 0.950 0.950

Note:

Simulation performed using 10,000 simula-

tions.
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Black Mothers with CLP Back to our results
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CLP and normalized regressors Back to our results
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Extrapolation Back
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Vulnerability to misspecification Back
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Simulations Back

• Simulations for γ̂

• Same DGP as Chetverikov et al. (2016) DGP

• 10’000 Monte Carlo Replications.

• (m, n) = {(200, 25), (200, 200)}
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Simulation Results for γ DGP More results Back

Table: Bias, Standard Deviation and Relative MSE

Quantile MD CLP Rel. MSE

(m,n) = (200, 25)

0.1 0.024 0.004 0.063

(0.067) (0.285)

0.5 -0.006 0.000 0.086

(0.069) (0.238)

0.9 -0.017 -0.003 0.223

(0.075) (0.164)

(m,n) = (200, 200)

0.1 0.003 -0.003 0.062

(0.025) (0.101)

0.5 -0.001 -0.001 0.222

(0.044) (0.093)

0.9 -0.003 -0.001 0.762

(0.071) (0.082)

Note:

Simulation performed using 10,000 simulations.

Standard deviations in parenthesis.
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Quantile MD pooled, FE, and BE estimators Back

The quantile versions of the FE, BE, and Pooled estimators are
straightforward to implement:

• FE: Regress ŷit(τ) on x1it with instrument ẋ1it .

• BE: Regress ŷit(τ) on xit with instrument x̄i .

• Pooled: Regress ŷit(τ) on xit with OLS.
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Quantile MD random effects

RE is more difficult to implement as the model is overidentified.
Two possibilities:

1 Efficient GMM with instrument (ẋ1it , x̄i )

2 Optimal instruments: More in the next slides.
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RE - Optimal Instruments

• Suppose economic theory implies some conditional moment restriction

E[gi (δ, τ)|Zi ] = 0

• If the moment condition holds conditional on Zi , an infinite set of
valid moments exist.

• Optimal Instrument: Z ∗
i = E [gi (δ, τ)gi (δ, τ)

′|Zi ]
−1 Ri (δ) where

Ri (δ) = E
[
∂
∂δgi (δ, τ)|Zi

]
(Chamberlain, 1987, Newey, 1993)

• Let gi (δ, τ) = X̃i β̂(τ)− Xiδ(τ) and Zi = Xi

Ẑ ∗
i =

(
X̃i

V̂i

T
X̃ ′
i + l ′T lTσ

2
α

)+

Xi

where V̂i (τ) =
̂Avar(β̂i (τ))
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RE - Optimal Instruments

• Suppose economic theory implies some conditional moment restriction

E[gi (δ, τ)|Zi ] = 0

• If the moment condition holds conditional on Zi , an infinite set of
valid moments exist.

• Optimal Instrument: Z ∗
i = E [gi (δ, τ)gi (δ, τ)

′|Zi ]
−1 Ri (δ) where

Ri (δ) = E
[
∂
∂δgi (δ, τ)|Zi

]
(Chamberlain, 1987, Newey, 1993)

• Let gi (δ, τ) = X̃i β̂(τ)− Xiδ(τ) and Zi = Xi

Ẑ ∗
i =

(
X̃i

V̂i

T
X̃ ′
i + l ′T lTσ

2
α

)+

Xi

where V̂i (τ) =
̂Avar(β̂i (τ))
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Hausman and Taylor

• Assumptions imply instruments from within the model.

• Some variables in xit might be correlated with αi (τ)

• We partition xit into four types of variables: xx1it , x
n
1it , x

x
2i , x

n
2i ,

where n = endogenous and x = exogenous.
• E[xx1itαi (τ)] = 0
• E[xx2iαi (τ)] = 0

• Identification requires dim(xx1it) ≥ dim(xn2it)

• Hausman-Taylor can be estimated by using the instrument
zit = (ẋx1it , ẋ

n
1it , x̄

x
1i , x

x
2i ) in the second stage.
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Hausman Test

• Consistency of the RE estimator requires stronger assumptions.

• Hausman (1978) suggests a test for RE against FE.

• Ahn and Low (1996) show equivalence between the Hausman Test
and the Hansen GMM statistics in the 3SLS estimator.

• We suggest an overidentification test based on the efficient GMM.

Define Zi = (x̄i , ẋ1it), gi (δ, τ) = Z ′
i

(
Ŷi (τ)− Xiδ(τ)

)
and

ḡn(δ, τ) =
1
N

∑n
i=1 gi (δ, τ). Under the H0:

J
(
δ̂∗, τ

)
= NḡN(δ̂

∗, τ)′Ŵ ∗ḡN(δ̂
∗, τ)

d−→ χ2
L−K (10)

More
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Simulations

• Simulations for β̂ DGP

• 10’000 Monte Carlo Replications.

• (N,T ) = {(25, 25), (200, 25), (200, 10), (200, 200)}
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Simulation Results for β DGP

Table: Bias and Standard Deviation

Quantile Pooled BE FE RE opt. in. RE GMM

(N, T) = (25, 25)

0.1 0.003 0.000 0.015 0.016 0.008

(0.175) (0.222) (0.141) (0.120) (0.124)

0.5 -0.003 -0.004 0.000 -0.002 -0.002

(0.171) (0.218) (0.102) (0.106) (0.099)

0.9 -0.009 -0.007 -0.017 -0.018 -0.013

(0.177) (0.223) (0.138) (0.120) (0.124)

(N, T) = (200, 25)

0.1 0.006 0.004 0.015 0.017 0.011

(0.061) (0.075) (0.049) (0.042) (0.041)

0.5 0.000 0.000 0.000 0.000 0.000

(0.059) (0.073) (0.036) (0.036) (0.032)

0.9 -0.006 -0.004 -0.015 -0.017 -0.012

(0.061) (0.075) (0.049) (0.042) (0.041)

Note:

Simulation performed using 10000 simulations. Standard deviation in

parenthesis.
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Simulation Results for β DGP

Table: Bias and Standard Deviation

Quantile Pooled BE FE RE opt. in. RE GMM

(N, T) = (200, 10)

0.1 0.011 0.005 0.040 0.046 0.019

(0.068) (0.080) (0.092) (0.067) (0.061)

0.5 0.001 0.001 0.001 0.001 0.001

(0.063) (0.076) (0.059) (0.063) (0.047)

0.9 -0.010 -0.003 -0.040 -0.045 -0.018

(0.067) (0.080) (0.091) (0.068) (0.060)

(N, T) = (200, 200)

0.1 0.000 0.000 0.002 0.002 0.002

(0.058) (0.073) (0.017) (0.016) (0.017)

0.5 0.000 0.000 0.000 0.000 0.000

(0.058) (0.072) (0.013) (0.012) (0.012)

0.9 -0.001 -0.001 -0.002 -0.002 -0.002

(0.058) (0.073) (0.017) (0.017) (0.017)

Note:

Simulation performed using 10000 simulations. Standard deviation in

parenthesis.
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