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Abstract

This paper proposes a novel approach for estimating linear factor pricing models with

dynamic risk premia based on a generalized method of moments (GMM) framework.

Time-varying risk prices and exposures follow an updating scheme that aims for the

steepest descent of the conditional moment-criterion function. The most informative

moment for inferring risk premium dynamics comes from the cross-sectional pricing

equation estimated in the second stage of the widely used Fama-MacBeth regression

approach. Monte Carlo results show that the new approach is able to adequately

filter various types of risk premium dynamics. An application to the Fama-French

5-factor model shows that the GMM-based procedure can largely reduce pricing errors

compared to other dynamic and static approaches. The results show that premium

dynamics vary across factors, and while they are generally countercyclical, they exhibit

significant declines at the beginning of crisis periods.

JEL Codes: G12, G17, C58

∗The author thanks Heiner Beckmeyer (discussant), Jeroen Dalderop (discussant), Moritz Dauber, Giorgia
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1 Introduction

Financial theories interpret expected returns over a risk-free interest rate, known as excess

returns, as compensation for the risk of the investment. Traditional factor asset pricing mod-

els (Fama and French, 1993; Carhart, 1997) describe these premia with risk prices (lambdas)

demanded by investors for each unit of exposure (beta) to a financial or macroeconomic

source of risk. Estimation of these linear factor models, which are widely used in empirical

financial research, are typically conducted with the traditional two-step regression approach

of Fama and MacBeth (1973) (henceforth denoted with FMB) or Generalized Method of

Moments (GMM) frameworks following Hansen (1982). However, despite crucial evidence in

the literature that risk premia vary over time (Campbell and Shiller, 1988; Fama and French,

1989; Cochrane, 2011), risk exposures of financial securities, as well as risk prices and thus

risk premia, are typically assumed to be constant over time in these estimation approaches.

Moreover, the recent factor timing literature (Moreira and Muir, 2017; Haddad et al., 2020;

Ehsani and Linnainmaa, 2022; Arnott et al., 2023; Neuhierl et al., 2023) has shown that the

dynamics of risk premia can explain economically relevant excess returns and are therefore

important for understanding the factor structure of financial returns.

This paper proposes a moment-based approach to estimate time-varying risk premia in

linear factor pricing models. The approach builds on a small set of asset pricing moments

which is often used for GMM-based estimation of unconditional asset pricing models follow-

ing the methodology of Hansen (1982). We extend this baseline model with an observation-

driven updating scheme for risk exposures and prices in order to achieve a conditional factor

pricing model. The parameter updating follows the general approach of Creal et al. (2024)

to let the dynamics be driven by the influence function of the conditional GMM estima-

tor in each time period. This intuitively provides a steepest descent improvement of the

local GMM criterion function in the corresponding time period. It turns out that a such

constructed updating mechanism adjusts risk prices according to regression errors from the

cross-sectional regression performed in the second stage of the FMB procedure. Thus, instead
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of finding a risk price that minimizes these errors on average, the procedure here uses these

cross-sectional pricing errors to infer risk price dynamics. If the idiosyncratic innovation of

an asset moves with a factor innovation, the factor exposure of that asset is increased by

raising the corresponding beta to remove the unwanted comovement. Static parameters in

the introduced Moment-Based Dynamic Asset Pricing Model (MDAPM) can be readily esti-

mated using an instrumented GMM approach. As usual for GMM, more efficient estimates

can be obtained by performing moment minimization with the optimal weighting matrix in

a second stage.

The performance of the MDAPM is evaluated with a Monte Carlo study. In a scenario

with a realistically low signal-to-noise ratio, the MDAPM can recover various risk premium

dynamics such as cycles and structural breaks. Compared to a static benchmark, the new

dynamic approach successfully reduces both pricing and risk premium prediction errors.

We apply the GMM-based dynamic framework to the Fama-French 5-factor model (Fama

and French, 2015) on a cross-section of characteristics-sorted equity portfolios. It can sub-

stantially reduce pricing and risk premium prediction errors compared to an unconditional

model and the regression-based dynamic asset pricing model of Adrian et al. (2015), which

uses stock return predictors to infer risk price movements. The results suggest that in the

cross-section of 32 portfolios sorted by market capitalization, operating profitability, and

investment, the variation in the risk premium is more strongly driven by changes in risk

prices than by changes in betas.

We document three main observations with respect to filtered risk premia. First, risk

premia initially fall at the beginning of recessions for several months but rise afterwards. A

pattern that have also been documented by Gómez-Cram (2022) for the market premium.

Thus, it appears that after an initial downward adjustment of expectations, adverse events

lead investors to demand higher compensation for risk. This is puzzling given the numerous

references to the countercyclical behavior of expected excess returns on stocks, such as Fama

and French (1989), Ferson and Harvey (1991), and Lustig and Verdelhan (2012). Second,
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filtered risk prices are particularly consistent with the trajectories implied by stock return

predictors in the case of the market risk premium, while there are substantial discrepancies

for the other factor premia such as value or operating profitability. Therefore, predictors

that predict overall market returns may not be adequate or sufficient instruments for pre-

dicting other factor risk premia. The third major observation is that based on risk premium

prediction errors and in line with the recent literature on factor momentum (Arnott et al.,

2023; Ehsani and Linnainmaa, 2022), the momentum premium can be explained by vari-

ation in the risk prices of other factors. However, we also find that pricing errors can be

substantially reduced by including a cross-sectional momentum factor, suggesting that mo-

mentum exposure is only partially priced and that this priced exposure can be explained by

the momentum of the other factors.

The search for empirical methods to estimate factor asset pricing models with time-

varying risk premia has recently received renewed attention. Regression-based approaches

such as Adrian et al. (2015, 2019), Gagliardini et al. (2016, 2020) and Chaieb et al. (2021)

use instrument variables to explain the time dynamics of the parameters λ and β. A common

drawback of these approaches is that time-varying risk premia can only be identified with

respect to a filtration spanned by the set of instruments employed. This is particularly

problematic given that the literature on the predictability of returns is still debating whether

returns are predictable at all and what the appropriate predictors are. Thus, even if the

literature finds that risk premia are significantly time-varying, the interpretation of the

filtered premia series may be misleading due to inappropriate or simply missing predictors.

The GMM-based dynamic model proposed here avoids this problem by filtering out the

dynamics of risk premia from the full set of available assets and factors. The time series

predictors used in the regression-based approaches can additionally be used as instruments

to identify factor mean dynamics.

Umlandt (2023) and Giroux et al. (2024) provide observation-driven filters to estimate

dynamic financial risk premia without the need to specify instrument variables for time dy-
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namics. These likelihood-based methods follow the generalized autoregressive score approach

of Creal et al. (2013). Although a misspecification bias due to inappropriate time series pre-

dictors can be circumvented, explicit distributional assumptions are required. In contrast,

the asset pricing literature often refrains from posing distributional assumptions and specifies

a set of moment restrictions instead that are typically derived from no-arbitrage assump-

tions. The GMM-based approach proposed here develops a filter for risk premia based only

on such a set of moment restrictions, but otherwise follows the logic of the likelihood-based

filter. Thus, our approach can be seen as an alternative that is robust to distributional mis-

specification. Another advantage of our approach is that, in contrast to the likelihood-based

model, we do not have to explicitly estimate the covariance matrix of the asset-specific in-

novations. This massively reduces the number of parameters in the numerical optimization

and thus lowers the computational burden of the estimation procedure considerably.

Time-varying risk premia are also central features of machine learning-inspired methods

such as the instrumental principal component analysis (IPCA) of Kelly et al. (2019) and the

risk premium principal component analysis (RP-PCA) of Lettau and Pelger (2020). These

methods assume that cross-sectional pricing factors are latent and estimate them together

with time-varying risk exposures. In contrast, the method proposed in this paper and those

mentioned above assume that cross-sectional factors are observed and focus on inferring the

time dynamics of risk prices and exposures.

The remainder of the paper is organized as follows. Section 2 introduces and discusses

the dynamic GMM framework for linear factor pricing models. The empirical application on

the Fama-French 5-Factor model is presented in Section 3. Section 4 concludes.

2 Dynamic GMM Model

In the following we introduce the dynamic GMM-model upon a fairly general baseline factor

pricing model that in a similar fashion serves as basis for most of the employed empirical
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methods, for example, Fama and MacBeth (1973), Ang and Kristensen (2012), Adrian et al.

(2015, 2019), Umlandt (2023), and Gagliardini et al. (2016, 2020).

2.1 Baseline Model

Let rt = (r1t , . . . , r
N
t )

⊤ denote the N -dimensional vector representing the excess returns of N

different assets at time t ∈ {0, . . . , T}. The underlying data-generating process is defined on

a probability space (Ω,F ,P), equipped with a filtration Ft = σ ({rt, . . . , r0}) representing

the set of information available at time t. Suppose the risk in the economy is described in

terms of K risk factors covered in the state vector ft that follows

ft = ϕ0 + ϕzt−1 + ut, t = 1, . . . , T, (1)

where ut is an independently and identically distributed zero mean noise term with covariance

matrix Σu (ut
iid∼ (0,Σu)), and zt is a L-dimensional vector of lagged predictors adapted to

Ft. Predictors may be external as well as past factor observations. We refer to equation (1)

as the risk factor model.

Assume the existence of a unique stochastic discount factor (SDF) mt that prices every

asset i ∈ {1, . . . N} according to

Et−1(mtrt) = 0, (2)

where Et−1 denotes the conditional expectation with respect to time t− 1 information Ft−1.

The Euler equation (2) can be used to compute the conditional covariance between the SDF

and the asset return as

Covt−1(rt,mt) = −Et−1(rt)Et−1(mt). (3)

Regressing the demeaned returns on the factor innovations ut yields an N -dimensional id-

iosyncratic noise term et
iid∼ (0,Σe) that is orthogonal to ut. Taken together with (3), the
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return can be decomposed as

rt = Et−1(rt) + (rt − Et−1(rt)) = −Covt−1(rt,mt)

Et−1(mt)
+ βt−1ut + et, (4)

where βt−1 = Covt−1(rt, ut)Σ
−1
u denotes the N ×K-dimensional matrix of risk exposures.

In order to transform equation (4) into a cross-sectional pricing model, assume the SDF

to be affine-linear in the economy’s risk factor innovations; that is,

mt − Et−1(mt)

Et−1(mt)
= −λ⊤

t−1Σ
−1
u ut (5)

with time-varying price of risk vector λt−1 of dimension K. Plugging the SDF into the return

decomposition (4) yields a standard beta representation given by

rt = Covt−1 (rt, ut) Σ
−1
u λt−1 + βt−1ut + et (6)

= βt−1λt−1 + βt−1ut + et. (7)

The return decomposition (7) therefore consists of a predictable risk premium βt−1λt−1 that

compensates risk exposures, an unpredictable component βt−1ut depending on risk factor

innovations and an asset-specific innovation term et. Representation (7) is also referred to

as the cross-sectional pricing equation.

2.2 Moment Conditions

Given constant risk premia, that means βt ≡ β and λt ≡ λ, the model in Section 2.1 can be

estimated with GMM using a concise set of moment conditions. The static model moment

conditions introduced here will serve as the basis for the dynamic model that will be derived

in the following sections.

The first two sets of moment conditions stem from the factor model equation (1) and are
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given by

Et−1 [ut] = Et−1 [ft − ϕ0 − ϕzt−1] = 0 (8)

Et−1

[
vec
(
utz

⊤
t−1

)]
= Et−1

[
vec
(
(ft − ϕ0 − ϕzt−1) z

⊤
t−1

)]
= 0 (9)

where vec() refers to the vectorization operator that stacks all columns of a matrix on top of

one another into one column vector. Equation (8) states that the factor innovation should be

zero on average, whereas equation (9) is a standard orthogonality assumption that requires

the set of instruments zt−1 to be uncorrelated with the factor innovations ut.

Furthermore, we use the aforementioned orthogonality assumption between factor inno-

vations and idiosyncratic innovations to set up the third moment condition given by

Et−1

[
vec
(
etu

⊤
t

)]
= Et−1

[
vec
(
(rt − βλ− βut)u

⊤
t

)]
= 0. (10)

According to equation (10), the conditional covariance between the return vector and factor

innovations must satisfy Et−1

[
rtu

⊤
t

]
= βΣu. Thus, the third moment condition (10) identifies

betas as the time series regression coefficients whose least squares estimators are used in the

traditional regression approach of Fama and MacBeth (1973).

The final fourth set of conditions sets the conditional expectations of cross-sectional

pricing errors to zero, i.e.

Et−1 [et] = Et−1 [rt − βλ− βut] = 0. (11)

Note that conditions (8) and (11) identify the risk premium given by Et−1 (rt) = βλ which

is of major interest in the following. We stack the M = K(N +L+1)+N conditions (8) to
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(11) as conditional moment function given by

gt(xt; θ0) =



ut

vec
(
utz

⊤
t−1

)
vec
(
etu

⊤
t

)
et


(12)

with observation vector xt = (rt, ft, zt−1) and an K(N + L+ 1) +K-dimensional parameter

vector θ⊤0 = (ϕ⊤
0 , vec(ϕ)

⊤, vec(β)⊤, λ⊤). Note that in a typical asset pricing application,

the number of test assets, N , exceeds the number of factors, K. Therefore, the model is

generally over-identified because the number of moment conditions exceeds the number of

parameters. In order to just identify the parameters and give particular weight to the pricing

model condition (11), we weight the moment conditions with the K × N matrix β⊤. This

weighting also identifies λ with its cross-sectional OLS estimate.

The conditional GMM criterion function of the asset pricing model to be minimized for

estimation can then be written as

Et−1 [gt(xt; θ0)]
⊤ΩEt−1 [gt(xt; θ0)] (13)

with weighting matrix

Ω =

 IM−N 0(M−N)×N

0N×(M−N) ββ⊤

 . (14)

2.3 Time-Varying Risk Premia

In the following, we want to uncover dynamic risk premia by extending the static baseline

model of Section 2.1 by an observation-driven updating scheme for risk premium parameters
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given by

ϑt = ϑ+ Ast−1 +B(ϑt−1 − ϑ). (15)

where A and B are parameter matrices of appropriate size, and ϑt is a vector containing

parameters from θ0 which are supposed to vary over time. The parameter vector ϑ represents

the unconditional values of the time-varying parameters. Typically, we will choose either

ϑt = λt−1 or ϑt =
(
λ⊤
t−1, vec(βt−1)

⊤)⊤ in order to introduce dynamic risk premia.1

A crucial modeling decision that must be made to use the updating scheme in (15) is

the specification of st. This quantity is intended to provide information about the direction

in which the parameters should be updated, taking into account the information at time t,

represented by the most recent observations rt and ft. The score-driven model class of Creal

et al. (2013) and Harvey (2013) employs such a scheme, using the gradient of log observation

density as an innovation sequence st for the dynamic adjustment. In particular, Umlandt

(2023) studies a score-driven model using an asset pricing framework closely related to the

one in Section 2.1, which additionally needs to specify the distribution of the innovation

terms ut and et.

Here, we want to avoid distributional assumptions about the error terms and let the

dynamics be guided only by the moment conditions discussed in Section 2.2. We therefore

follow the approach of Creal et al. (2024) and choose the innovation sequence st as the

influence function of xt on the estimator of ϑt from the conditional moment function (12).

Let ∆xt be the Dirac measure that puts unit mass on the actual observation xt. Given

ϵ ∈ [0, 1], define the contaminated measure F ϵ
x = (1 − ϵ)Fx + ϵ∆xt that overweights the

current observation relative to the overall observational measure Fx. GMM estimates of the

time-varying parameters can then be derived based on the overall measure as ϑt(Fx) or based

1The discrepancy in the time index between ϑt and, for instance, λt−1 is simply due to different national
conventions. While the asset pricing literature would denote the risk price as λt−1, since it is pricing returns
in period t but is already known in t− 1, the observation-driven model literature would usually denote such
a predetermined parameter with λt or λt|t−1.
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on the contaminated measure ϑt(F
ε
x). The influence function is then defined as the limit of

the (functional) difference quotient of the two estimators as ϵ tends to 0, i.e.

st =
dϑt(Fx)

dϵ

∣∣∣∣
ϵ=0

= lim
ϵ→0

ϑt (F
ϵ
x)− ϑt (Fx)

ϵ
. (16)

Intuitively, the influence function measures the dependence of (static) parameter estimators

on new observations. This concept is widely used in robust statistics to study the impact of

data outliers on estimates.2 But this also means that the influence function provides a signal

of where one can get the steepest descent in the conditional GMM criterion (12) in response

to the new observation xt. Thus, instead of focusing on outliers, we use the information from

the influence function to guide the updating of the time-varying risk premium parameter.

Let θ̃0 include the static parameters from θ0 which are not covered in ϑt and gt(xt;ϑt, θ̃0)

be the conditional moment criterion in (12) but including time-varying parameters ϑt. Creal

et al. (2024) show that choosing st as the influence function in a restricted observation-driven

updating scheme like (15) delivers a local expected improvement of the conditional criterion

function given by

Et−1

[
gt(xt;ϑt, θ̃0)

]⊤
Ωt−1Et−1

[
gt(xt;ϑt, θ̃0)

]
(17)

where Ωt−1 is a weighting matrix known at time t − 1. We choose the dynamic weighting

matrix to be either the one given in (14) or, if betas are included in ϑ as

Ωt−1 =

 IM−N 0(M−N)×N

0N×(M−N) βtβ
⊤
t

 . (18)

Note that in the latter specification, Ωt−1 is still known at time t−1, since βt = Covt−1(rt, ut)Σ
−1
u

2See Hampel et al. (2011) for a comprehensive treatment of the influence function and its use in robust
statistics.
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is known at time t− 1.

We say a common series x⊤
t =

(
r⊤t , f

⊤
t , z

⊤
t−1

)
of returns rt, (cross-sectional) factors ft,

and time-series predictors zt−1 follows a Moment-Based Dynamic Asset Pricing Model

(MDAPM) if it fulfills the moment conditions (8) to (11) and includes an updating scheme

given by (15) and (16). The following proposition presents the updating schemes for the

cases in which either only risk prices or both risk prices and exposures vary over time.

Proposition 1. Let xt follow an MDAPM process.

(a) The influence function for ϑt = λt−1 is given by

sλt =
(
β⊤
t−1βt−1

)−1
β⊤
t−1et (19)

=
(
β⊤β

)−1
β⊤rt − λt−1 − ut (20)

(b) The influence function for ϑt =
(
λ⊤
t−1, vec(βt−1)

⊤)⊤ is given by

sλt

sβt

 =

(β⊤
t−1βt−1

)−1
β⊤
t−1et

(
1− u⊤

t Σ
−1
u λt−1

)
vec
(
etu

⊤
t Σ

−1
u

)
 (21)

The risk price updating scheme for the case with constant betas in (Proposition 1.(a))

resembles the regression error from a (cross-sectional) regression of rt on the risk exposures

β which in the given model should provide an estimate of λt−1 + ut because of the asset

pricing restriction (11). This cross-sectional regression is also employed in the second stage

of the famous two-pass approach of Fama and MacBeth (1973) who compute period-wise

lambdas from those regressions and average them to achieve an estimate of the (static) risk

price. Instead of averaging the regression parameters, the MDAPM quite intuitively updates

time-varying risk prices based on current pricing errors. A very similar updating scheme can

also be found in the SDAPM of Umlandt (2023) in which the regression follows a generalized

least squares fashion with sλt =
(
β⊤Σ−1

e β
)−1

β⊤Σ−1
e et when assuming Gaussian innovations.

11



A major obstacle to the implementation of the Gaussian SDAPM is the appearance of the

typically large covariance matrix Σe, which renders the procedure computationally demand-

ing. Thus, the moment-based updating scheme is on the one hand much more convenient

to implement, but on the other hand may lack efficiency when heteroskedasticity and cor-

relation in idiosyncratic errors is a prevalent feature of the data. One way to utilize this

potential correlation structure is to set the lower right component of the weighting matrix in

(14) to Σ−1
e β (Σ−1

e β)
⊤
. Weighting the risk exposures with the error covariance matrix within

the moment-based framework results in the SDAPM sλt updating scheme.

Allowing risk prices and exposures to vary simultaneously over time leads to the up-

dating innovations shown in part (b) of Proposition 1. The risk exposure innovation sβt =

vec
(
etu

⊤
t Σ

−1
u

)
reflects that β can be understood as coefficients from regressing returns on

factor innovations ut while et is the corresponding error term. Therefore, et and ut should

be uncorrelated, which would mean that sβt is zero on average. If etu
⊤
t > 0, we have sβt > 0,

which leads to an increase in β (assuming the corresponding coefficient is positive). A posi-

tive influence function signals that there is some correlation between et and ut, which means

that et may possess some explanatory power for returns rt that could also be associated with

ut. Since any (cross-sectionally) predictable variation in returns in a factor model should be

due to the factor innovations, the MDAPM increases the beta to reduce the local correlation

between the different innovations and to explain the additionally found predictable variation

with a higher risk factor exposure.

The risk price updating scheme in the case of time-varying risk exposures is very similar

to that with constant risk exposures. However, instead of updating risk prices solely due to

projection errors
(
β⊤
t−1βt−1

)−1
β⊤
t−1et, these are scaled with

(
1− u⊤

t−1Σ
−1
u λt

)
. If ut = 0, the

risk price updating behaves as in the case with time-constant exposures. However, if ut and

et are positive, the betas are increased to remove any possible correlation. In order not to

increase the risk premium βtλt more than proportionally, the risk price movement is damped

with the factor
(
1− u⊤

t Σ
−1
u λt−1

)
.
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2.4 Higher Order Moment Conditions

The set of conditional moment restrictions used in Sections 2.2 and 2.3 to derive the moment-

based risk premium filter mainly represent the first-order moment conditions. Since the

interpretation of factor volatility and idiosyncratic volatility is often connected towards risk,

one could suspect that second order moment conditions should be informative for the risk

premium updating. We therefore consider an extension of the MDAPM with time-varying

volatilities that fits an extended set of conditional moment restrictions that is represented

by the following conditional moment function:3

gt(xt; θ0) =



ut

vec
(
utz

⊤
t−1

)
vec
(
etu

⊤
t

)
et

vech
(
utu

⊤
t − Σu

)
vech

(
ete

⊤
t − Σe

)


(22)

The following proposition presents the influence functions of the MDAPM based on the

extended conditional moment conditions.

Proposition 2. Let xt follow an MDAPM(p,q) based on the conditional moment function

in (22). The influence function for ϑt =
(
λ⊤
t−1, vec(βt−1)

⊤, vech(Σu,t−1)
⊤, vech(Σe,t−1)

⊤)⊤ is

then given by



sλt

sβt

sΣu
t

sΣe
t


=



(
β⊤
t−1βt−1

)−1
β⊤
t−1et

(
1− u⊤

t Σ
−1
u,t−1λt−1

)
vec
(
etu

⊤
t Σ

−1
u,t−1

)
vech

(
utu

⊤
t − Σu,t−1

)
vech

(
ete

⊤
t − Σe,t−1

)


(23)

3vech() refers to the half-vectorization of a symmetric matrix that stacks the columns of the lower
triangular part into one column vector.
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The general shape of MDAPM updating schemes for risk prices and exposures are not

affected by additionally considering second order moment conditions. In particular, time-

variation in idiosyncratic volatility, represented by Σe,t−1 does not affect risk premium dy-

namics. Thus, the derived MDAPM updating schemes are robust with respect to time-

varying idiosyncratic volatility. However, factor volatility does impact risk premium dy-

namics as the time-varying factor covariance matrix Σu,t−1 enters the forcing innovations sλt

and sβt . The finding that Σu,t−1 does not enter the risk price update in the case of time-

constant betas supports the view that volatility-based factor timing strategies (Barroso and

Santa-Clara, 2015; Moreira and Muir, 2017) generate returns by predicting changes in factor

exposures rather than factor risk prices.

Proposition 2 states that the influence functions for the covariance matrices sΣu
t and sΣe

t

are given by the difference of squared errors and the current value of the corresponding co-

variance matrix. Moreover, this gives the corresponding updating schemes to follow VECH

processes as in Bollerslev et al. (1988). This class of models is known for its large parame-

terization and the challenges it poses for estimation. That is particular troublesome in the

MDAPM as the number of assets N is typically large. For practical reasons, it is therefore

advisable to keep the idiosyncratic covariance matrix constant, as it does not affect the dy-

namics of risk premia. Since the number of factors K is typically much smaller than N , a

VECH specification of factor innovations is likely to be feasible. Moreover, one could also

consider restricted forms of VECH, such as the diagonal VECH or the BEKK specification

of Engle and Kroner (1995).

2.5 Two-Step Estimation and Inference

The updating mechanism of time-varying parameters in the MDAPM was constructed under

consideration of moment conditions. Therefore, it is natural to use the GMM method to

estimate the static parameters as well. Since the number of such model parameters can be

relatively large, I propose and use a two-step estimation approach.
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2.5.1 First Estimation Step

We can decompose the conditional moment function (12) as

gt(xt; θ0) =

g1t(xt;ϕ0, ϕ)

g2t(xt; θ0)

 (24)

with

g1t(xt;ϕ0, ϕ) =

 ut

vec
(
utz

⊤
t−1

)
 and g2t(xt; θ0) =

vec
(
etu

⊤
t

)
et

 . (25)

Since the first set of moment conditions in g1t only depends on the factor parameters ϕ0

and ϕ, we can estimate those in a first step. Fortunately, the GMM estimator based on the

moment conditions in g1t is numerically equal to the ordinary least squares estimator for the

parameters involved. We can therefore estimate the parameters of the factor dynamics with

the following closed-form formula:

(
ϕ̂0, ϕ̂

)
=

(
T−1∑
t=1

ft+1z̃
⊤
t

)(
T−1∑
t=1

z̃tz̃
⊤
t

)−1

(26)

with z̃⊤t = (1, z⊤t ). Although the separate prior estimation of ϕ0 and ϕ results in some

loss of efficiency as these parameters also influence the moment conditions in g2t via the

factor innovation ut, the two-stage approach also has two particular benefits. First, the

possibility to derive closed formulas in the first stage reduces the computational effort, as

these parameters would otherwise have to be computed numerically. Second, the prior fitting

of factor innovations ut seems to reduce overfitting the pricing errors et = rt−βt−1λt−1−βtut.

When estimating all parameters in the MDAPM simultaneously, the optimizer tends to

introduce predictable variation in ut in order to reduce et. This leads to a higher prediction

error rt − βt−1λt−1, because the risk prices will not cover the conditional risk premium
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variation that is instead attributed to ut.

2.5.2 Second Estimation Step

From the initial model parameters in θ0, we still need to estimate the parameters of the

updating scheme collected in (ϑ
⊤
, vec(A)⊤, vec(B)⊤). With the introduction of time-varying

risk premia, we have added additional static parameters. Since the static baseline model we

started with was just identified, we now have to deal with the resulting underidentification.

Therefore, we need to add additional moment constraints. As suggested by Creal et al.

(2024), we define a vector of instruments ζt = (1, s⊤t−1, (ϑt−1 − ϑ)⊤)⊤ ⊗ IN(K+1) and follow

the approach of Hansen (1982) to minimize the GMM criterion given by

min
ϑ,A,B

g̃⊤T Ω̃T g̃T (27)

with

g̃T =
1

T

T∑
t=1

ζtg2t(xt;ϑt, θ̃0) =
1

T

T∑
t=1


1

st−1

ϑt−1 − ϑ

⊗ g2t(xt;ϑt, θ̃0) (28)

where Ω̃T is a positive definite matrix weighting the moment conditions. As usual, one could

perform an initial estimation where the minimization problem (27) is solved with Ω̃T = I.

These results can then be used to compute the long run variance of gt(xt;ϑt, θ̃0). The inverse

of the long-run variance can be used as a weighting matrix in a second minimization of (27)

to obtain more efficient estimates.

Using the lagged influences st−1 and parameters (ϑt−1 − ϑ) as instruments reduces the

first-order (cross-)autocorrelation of moments which are particularly important for inferring

parameter updates. For example, if betas are constant, the additional moment conditions

used would be sλt−1⊗g2t(xt;ϑt, θ̃0) = (β⊤β)β⊤et−1⊗g2t(xt;ϑt, θ̃0). Thus, the GMM estimator
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of the constant exposure MDAPM would adjust parameters to minimize the cross-correlation

between lagged idiosyncratic innovations and contemporaneous moment conditions that in-

clude idiosyncratic and factor innovations as well as their products.

2.5.3 Inference

Creal et al. (2024) establish an asymptotic distribution theory for the general moment-based

filtering framework. They show that under some high-level assumptions, it holds

√
T
(
θ̂ − θ

)
d→ N

(
0, (G⊤Ω̃G)−1G⊤Ω̃SΩ̃⊤G(G⊤Ω̃G)−1

)
, (29)

where G is the limit of the gradient of (27) and the asymptotic covariance matrix S =∑∞
j=−∞ E

(
gtg

⊤
t−j

)
of the moment conditions. The required high-level assumptions include

that the filter of the time-varying parameter vector ϑt converges to a unique stationary and

ergodic solution. For the case that betas are constant, i.e. ϑt = λt, it can be shown straight-

forwardly that the stationarity assumption is fulfilled if ∥B −A∥ < 1 and ∥(β⊤β)−1∥ < ∞.4

Whereas the first inequality rules out explosive behavior of risk premia, the second one is

met in absence of weak factors. In case of time-varying betas, such parameter restrictions

are much more cumbersome to derive and out of the scope of this paper. The main challenge

is that risk premia are then a product of different time-varying parameter vectors.

We use the result in (29) in the following application to compute standard errors for

the parameter estimates, where the asymptotic covariance matrix is estimated with the

heteroskedasticity and autocorrelation consistent estimator from Newey and West (1987)

with Bartlett kernel as in Andrews (1991).

4∥A∥ denotes the spectral norm of a matrix A.
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3 Simulation Study

In this section, the small sample performance of the MDAPM is evaluated with a Monte

Carlo study on risk premium filtering.

3.1 Data-Generating Process

Assume there is one (cross-sectional) risk factor ft whose factor mean can be predicted by

the univariate series zt with

ft = zt−1 + ut (30)

where ut follows a GARCH(1,1)-process with an unconditional variance of 18. The risk factor

calibration is chosen to represent the features of the CRSP market return and the DGP can

therefore be interpreted as a CAPM with dynamic coefficients. The factor mean predictor

zt is simulated from the AR(1) model given by

zt = 0.5 + 0.98(zt−1 − 0.5) + εz,t, εz,t ∼ N
(
0, 0.1372

)
(31)

with its initial value z1 drawn from the corresponding unconditional distribution. The pro-

cess in (31) is calibrated in order to represent the moments and persistence of equity return

predictors used in the following empirical application. Especially the highly persistent au-

toregressive parameter of 0.98 is often observed for factors considered as market return

predictors (Campbell and Yogo, 2006).

The simulated returns rt are derived from the beta representation according to (7) with

N assets in the panel and T observations over time. Idiosyncratic innovations ei,t are drawn

from a Student-t-distribution with ν = 6 degrees of freedom and a variance of 4. The betas

18



are simulated from a slow-moving processes given by

βi,t = βi + 0.95(βi,t−1 − βi) + 0.05εβi,t, εβi,t ∼ N
(
0, 0.1482

)
. (32)

where the N unconditional exposures βi form an equidistant grid on the interval [0.6, 1.5].

Parameters in the process (32) are based on the results of the following empirical application.

The unconditional beta interval is approximately the range observed for exposures when

industry portfolio returns5 are regressed on the market risk factor and a constant.

Since the DGP contains only one pricing factor, we need to simulate only one risk price

λt. We consider four alternative settings for the dynamics of the risk price:

Constant: λt = 0.5 (33)

Cycle: λt = 0.5 + sin (2πt/T ) (34)

Breaks: λt =


0.5, if t ∈ [0, T/3]

−0.5, if t ∈ (T/3, 2T/3]

1.5, if t ∈ (2T/3, T ]

(35)

AR: λt = 0.5 + 0.98(λt−1 − 0.5) + ελ,t, ελ,t ∼ N
(
0, 0.252

)
(36)

The first constant risk price DGP serves as a benchmark to evaluate the performance of

the dynamic MDAPM, since the actual process is static. Next, the cycle DGP reflects the

idea that risk prices move with the business cycle. The third DGP with breaks is intended

to mimic a situation in which unexpected news immediately change investors’ perception

of risk and, therefore, the price of risk demanded. Finally, the fourth process represents

the situation where risk premia follow a highly persistent process, such as the betas in the

employed DGP do.

5Although industry portfolios are not used in the empirical application, we use their exposure range for
calibration in order to have a higher degree of dispersion in the betas to explore in simulations.
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Figure 1: Simulated Returns. This figure shows simulated excess returns from an asset with unit
(unconditional) risk factor exposure together with the cyclical risk premium λt−1 from one draw of a panel
with N = 25 assets and T = 600 time observations.

Figure 1 shows an example draw of the simulated excess return of an asset with unit

(unconditional) risk factor exposure together with the cyclical risk premium λt−1 from a panel

of size N = 25 and T = 600. The cyclical variation in the conditional return expectation

can be considered small compared to the variation in the realized return. This is consistent

with the perception that stock returns have little predictability and poses a challenge to our

method that attempts to filter out these almost diminishing dynamics. Also consistent with

the stylized statistical facts of financial returns, the series shows volatility clustering, which

in the DGP used comes from the GARCH residual of the pricing factor process in (30).

3.2 Simulation Results

In the following, we discuss the results of fitting a MDAPM with time-varying lambdas and

betas to S = 1000 Monte Carlo replications of each of the four DGPs mentioned above.
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Figure 2: Risk Price Predictions. This figure shows, for a panel of size N = 25 and T = 600, the
average risk price predicted by the MDAPM (solid line) together with the true risk price (dashed line). The
shaded areas represent the 90 percent bands.

3.2.1 Predicted Risk Prices

Figure 2 shows, for a panel of size N = 25 and T = 600, the average risk price predicted by

the MDAPM (solid line) together with the true risk price (dashed line). The shaded areas

represent the 90 percent interquantile bands. We see that the MDAPM is able to adequately

track the true risk price process in all four cases, on average with an interquantile band range

of about 0.9. Given the rather low signal-to-noise ratio and the high variance of innovations,

the filter uncertainty reflected by the bands can be considered rather low. In the case of

a constant true risk price, the MDAPM is able to filter almost perfectly on average. In

the cyclical case, the MDAPM tracks the true risk price with a short lag, as is typical

for observation-driven models that process new information with a time lag. Similarly, the

moment-based filter can react to breaks in the third DGP, but with a short delay. In the final

AR case, the MDAPM faces the most difficulties. Although the filter correctly anticipates
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the direction of the true process and tracks it fairly well, it barely covers short-term peaks.

3.3 Pricing and Prediction Error Comparison

We further investigate the performance of the MDAPM with respect to pricing and predic-

tion errors which are summarized in Table 1. The first metric for evaluating the pricing

performance is the root mean squared pricing error (RMSE), which is computed as

RMSEi =

√√√√ 1

T

T∑
t=1

ê2i,t. (37)

For comparability, we compute ∆RMSE as the difference between the RMSE of Fama and

MacBeth (1973) regressions (hereafter FMB) assuming constant risk premia and the RMSE

produced by the MDAPM. Thus, a positive ∆RMSE indicates that the MDAPM outperforms

the FMB benchmark in terms of pricing errors.

Panel (a) in Table 1 shows the ∆RMSE averaged over portfolios and Monte Carlo repli-

cations for panels with different cross section sizes N = 10, 25, 100 and time series lengths

T = 300, 600, 1200. We clearly see that the MDAPM outperforms the static FMB bench-

mark in every panel and DGP. This is particularly true for the constant risk price DGP,

where the MDAPM benefits from the ability to account for time-varying betas and factor

means compared to the FMB approach. As expected from Figure 2, the MDAPM performs

worst for the fourth DGP with persistent autoregressive risk prices, although it still outper-

forms the benchmark. The latter benefits in this case especially from the low variability of

risk prices. When comparing the performance of different panel sizes, we observe that the

MDAPM performance improves monotonically with longer panels, i.e. higher T , but not

necessarily with larger cross-sections, i.e. higher N . An explanation is that as the number

of assets in the panel increases, additional parameters need to be estimated, namely the

additional betas that are associated with the new assets. In contrast, increasing the length

of the time series does not introduce additional parameters to the model and enables more
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Table 1: Pricing and Prediction Error Comparison

The table shows difference root mean squared pricing errors (∆RMSE) and root mean squared prediction
errors (∆RMSPE) of a MADPM with Fama and MacBeth (1973) regressions as benchmark averaged across
assets and Monte Carlo replications. The nine simulated panels have different numbers of assets N , time
observations T and are replicated 1000 times each.

N=10 N=25 N=100

T= 300 600 1200 T=300 600 1200 T=300 600 1200

(a) Average ∆RMSE

Const 0.0796 0.0948 0.1055 0.0925 0.1043 0.1096 0.0977 0.1035 0.1067
Cycle 0.1564 0.1913 0.2144 0.1636 0.1981 0.2072 0.1547 0.1562 0.1788
Breaks 0.2093 0.2322 0.2468 0.1988 0.2341 0.2525 0.1981 0.2016 0.2049
AR 0.0639 0.0939 0.1080 0.0808 0.1041 0.1117 0.0762 0.0934 0.1077

(b) Average ∆RMSPE

Const 0.0031 0.0010 0.0004 0.0038 0.0014 0.0008 0.0044 0.0018 0.0010
Cycle 0.0499 0.0487 0.0488 0.0528 0.0493 0.0497 0.0554 0.0512 0.0502
Breaks 0.0634 0.0635 0.0629 0.0657 0.0627 0.0642 0.0662 0.0621 0.0637
AR 0.0084 0.0064 0.0046 0.0107 0.0077 0.0067 0.0111 0.0090 0.0071

accurate estimation due to improved data coverage.

The second metric we evaluate is the the root mean squared prediction error (RMSPE):

RMSPEi =

√√√√ 1

T

T∑
t=1

(
ri,t − β̂i,t−1λ̂t−1

)2
. (38)

This measure captures how well the model fits that the conditional expectation of rt+1 is given

by βtλt. Again, we construct a difference measure ∆RMSPE with an FMB baseline model to

compare results from different panels. The averaged ∆RMSEs are shown in Panel (b) of Table

1. We observe that the MDAPM is also superior to the static FMB benchmark in every panel

and DGP with respect to prediction errors. In contrast to the ∆RMSE results, we see that the

performance of the MDAPM with respect to the static benchmark improves with increasing

N . Hence, it seems that estimating the risk premium, whose dimension is unchanged, benefits

from a richer cross-section, but other parameters are estimated with greater uncertainty, thus

increasing idiosyncratic pricing errors. The rather counterintuitive result that the ∆RMSPEs
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decrease with T is technical. The beta processes in the DGP exhibit fairly high persistence,

leading to large and long-lasting deviations from the unconditional mean. These deviations,

which become more pronounced in longer samples, are generally more difficult to track than

movements closer to the unconditional mean.

In summary, the MDAPM is capable of tracking the variation of risk premia with various

dynamics in a setting with a realistically low signal-to-noise ratio. Its pricing performance,

in particular, benefits from longer time series. Additionally, the risk premium prediction

improves with larger cross sectional dimensions.

4 Empirical Application

The following empirical application examines the dynamics of risk premia that can be derived

from the asset pricing moments in the 5-factor model of Fama and French (2015).

4.1 Data

Test assets are 32 equity portfolios sorted by size, operating profitability and investment.

Stocks are first sorted into two groups according to size using NYSE median market cap

breakpoints. Then each size group is allocated into four groups based on operating prof-

itability that is measured as annual revenues minus cost of goods sold, interest expense, as

well as selling, general, and administrative expenses divided by book equity. Finally, the

eight groups are allocated each into four subgroups based on investment, measured as the

change of total assets divided by toal assets of the previous fiscal year. The 32 monthly series

are obtained from Kenneth French’s online library and cover the period from January 1964

to June 2023. Thus, we work with a return panel with dimensions N = 32 and T = 714.

We consider the five factors from Fama and French (2015) to price the cross-section of
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32 equity portfolios that are given by

ft = (MKTt, SMBt, HMLt, RMWt, CMAt)
⊤ (39)

where MKT is the excess return on the value-weighted equity market portfolio and the other

factors are returns to long-short quantile portfolios with stocks sorted by market capital-

ization (SMB), book-to-market ratio (HML), profitability (RMW) and investment strategy

(CMA).

As forecast instruments for the conditional factor mean we use the three-dimensional

vector

zt = (TSY 10t, TERMt, DYt)
⊤ (40)

where TSY10 is the 10-year treasury yield and TERM is the term spread, calculated as

the difference between the yields of the 10-year treasury note and the three-month treasury

bill. Both series are obtained from the H.15 statistical release of the Board of Governors of

the Federal Reserve System. The third forecasting factor DY is the dividend yield of the

S&P 500 index. Evidence on equity return predictability from these factors can be found in

Keim and Stambaugh (1986), Campbell (1987), Fama and French (1989), and Campbell and

Thompson (2008) for long-run treasury yields and Campbell and Shiller (1988), Fama and

French (1989), Campbell and Thompson (2008), and Cochrane (2008) for the term structure

and dividend yields.

4.2 Empirical Model Specifications

The main specification to be considered is an MDAPM with time-constant betas. The

parameter matrices A and B in the updating scheme are assumed to be diagonal in order to

25



achieve an updating equation given by

λj
t = λ

j
+ aλj s

λ
j,t−1 + bλj

(
λj
t−1 − λ

j
)

(41)

for every cross-sectional pricing factor j = MKT, SMB,HML,RMW,CMA. Note that the

updating equations are parameterized along their long-run values λ
j
which can be interpreted

as risk prices of the corresponding factor j. The diagonalization mutes the impact of the

influence function on the parameter updating of the other factors. However, excluding those

effects in the present application does not crucially impair the model performance but rather

yields a much more parsimonious model.

Another considered MDAPM specification allows for time-varying betas. We assume that

the diagonal parameters for the beta update of the exposure of asset i to factor j are the

same for each asset i. This assumption allows the model with beta dynamics to be estimated

for larger panels and follows the assumption that exposures to the same factor follow similar

dynamics. The resulting updating equations, parameterized along the long-run values β, are

given by

vec
(
βj
i,t

)
= vec

(
β
j

i

)
+ aβj s

β
i,j,t−1 + bβj vec

(
βj
i,t−1 − βi

j
)

(42)

with parameters β
j
, aβj , and bβj , where i = 1, . . . , 10 and j = MKT, SMB,HML,RMW,CMA.

Two established benchmark specifications are considered. The first benchmark is the

unconditional risk price specification underlying classical Fama and MacBeth (1973) regres-

sions. In line with Adrian et al. (2015), estimated innovations ût from a VAR(1) model

including the abovementioned factors are provided as pricing factors in order to account for

the significant autocorrelation within the pricing factors. The second benchmark is a DAPM

that explains risk price variations with the forecasting factors described above. This yields
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a regression equation given by

λj
t = λ0 + Λj,TSY 10

1 TSY 10t + Λj,TERM
1 TERMt + Λj,DY

1 DYt (43)

for each of the five cross-sectional risk factors j = MKT, SMB,HML,RMW,CMA. Esti-

mation and inference for the DAPM is performed as described in Adrian et al. (2015), and

I refer to them for more details.

4.3 Empirical Results

In the following, we present the empirical results of the application to the Fama-French

5-factor model regarding parameter estimates, filtered risk premia, and pricing errors.

4.3.1 Parameter Estimates

Parameter estimates for the risk premium updating schemes are shown in Table 2. The first

row in the upper panel shows the estimated unconditional risk prices λ of the two MDAPM

specifications. Risk prices of the benchmark model are presented in the first row of the lower

panel. We see that the average price of market risk in the MDAPM differs only moderately

from the one obtained in the static unconditional specification while some of the other

unconditional risk prices differ more substantially without a clear direction. In particular,

the CMA factor risk price more than halves relative to the unconditional benchmark and

turns insignificant based on the standard errors shown in parentheses. Regarding the learning

rates of the risk prices aλ, we find that they are significantly positive for all five factors if

betas are assumed to be constant. This means that their premia vary over time. If betas

are allowed to vary over time, we find that the learning rates of RMW and CMA risk prices

turn insignificant and the risk premium variation is captured by variation in risk exposures.

Estimates of persistence rates bλ indicate that risk prices vary with moderate persistence

for all factors but HML. When risk exposures are time-varying, bλ decreases slightly for all
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Table 2: Risk Premium Parameter Estimates

This table shows estimates of risk premium parameter estimates for the five factors of Fama and French
(2015) described in Section 4.1. The columns in the upper panel show results from a MDAPM with
constant and time-varying betas. Time-varying betas are derived in a specification with unique learning
and persistence rates per factor for the beta updating. The first five columns in the lower part provide
estimates from a dynamic asset pricing model (DAPM) in line with Adrian et al. (2015). Forecasting
factors are the 10-year treasury yield (TSY10), the term spread (TERM), and the dividend yield of the
S&P 500 index (DY). The last five columns in the lower panel provide regression results of a constant
(unconditional) risk price specification. MDAPM standard errors shown in parentheses are derived as
described in Section 2.5. Errors for the DAPM estimates are adjusted for cross-asset correlation in the
residuals and for estimation error of the time-series betas. GMM standard errors are reported for the
unconditional specification. Test assets are 32 value-weighted equity portfolios sorted by size, operating
profitability and investment with monthly returns denoted in percentages. The sample period is 1964:01 -
2023:06.

MDAPM MDAPM (t.-v. β)

MKT SMB HML RMW CMA MKT SMB HML RMW CMA

λ 0.612 0.230 0.424 0.252 0.100 0.527 0.171 0.314 0.360 0.249
(0.156) (0.110) (0.158) (0.103) (0.088) (0.164) (0.109) (0.210) (0.137) (0.135)

aλ 0.501 0.255 0.092 0.098 0.070 0.115 0.120 0.129 0.090 0.055
(0.050) (0.073) (0.027) (0.040) (0.028) (0.036) (0.043) (0.032) (0.061) (0.048)

bλ 0.896 0.907 0.515 0.845 0.927 0.819 0.845 0.772 0.835 0.796
(0.033) (0.045) (0.226) (0.092) (0.033) (0.092) (0.098) (0.093) (0.152) (0.182)

aβ 0.032 -0.015 0.025 -0.004 0.030
(0.009) (0.002) (0.006) (0.005) (0.009)

bβ 0.941 0.983 0.858 0.943 0.902
(0.031) (0.004) (0.058) (0.122) (0.042)

DAPM Unconditional

MKT SMB HML RMW CMA MKT SMB HML RMW CMA

λ 0.550 0.222 0.290 0.335 0.274 0.552 0.224 0.284 0.337 0.274
(0.153) (0.147) (0.291) (0.105) (0.126) (0.169) (0.115) (0.160) (0.087) (0.082)

TSY10 -0.243 -0.157 0.278 0.078 0.136
(0.084) (0.058) (0.088) (0.044) (0.041)

TERM 0.203 0.055 0.205 0.133 -0.030
(0.135) (0.093) (0.131) (0.070) (0.066)

DY 1.608 1.247 -1.529 -0.485 -0.771
(0.620) (0.422) (0.687) (0.329) (0.304)

factors except HML, which actually becomes more persistent.
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With respect to the learning and persistence rates for the beta series (aβ and bβ), we

see that most betas except for RMW significantly vary over time. The persistence rates bβ

are slightly higher than for risk prices with values around 0.9. Thus, the movement of risk

exposures is somewhat slower than the movement of risk prices. This is reasonable since the

test assets are characteristics-sorted portfolios whose exposures should change little or not

at all.

The estimated coefficients of DAPM are comparable to those documented in Adrian et al.

(2015), but the term spread appears to be less relevant in the considered 32 portfolios than

it is in their combined equity and bond cross-section.

4.3.2 Filtered Risk Premia

Figure 3 shows the filtered risk prices of the MDAPM specification alongside the risk prices

proposed by the DAPM and the unconditional model. For the MKT risk price in the upper

panel of Figure 3, we see that the two dynamic approaches tend to move more or less in

unison. In general, the DAPM risk price seems to be slightly higher in periods of high risk

premia, such as the second half of the 1970s and the 2010s. Notably, the moment-based risk

prices are more volatile. Moreover, we can also find that risk premia tend to increase in

recessionary periods when markets are in a downturn. This countercyclicality has already

been documented with regression-based approaches in Adrian et al. (2015), Gagliardini et al.

(2016, 2020), and Chaieb et al. (2021). At the same time, we also see the pattern that market

risk premia tend to fall at the beginning of crisis periods, as can best be seen around the

global financial crisis. This pattern has also been documented in Jensen (2018), Gómez-

Cram (2022) and Umlandt (2023). One reason could be that time-varying lambdas reflect

not only the price of risk, but also the expected return. Thus, market risk prices may decline

at the beginning of a recession due to lower expectations. In contrast to the results of the

likelihood-based filter in Umlandt (2023), we see that although the market risk premium

falls at the beginning of a recession, it rises quickly after the first drop, as can best be
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Figure 3: Time-Varying Risk Prices. This figure shows estimated risk prices for the five factors of Fama
and French (2015) described in Section 4.1. It reports results from MDAPM with time-varying exposures
and a DAPM from Adrian et al. (2015). Test assets are 25 value-weighted equity portfolios sorted on size
and value with monthly returns denoted in percentages. The sample period is 1964:01 - 2023:06.

seen again in the global financial crisis. Thus, it appears that after an initial adjustment of

expectations, adverse events cause investors to demand higher compensation for risk, in line

with the previously found countercyclicality.

The lower panels of Figure 3 show predicted risk premia for the other four factors. While
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the SMB risk price dynamics implied by the MDAPM and DAPM are considerably similar,

the two approaches suggest very different trajectories for the remaining three factors. The

difference is particularly apparent for the HML risk price. While the DAPM suggests notably

moving and persistent risk premia, those obtained from the MDAPM fluctuate rather volatile

around an otherwise rather stable value that may have increased a bit in the middle of the

sample. Consistent with the parameter estimates, both the MDAPM-implied risk premia

for RMW and CMA show more persistent movement than that for HML. However, the

movement is not as pronounced as in the regression-based results. Both factors seem to

carry a rather stable risk premium from the 1980s until the global financial crisis. Especially

the CMA premium seems to be close to zero after 2009.

One reason for the observation that the two approaches are mostly in agreement for

market risk and the size risk premium, and only weakly so for the other factors, is that

the risk price predictors used in the DAPM are specifically documented to predict market

returns. These predictors appear to adequately span the information set for the conditional

price of market risk, although they may not be sufficient to span the information set for the

other pricing factors. Therefore, it is likely that more appropriate instruments can be found

to study the risk premium dynamics of the non-market risk factors in a regression-based

framework.

4.3.3 Pricing and Prediction Error Comparison

We evaluate the in-sample pricing and premium prediction performance according to two

measures. The first measure for evaluating the pricing performance is the RMSE, as com-

puted in (37). Columns 1 through 4 of Table 3 show the RMSE for the 32 portfolios indi-

vidually as well as averaged over the entire set of test assets. From the averages, we can see

that the moment-based MDAPM filter with constant exposures largely reduces the average

RMSE from 1.924 in the unconditional model to 1.854, while the regression-based DAPM

benchmark’s RMSE is only reduced to 1.900. Thus, using the moment-based filter yields a
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roughly three times larger improvement than using the regression-based approach. Also from

a portfolio-specific perspective, we find that the MDAPM crucially reduces the pricing error

in comparison to DAPM and FMB for most portfolios. Note also that allowing risk exposures

to vary over time, as seen in the results in column 2, yields additional small pricing error

improvements compared to the constant β MDAPM specification. Therefore, the inclusion

of time-varying risk prices seems to be more important than the inclusion of time-varying

exposures. This is not too surprising given that the test assets are sorted portfolios.

The second metric we evaluate is the RMSPE defined in (38). Again, this measure cap-

tures how well the model fits that the conditional time t − 1 expectation of rt is given by

βt−1λt−1. This is because the conditional expectation of ut should be zero. Because the vari-

ance of the factor innovation is typically relatively high compared to that of the idiosyncratic

observations, the RMSPEs shown in columns 5 through 8 of Table 3 are considerably larger

than the RMSEs. In addition, the difference between the conditional and the unconditional

model specification is much smaller.

The smallest errors in predicting the risk premium, with an average of 5.531, are found

for the MDAPM with constant β. This is considerably lower than the unconditional (5.649

on average) and regression-based dynamic (5.610 on average) benchmark. Again, note that

while the absolute improvements appear small, the MDAPM produces a three times larger

improvement over the unconditional benchmark than the DAPM. This is surprising as the

DAPM estimates risk prices by regressing the earlier estimated product βλt on the forecast

factors zt−1. Thus, the approach is particularly suited to adjusting risk prices in a way that

minimizes the RMSPE. However, the constant exposure MDAPM seems to improve upon

that while simultaneously reaching a better fit for other moments captured by the RMSE.

The introduction of time-varying betas increases the RMSPE relative to the constant beta

variant and falls between the RMSPE of the DAPM and the unconditional model. Thus, the

slight improvement in RMSE from allowing time-varying betas seems to come at the cost of

a deterioration in the risk premium prediction error.
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Table 3: Root Mean Squared Pricing and Prediction Errors

The table shows root mean squared pricing errors (RMSE) and root mean squared prediciton errors
(RMSPE) of different asset pricing model specifications. Pricing factors are the five Fama and French
(2015) factors. MDAPM refers to results from specifications in which risk exposures are either constant or
time-varying. DAPM refers to a dynamic asset pricing model specification according to Adrian et al.
(2015) using the risk price predictors zt defined in (40). Unc. refers to errors from constant lambda
specifications estimated with Fama and MacBeth (1973) regressions. Test assets are 25 value-weighted
equity portfolios sorted on size and value with monthly returns denoted in percentages. sivj refers to the
portfolio of stocks in the intersection of the i-th quintile portfolio sorted on size and the j-th quintile
portfolio sorted on value. The sample period is 1964:01 - 2023:06.

RMSE RMSPE

MDAPM DAPM Unc. MDAPM DAPM Unc.
β βt β βt

ME1.OP1.INV1 1.943 1.993 2.227 2.279 7.469 7.602 7.575 7.621
ME1.OP1.INV2 1.824 1.847 1.959 1.985 6.462 6.605 6.582 6.607
ME1.OP1.INV3 2.049 2.036 2.143 2.187 6.723 6.784 6.756 6.815
ME1.OP1.INV4 2.309 2.236 2.304 2.410 7.930 8.082 7.997 8.115
ME1.OP2.INV1 1.834 1.919 1.975 2.001 5.899 6.010 5.998 6.031
ME1.OP2.INV2 1.416 1.392 1.498 1.521 5.212 5.281 5.265 5.303
ME1.OP2.INV3 1.494 1.488 1.515 1.532 5.446 5.475 5.454 5.470
ME1.OP2.INV4 1.784 1.741 1.880 1.933 6.431 6.447 6.416 6.483
ME1.OP3.INV1 2.586 2.579 2.641 2.660 6.101 6.245 6.219 6.260
ME1.OP3.INV2 1.453 1.380 1.404 1.423 4.918 4.986 4.967 5.006
ME1.OP3.INV3 1.304 1.329 1.372 1.398 5.079 5.133 5.106 5.145
ME1.OP3.INV4 1.378 1.277 1.485 1.534 6.248 6.345 6.314 6.366
ME1.OP3.INV1 2.099 2.063 2.114 2.145 6.173 6.180 6.158 6.230
ME1.OP4.INV2 1.704 1.646 1.725 1.753 5.683 5.784 5.759 5.811
ME1.OP4.INV3 1.437 1.467 1.463 1.498 5.725 5.808 5.766 5.821
ME1.OP4.INV4 1.411 1.397 1.597 1.649 6.636 6.714 6.671 6.729
ME2.OP1.INV1 2.001 1.950 2.033 2.038 5.400 5.557 5.554 5.571
ME2.OP1.INV2 2.400 2.265 2.271 2.273 5.023 5.171 5.158 5.195
ME2.OP1.INV3 2.003 2.103 2.031 2.046 5.120 5.264 5.250 5.263
ME2.OP1.INV4 2.031 1.979 2.055 2.071 5.842 5.951 5.928 5.995
ME2.OP2.INV1 1.891 1.850 1.905 1.911 4.546 4.646 4.649 4.666
ME2.OP2.INV2 1.824 1.841 1.836 1.837 4.361 4.460 4.461 4.483
ME2.OP2.INV3 2.051 2.078 2.066 2.069 4.861 5.005 5.007 5.026
ME2.OP2.INV4 2.121 2.114 2.143 2.159 5.470 5.596 5.587 5.624
ME2.OP3.INV1 1.974 1.975 1.952 1.957 4.404 4.500 4.492 4.514
ME2.OP3.INV2 1.725 1.771 1.741 1.743 4.299 4.404 4.402 4.409
ME2.OP3.INV3 1.710 1.689 1.759 1.768 4.697 4.805 4.800 4.817
ME2.OP3.INV4 1.979 1.995 2.061 2.084 5.677 5.776 5.760 5.810
ME2.OP4.INV1 1.941 1.977 1.962 1.978 4.611 4.722 4.721 4.754
ME2.OP4.INV2 1.791 1.751 1.763 1.773 4.356 4.399 4.405 4.422
ME2.OP4.INV3 1.775 1.822 1.798 1.802 4.482 4.525 4.526 4.537
ME2.OP4.INV4 2.090 2.026 2.123 2.141 5.717 5.823 5.802 5.863

Avg 1.854 1.843 1.900 1.924 5.531 5.628 5.610 5.649
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In summary, the error comparisons suggest that the moment-based approach can per-

form an estimation of dynamic asset pricing models with a crucially improved fit compared

to both the conditional and the unconditional benchmark. It appears that the most sub-

stantial improvement comes from the presence of time-varying risk prices. Admittedly, it

may be that better performance can be achieved by using individual updating schemes for

the betas instead of specifying unique learning and persistence rates. However, this is chal-

lenging to implement as the number of parameters would increase massively and may tend

to introduce more overfitting, as already suggested by the relatively high prediction errors

of the specification used.

4.3.4 Alternative Factor Models and Cross-Sections

The Fama-French 5-factor model (FF5), together with the 32 test assets sorted by size

(ME), operating profitability (OP) and investment (INV) is a suitable test application for

the MDAPM because the factors cover a large portion of the cross-sectional variation and

the portfolios have a strong factor exposure. We further investigate the potential of the

MDAPM to uncover risk premia dynamics on a set of alternative factors and test assets. As

alternative factor models we consider the CAPM that only includes the market factor MKT,

the 3-factor model of Fama and French (1993) (FF3) that includes the factor MKT, SMB

and HML, as well as the Carhart (1997) model (FFC) that adds a momentum factor to the

three factors in FF3. The momentum signal is based on the prior returns in t− 12 to t− 1.

Besides the already investigated 32 portfolio cross-section, we consider 32 portfolios sorted by

size (ME), book-to-market ratio (BM) and operating profitability (OP), 32 portfolios sorted

by size (ME), book-to-market ratio (BM) and investment (INV), as well as a merged cross

section of 25 portfolios sorted on ME×BM and 10 portfolios sorted by momentum (MOM).

Table 4 shows average RMSEs and RMSPEs for the alternative factor models and test

assets. We find that for all panels and factor models except the CAPM, the MDAPM

specifications perform best regarding the RMSE with the time-varying beta specification
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Table 4: Error Comparisons for Alternative Factor Models and Cross-Sections

The table shows average root mean squared pricing errors (RMSE) and root mean squared prediciton
errors (RMSPE) of different asset pricing model specifications and cross-sections. Factor models are the
CAPM including only MKT, the FF3 model including MKT, SMB and HML, and the FFC model
including the FF3 factor plus a momentum factor. MDAPM refers to results from specifications in which
risk exposures are either constant or time-varying. DAPM refers to a dynamic asset pricing model
specification according to Adrian et al. (2015) using the 10-year treasury yield (TSY10), the term spread
(TERM), and the dividend yield of the S&P 500 index (DY) as risk price predictors. Uncond. refers to
errors from constant lambda specifications estimated with Fama and MacBeth (1973) regressions. The
sample period is 1964:01 - 2023:06.

RMSE RMSPE

MDAPM MDAPM DAPM Uncond. MDAPM MDAPM DAPM Uncond.
(const. β) (t.v. β) (const. β) (t.v. β)

(a) 32 ME×OP×INV
CAPM 2.843 2.870 2.845 2.831 5.570 5.655 5.617 5.654
FF3 2.044 1.985 2.079 2.098 5.538 5.627 5.612 5.651
FFC 2.063 1.992 2.076 2.100 5.533 5.625 5.611 5.649
FF5 1.854 1.843 1.900 1.924 5.531 5.628 5.610 5.649

(b) 32 ME×BM×OP
CAPM 3.415 3.439 3.422 3.408 5.986 6.075 6.041 6.077
FF3 2.458 2.370 2.484 2.504 5.956 6.053 6.035 6.074
FFC 2.481 2.537 2.484 2.509 5.959 6.041 6.034 6.074
FF5 2.348 2.287 2.365 2.389 5.951 6.059 6.033 6.073

(c) 32 ME×BM×INV
CAPM 2.976 3.021 2.998 2.984 5.591 5.669 5.641 5.674
FF3 1.961 1.926 2.024 2.042 5.566 5.662 5.638 5.674
FFC 1.986 1.974 2.022 2.046 5.564 5.657 5.637 5.673
FF5 1.886 1.854 1.947 1.968 5.562 5.659 5.637 5.672

(d) 25 ME×BM + 10 MOM
CAPM 2.859 2.904 2.881 2.867 5.645 5.744 5.711 5.752
FF3 1.921 1.860 1.978 1.997 5.613 5.725 5.709 5.751
FFC 1.717 1.676 1.770 1.799 5.621 5.726 5.706 5.749
FF5 1.905 1.951 1.942 1.967 5.608 5.723 5.706 5.749

producing slightly smaller pricing errors. With regard to the CAPM specification we see that

the dynamic approaches are not able to improve upon the unconditional benchmark in (a) and

(b) and decrease pricing errors only slightly in (c) and (d). This is not surprising given the

rather low cross-sectional explanatory power of the CAPM with a cross-sectional R2 of 17.25

percent (compared to a cross-sectional R2 of 79.52 percent in FF5). The MDAPM uses cross-

sectional regression errors to infer time dynamics, which are obscured by uncaptured cross-
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sectional variation in the CAPM and therefore provide a less clean signal of risk premium

variation.

With respect to the RMSPE, we see that the MDAPM with constant β always performs

best, even for the 1-factor CAPM. Thus, the uncaptured cross-sectional variation seems to

be important for the MDAPM to improve the cross-sectional pricing, but not necessarily for

the risk premium prediction. Consistent with the previous results, the performance of the

time-varying beta specification falls between the two benchmarks.

Applying the FFC model to the 32 portfolio panels (a) to (c) yields a significantly pos-

itive risk premium for the momentum factor, but no improvement in pricing errors in the

unconditional setting. Moreover, the inclusion of the additional factor in FFC does not no-

ticeably affect the performance of the dynamic specifications compared to the FF3 model.

In particular, in the MDAPM specifications, the risk price of the momentum factor seems

to be quite stable.

Panel (d) shows pricing errors based on a test asset panel with a total of 35 portfolios, of

which 25 are bivariate sorts with respect to ME and BM, and the other 10 are univariate sorts

with respect to momentum. In contrast to the other panels, we see that the inclusion of the

momentum factor in the FFC model clearly reduces pricing errors compared to the FF3 and

FF5 models. However, with respect to RMSPE, we see that the risk premium prediction

errors are not considerably affected by the inclusion of a momentum factor, as they are

similarly high for FF3, FF5, and FFC. This means that the momentum factor explains

portfolio returns cross-sectionally via its exposure to the term βtut, as indicated by the lower

RMSE. However, given the non-improved RMSPE, this exposure is not compensated by a

higher risk premium that can be explained by the time variation in the risk prices of other

factors. Thus, in line with the recent literature on factor momentum (Arnott et al., 2023;

Ehsani and Linnainmaa, 2022), the MDAPM analysis reveals that the momentum premium

can be explained by variation in the risk prices of other factors, but finds additional unpriced

momentum exposure that explains why the inclusion of a momentum factor still improves
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cross-sectional pricing.

5 Conclusions

We introduced with the MDAPM a GMM-based dynamic asset pricing framework for linear

factor pricing models. Time-varying risk premia are derived from an updating scheme that

seeks a steepest descent improvement of the local GMM criterion function of a parsimonious

set of asset pricing moments in the corresponding time period. It turns out that such a

constructed updating mechanism adjusts risk prices according to regression errors from the

cross-sectional regression performed in the second stage of the FMB procedure. In the case

of time-varying betas, these are updated to enforce orthogonality of factor innovations and

idiosyncratic innovations.

The MDAPM is applicable to a wide range of factor asset pricing models, does not require

the specification of time series predictors, and does not require the specification of residual

distributions. It is therefore a fairly robust alternative to the regression- and likelihood-

based approaches of Adrian et al. (2015), Gagliardini et al. (2016), and Umlandt (2023),

respectively. Estimation and inference can be performed in a standard GMM fashion.

Simulation results and an application to the Fama-French 5-factor model show that the

MDAPM can substantially reduce pricing errors compared to static Fama and MacBeth

(1973) regressions and the DAPM of Adrian et al. (2015). Filtered risk premia show a

countercyclical pattern, with an initial decline at the beginning of crisis periods, and appear

to differ crucially across factors.
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Appendix

A Proofs

The following proofs of propositions use the following lemma. A proof of it can be found, for

example, in Ronchetti and Trojani (2001) or Creal et al. (2024).

Lemma 1. In case of the conditional moment condition Et−1

[
gt(xt;ϑt, θ̃0)

]
= 0, the influence

function in (16) is given by

st = −
(
Ḡ⊤

ϑ,tΩt−1Ḡϑ,t

)−1
Ḡ⊤

ϑ,tΩt−1gt(xt;ϑt, θ̃0) (A.1)

with

Ḡϑ,t = Eϵ
t−1

(
∂gt(xt;ϑt, θ̃0)

∂ϑ⊤
t

)∣∣∣∣∣
ϵ=0

(A.2)

where Eϵ
t−1 is the conditional expectation based on the measure F ϵ

x.

A.1 Proof of Proposition 1

(a) For ϑt = λt−1 we derive

Ḡϑ,t = Eϵ
t−1

(
∂gt(xt;ϑt, θ̃0)

∂ϑ⊤
t

)∣∣∣∣∣
ϵ=0

=

(
0K×K 0K×NL 0K×NK −β⊤

)⊤
(A.3)

Using Lemma 1 and (A.3), we can derive the required influence function:

st =
dϑt(F

ϵ)x
dϵ

∣∣∣∣
ϵ=0

= −
(
Ḡ⊤

ϑ,tΩt−1Ḡϑ,t

)−1
Ḡ⊤

ϑ,tΩt−1gt(xt;ϑt, θ̃0) (A.4)

=
(
β⊤ββ⊤β

)−1
β⊤ββ⊤et (A.5)

=
(
β⊤β

)−1
β⊤et (A.6)

=
(
β⊤β

)−1
β⊤rt − λt−1 − ut. (A.7)

38



(b) Given ϑt =
(
λ⊤
t−1, vec(βt−1)

⊤)⊤ we derive

Ḡϑ,t =


0(NL+K)×K 0(NL+K)×NK

0NK×K −Σu ⊗ IN

−βt −λ⊤
t ⊗ IN

 . (A.8)

We further find

Ḡ⊤
ϑ,tΩt−1Ḡϑ,t =

 0K×(NL+K) 0K×NK −β⊤
t−1

0NK×(NL+K) −Σu ⊗ IN −λt ⊗ IN


 IM−N 0(M−N)×N

0N×(M−N) βtβ
⊤
t



·


0(NL+K)×K 0(NL+K)×NK

0NK×K −Σu ⊗ IN

−βt −λ⊤
t ⊗ IN

 (A.9)

=

 0K×(NL+K) 0K×N −β⊤
t βtβ

⊤
t

0NK×(NL+K) −Σu ⊗ IN −λt ⊗ βtβ
⊤
t



·


0(NL+K)×K 0(NL+K)×NK

0NK×K −Σu ⊗ IN

−βt −λ⊤
t ⊗ IN

 (A.10)

=

 β⊤
t βtβ

⊤
t βt λ⊤

t ⊗ β⊤
t βtβ

⊤
t

λt ⊗ βtβ
⊤
t βt Σ2

u ⊗ IN + λtλ
⊤
t ⊗ βtβ

⊤
t

 . (A.11)

Applying the block matrix Schur complement allows us to invert the matrix in (A.11):

(
Ḡ⊤

ϑ,tΩt−1Ḡϑ,t

)−1
=

(β⊤
t βt)

−2 + λ⊤
t Σ

2
uλt(β

⊤
t βt)

−1 −λ⊤
t Σ

−2
u ⊗ βt(β

⊤
t βt)

−1

−Σ−2
u λt ⊗ (β⊤

t βt)
−1β⊤

t Σ−2
u ⊗ IN

 . (A.12)
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Moreover,

Ḡ⊤
ϑ,tΩt−1gt(xt;ϑt) =

 0K×(NL+K) 0K×N −β⊤
t βtβ

⊤
t

0NK×(NL+K) −Σu ⊗ IN −λt ⊗ βtβ
⊤
t




ut

vec
(
utz

⊤
t

)
vec
(
etu

⊤
t

)
et


(A.13)

=

 −β⊤
t βtβ

⊤
t et

−vec
(
etu

⊤
t Σu

)
− λt ⊗ βtβ

⊤
t et

 . (A.14)

Equations (A.11) and (A.14) together with Lemma 1 can be used to finally derive the influence

function:

st =

(β⊤
t βt)

−2 + λ⊤
t Σ

2
uλt(β

⊤
t βt)

−1 −λ⊤
t Σ

−2
u ⊗ βt(β

⊤
t βt)

−1

−Σ−2
u λt ⊗ (β⊤

t βt)
−1β⊤

t Σ−2
u ⊗ IN


×

 −β⊤
t βtβ

⊤
t et

−vec
(
etu

⊤
t Σu

)
− λt ⊗ βtβ

⊤
t et

 (A.15)

=

(β⊤
t βt

)−1
β⊤
t et

(
1− u⊤t Σ

−1
u λ

)
vec
(
etu

⊤
t Σ

−1
u

)
 . (A.16)
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A.2 Proof of Proposition 2

For ϑt =
(
λ⊤
t−1, vec(βt−1)

⊤, vech(Σu,t−1)
⊤, vech(Σe,t−1)

⊤)⊤ we can derive

Ḡϑ,t = Eϵ
t−1

(
∂gt(xt;ϑt, θ̃0)

∂ϑ⊤
t

)∣∣∣∣∣
ϵ=0

(A.17)

=



0(NL+K)×K 0(NL+K)×NK 0(NL+K)×K(K+1)/2 0(NL+K)×N(N+1)/2

0NK×K −Σu ⊗ IN 0NK×K(K+1)/2 0NK×N(N+1)/2

−βt −λ⊤
t ⊗ IN 0N×K(K+1)/2 0N×N(N+1)/2

0K(K+1)/2×K 0K(K+1)/2×NK IK(K+1)/2 0K(K+1)/2×N(N+1)/2

0N(N+1)/2×K 0N(N+1)/2×NK 0N(N+1)/2×K(K+1)/2 IN(N+1)/2


. (A.18)

Similar derivations as in the proof of Proposition 1 yield

(
Ḡ⊤

ϑ,tΩt−1Ḡϑ,t

)−1
=


(β⊤

t βt)
−2 + λ⊤

t Σ
2
uλt(β

⊤
t βt)

−1 −λ⊤
t Σ

−2
u ⊗ βt(β

⊤
t βt)

−1 0K

−Σ−2
u λt ⊗ (β⊤

t βt)
−1β⊤

t Σ−2
u ⊗ IN 0N2

0V×K 0V×N2 IV

 (A.19)

with V = N(N + 1)/2 +K(K + 1)/2 and

Ḡ⊤
ϑ,tΩt−1gt(xt;ϑt) =



−β⊤
t βtβ

⊤
t et

−vec
(
etu

⊤
t Σu

)
− λt ⊗ βtβ

⊤
t et

vech
(
utu

⊤
t − Σu,t−1

)
vech

(
ete

⊤
t − Σe,t−1

)


. (A.20)

Equations (A.19) and (A.20) together with Lemma 1 prove the proposition.
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