Kindness Matters: A Theory of Reciprocity

Yi Shi

University of Essex

EEA-ESEM 2024

August 27, 2024

Yi Shi (University of Essex)

Kindness Matters: A Theory of Reciprocity

EEA-ESEM 2024

< □ > < □ > < □ > < □ > < □ >

æ

- A typical economic assumption that decision makers are rational and selfish material payoff maximisers can be unforgiving because of numerous examples of deviations
- Psychological factors, such as reciprocity, become a persistent motive in social interactions that involve non-rational behaviour
- This motive on decision maker's non-rational behaviour can be
 - positive because they are willing to sacrifice their own material payoffs to reward the kindness of other decision makers
 - negative because they are willing to sacrifice their own material payoffs to punish the unkindness of other decision makers
- It is of importance for us to understand the concept of kindness

イロト イヨト イヨト イヨト

э

- Consider the following decision-making problems
- There are two types of players: P-proposer who chooses offer (a, 10-a) and R-responder who chooses either to accept: (a, 10-a) or reject: (0, 0)
- Now there are two situations that you need to make your choice as the role of R:
 - Situation A: proposer faces two feasible offers (8, 2) and (5, 5), and chose the offer (8, 2)
 - accept □ reject □
 - Situation B: proposer faces two feasible offers (8, 2) and (2, 8), and chose the offer (8, 2)
 - accept □ reject □

- Consider the following decision-making problems
- There are two types of players: P-proposer who chooses offer (a, 10-a) and R-responder who chooses either to accept: (a, 10-a) or reject: (0, 0)
- Now there are two situations that you need to make your choice as the role of R:
 - Situation A: proposer faces two feasible offers (8, 2) and (5, 5), and chose the offer (8, 2)
 - 🔳 accept 💋 🛛 reject 🗆
 - Situation B: proposer faces two feasible offers (8, 2) and (2, 8), and chose the offer (8, 2)
 - 🔳 accept 💋 🛛 reject 🗆

- Consider the following decision-making problems
- There are two types of players: P-proposer who chooses offer (a, 10-a) and R-responder who chooses either to accept: (a, 10-a) or reject: (0, 0)
- Now there are two situations that you need to make your choice as the role of R:
 - Situation A: proposer faces two feasible offers (8, 2) and (5, 5), and chose the offer (8, 2)
 - 🔳 accept 🗆 🛛 reject 💋
 - Situation B: proposer faces two feasible offers (8, 2) and (2, 8), and chose the offer (8, 2)
 - 📕 accept 🗆 🛛 reject 💋

- Consider the following decision-making problems
- There are two types of players: P-proposer who chooses offer (a, 10-a) and R-responder who chooses either to accept: (a, 10-a) or reject: (0, 0)
- Now there are two situations that you need to make your choice as the role of R:
 - Situation A: proposer faces two feasible offers (8, 2) and (5, 5), and chose the offer (8, 2)
 - 🔳 accept 🗆 🛛 reject 💋
 - Situation B: proposer faces two feasible offers (8, 2) and (2, 8), and chose the offer (8, 2)
 - 🔳 accept 💋 🛛 reject 🗆

- The consideration of kindness is reflected in the situations encountered by all decision makers
- Thus, the idea of reciprocity is intuitively connected to the possible payoffs of all decision makers (sequential prisoner's dilemma, ultimatum games, etc.)
- Despite the obvious intuitive connection, there is a lack of formalization of this connection

イロト イヨト イヨト イヨト

- answers a fundamental question
 - How does kindness consideration promote positive/negative reciprocal behaviour?
- answers this question by
 - proposing a new concept of efficient strategy to exclude strategies that should not be considered in kindness evaluation
 - developing a theoretical framework of reciprocity with two aspects: intentional kindness and consequential kindness

イロト イボト イヨト イヨト

э

Theoretical studies:

- Reciprocity: Rabin, 1993; Dufwenberg and Kirchsteiger, 2004; Falk and Fischbacher, 2006; Jiang and Wu, 2019; Sohn and Wu, 2022
- Inequity aversion: Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000
- Altruism: Becker, 1976
- Experimental studies:
 - Sequential prisoner's dilemma: Ahn et al., 2007; Orhun, 2018; Gächter et al., 2022; Schneider and Shields, 2022
 - Ultimatum game: Falk et al., 2003; Castillo et al., 2019
 - Dictator game: Andreoni et al., 2009

イロト イ団ト イヨト イヨト

- We offer a psychologically plausible account (i.e. efficient strategy) of how reciprocal kindness can explain mutually beneficial behaviour
- We incorporate both intentions and consequences of all decision makers' actions into the decision maker's kindness consideration, and then provide a better explanation and prediction on a host of experimental games

э

- Two-stage extensive games, complete and perfect information
- $N = \{1,2\}$ denotes the set of players
- Let H_i denote the set of nodes (or histories) of player $i \in N$, and A_i denote the set of behavioural strategies of player i
- With $a_i \in A_i$, $h \in H$, $a_{i,h}$ denotes the strategy that prescribes the same choice as a_i , except for the choice that decides history h that is made with probability 1
- The material payoff of player *i* is given by $\pi_i : A \to \mathbb{R}$
- Let $B_{ij} \in A_j$ be player *i*'s first-order belief and $B_{ij}(h)$ be the **updated first order belief** that describes player *j*'s actual behavioural strategy that leads to history h
- Let $C_{iji} \in A_i$ be player *i*'s second-order belief and $C_{iji}(h)$ be the **updated second order belief** that describes player *j*'s actual behavioural strategy that leads to history h

イロト イヨト イヨト イヨト

∃ 𝒫𝔅

It is unavoidable that there are some strategies never happen

- Consider the following decision-making problems
- Two types of players: P-proposer who chooses allocation and R-responder who chooses either to accept the allocation or reject
- Now there are two situations:
 - Situation A: proposer faces two feasible offers (8, 2) and (8, 2)
 - Situation B: proposer faces two feasible offers (8, 2) and (10,0)
- If you are R, what do you think P believes you will choose after (10, 0)
- Then, whether R should consider the offer (10, 0) as a viable option from P

イロト イヨト イヨト

PWO as a sequential rationality refinement

- We consider a three-step method: potential worst outcome (PWO) to define special secondorder belief C^{pwo}_{ijii}
 - step (i): find the most advantageous strategy $a_i \in C_{iji}^{pwo}(a_{j,h})$ for player *i* that should be unique at $h \in H$ (by sequential rationality)
 - step (ii): if a_i does not satisfy (i), player i will adopt the strategy that brings player j "the worst outcome"
 - step (iii): if a_i does not satisfy (ii), player i will choose randomly.
- **Efficient Strategy**: according to C_{iji}^{pwo} , we define a_j as a wasteful strategy if and only if there exists at least one a'_i which describes the choice that leads to Pareto-superior outcomes.

Formal expression

イロト イヨト イヨト イヨト

- All potential material payoffs of both players can influence the perception of kindness
- Two aspects: what people can get (determined by decision maker's own material payoffs) and what people should get (determined by material payoffs of others)
- **Reference Point Standard**: if player's material payoffs exceed this reference point, they will be intentionally kind. Otherwise, they will be intentionally unkind.
- Definition:

$$\pi_i^r = \sum_{a_{j,h} \in E_j^{pwo}} \vartheta(a_{j,h}) \cdot \pi_i(C_{iji}, a_{j,h})$$

- $\vartheta(a_{j,h})$ is intention function that has the following four properties:
 - $\begin{array}{l} \textbf{(i)} \ \vartheta(a_{j,h}) \text{ is non-decreasing in } \pi_j(a_{j,h}), & \frac{\partial \vartheta(a_{j,h})}{\partial \pi_j(a_{j,h})} \geq 0 \text{ where } a_{j,h} \in E_j^{pwo}, \text{ and non-increasing in } \\ \pi_j(\tilde{a}_{j,h}), & \frac{\partial \vartheta(a_{j,h})}{\partial \pi_j(\tilde{a}_{j,h})} \leq 0 \text{ where } \tilde{a}_{j,h} \in E_j^{pwo} / \{a_{j,h}\} \\ \textbf{(ii)} \text{ if } \pi_j(a_{j,h}) > \pi_j(\tilde{a}_{j,h}), \text{ then } \vartheta(a_{j,h}) \geq \vartheta(\tilde{a}_{j,h}) \text{ must hold} \\ \textbf{(iii)} \ \vartheta(a_{j,h}) > 0 \ \forall a_{j,h} \in E_j^{pwo} \ \vartheta(a_{j,h}) = 1. \end{array}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Intentional kindness

Player *i*'s utility from the intentional kindness at history $h \in H$ is defined by:

$$\Psi_i = \beta_i \cdot \delta_{ji} \cdot \pi_j(a_i, B_{ij}(h), C_{iji}(h))$$

where $\delta_{ji} = \pi_i(a_i, B_{ij}(h), C_{iji}(h)) - \pi_i^r(h)$, and β_i is an exogenously given non-negative number, which measures how sensitive player *i* is to the intention concerns with respect to player *j*.

Kindness: consequential kindness

- Without intentional kindness (i.e. $\Psi_i = 0$), we notice that people may still sacrifice to punish others
- An appropriate explanation is that they dislike that other people gain more than themselves
 - we may reject the (8, 2) offer but never reject (2, 8) offer

Consequential kindness

Player i's utility from the consequential kindness at history $h \in H$ is defined by

$$\Phi_i = \alpha_i \cdot \{L_{ij}(a_i, B_{ij}(h)) - \hat{L}_{ij}(B_{ij}(h))\}$$

where α_i is an exogenously given non-negative number, which measures how sensitive player *i* is to the consequence concerns with respect to player *j*.

- $L_{ij}(a_i, B_{ij}(h)) = \min\{\pi_i(a_i, B_{ij}(h)) \pi_j(a_i, B_{ij}(h)), 0\}$
- $\hat{L}_{ij}(B_{ij}(h)) = \max_{a'_i \in A_i} L_{ij}(a'_i, B_{ij}(h))$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The utility function:

$$U_i(a_i, B_{ij}(h), C_{iji}(h)) = \pi_i(a_i, B_{ij}(h), C_{iji}(h)) + \Psi_i + \Phi_i$$

Expected reciprocity equilibrium:

■ The profile $\{a^*, B^*_{ij}(h), C^*_{ij}(h)\}$ is an expected reciprocity equilibrium (ERE) if for all $i \in N$ and for each history $h \in H$ it holds that

(i)
$$a_i^* \in \underset{a_i \in A_{i,h}}{\operatorname{arg max}} U_i(a_i, B_{ij}(h), C_{iji}(h))$$

$$\blacksquare (II) B_{ij}^{\pi}(h) = a_j^{\pi} \text{ for all } j \neq i$$

(iii)
$$C_{iji}^*(h) = a_i^*$$
 for all $j \neq i$

Theorem

An expected reciprocity equilibrium always exists

イロト イ団ト イヨト イヨト

PREDICTION				
Applications	Authors	Consequence- based models ¹	Intention- based models ²	Our model
Ultimatum game	Falk, Fehr, and Fischbacher (2003)			✓ ●
Sequential prisoner's dilemma	Ahn et al. (2007)	\checkmark	\checkmark	✓ •
SPD with punishment	Orhun (2018)			✓ ▶
Trust game	Isoni and Sugden (2019)			 ✓

¹Becker, 1976; Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000

²Rabin, 1993; Dufwenberg and Kirchsteiger, 2004

< □ > < □ > < □ > < □ > < □ >

What we know...

- Reciprocity plays a crucial role in motivating players to overcome selfish and rational behaviour
- Wasteful strategies have no impact on the evaluation of others' intentions
- Material payoffs associated with all players are able to significantly influence the perception of kindness
- It can be widely tested by lab experiments (SPD, UG, DG, etc.)
- What would we like to know more about?
 - What happens if more players join the game?
 - Can the concept of reciprocity be better tested in the lab? (ongoing project)

イロト イヨト イヨト

Thank you!

メロト メタト メヨト メヨト

APPENDIX

メロト メタト メヨト メヨト

Special Second-order Belief

For any $a_{j,h} \in A_j$, let $\hat{A}_i(a_{j,h}) \equiv argmax_{a_i \in A_i} \pi_i(a_i, a_{j,h})$ and define $C_{iji}^{pwo}(a_{j,h}) \subseteq \hat{A}_i(a_{j,h})$ as follows:

$$_{i} \in C_{jji}^{pwo}(a_{j,h}) \begin{cases} \text{ if either (i) } \pi_{i}(a_{i}, a_{j,h}) > \pi_{i}(a'_{i}, a_{j,h}) \lor a'_{i} \in \hat{A}_{i}(a_{j,h})/\{a_{i}\} \\ \text{ or if (ii) } \pi_{j}(a_{i}, a_{j,h}) < \pi_{j}(a'_{i}, a_{j,h}) \lor a'_{i} \in \hat{A}_{i}(a_{j,h})/\{a_{i}\} \text{ such that } \pi_{i}(a_{i}, a_{j,h}) = \pi_{i}(a'_{i}, a_{j,h}) \\ \text{ or if (iii) } \pi_{k}(a_{i}, a_{j,h}) = \pi_{k}(a'_{i}, a_{j,h}) \lor k \in \{i, j\} \lor a'_{i} \in \hat{A}_{i}(a_{j,h}) \end{cases}$$

Efficient Strategy

Define efficient strategy set for $j \in \{1, 2\}$ as follows:

$$E_{j}^{pwo} = \begin{cases} if \nexists a_{j}' \in A_{j} \text{ such that:} \\ (i)\pi_{k}(a_{j}', C_{iji}^{pwo}(a_{j,h})) \geq \pi_{k}(a_{j}, C_{iji}^{pwo}(a_{j,h})) \forall k \in \{i, j\} \text{ and} \\ (ii)\pi_{k}(a_{j}', C_{iji}^{pwo}(a_{j,h})) > \pi_{k}(a_{j}, C_{iji}^{pwo}(a_{j,h})) \text{ for some } k \in \{i, j\} \end{cases}$$

Back

イロト イヨト イヨト イヨト

æ

An experimental study from Falk, Fehr, and Fischbacher (2003)

イロト イヨト イヨト イヨト

Our prediction

- Result 1. "O1" is the efficient strategy in game (a), game (b), game (c), and game (d);
 "O2" is the efficient strategy in game (a), game (b), and game (c) but not in game (d).
- Result 2. In game (a) and game (b), if the proposer chooses "O₂", the responder will accept the offer (by choosing "y") in ERE.
- **Result 3.** In game (a) and game (b), if the proposer chooses " O_1 ", the responder will reject the offer (by choosing "n") if $\alpha \geq 1/3$.
- Result 4. In game (a), suppose $\alpha < 1/3$. If the proposer chooses " O_1 ", the responder will accept the offer (by choosing "y") if $\beta < \frac{(2-6\alpha)(1+e^5)}{40e^5}$, will reject the offer (by choosing "n") if $\beta > \frac{(2-6\alpha)(e^8+e^5)}{24e^5}$, and will choose randomly if $\frac{(2-6\alpha)(1+e^5)}{40e^5} \le \beta \le \frac{(2-6\alpha)(e^8+e^5)}{24e^5}$.
- Result 5. In game (b), suppose $\alpha < 1/3$. If the proposer chooses " O_1 ", the responder will accept the offer (by choosing "y") if $\beta < \frac{(2-6\alpha)(1+e^2)}{64e^2}$, will reject the offer (by choosing "n") if $\beta > \frac{(2-6\alpha)(e^8+e^2)}{48e^2}$, and will choose randomly if $\frac{(2-6\alpha)(1+e^2)}{64e^2} \le \beta \le \frac{(2-6\alpha)(e^8+e^2)}{48e^2}$.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Result 6. More responders are willing to accept (by choosing "y") the (8,2) offer (when the proposer chose "O₁") in game (b) than in game (a) given a uniform distribution over the population.
- **Result 7**. In game (c) and (d), if the proposer chooses " O_1 ", the responder will accept the offer (by choosing "y") if $\alpha < 1/3$, will reject the offer (by choosing "n") if $\alpha > 1/3$, and will choose randomly if $\alpha = 1/3$.
- Result 8. More responders are willing to accept (by choosing "y") the (8,2) offer (when the proposer chose "O₁") in games (c) and (d) than in games (a) and (b).
- Experimental results
 - Empirical results show that the rejection rate of the (8,2) offer decreases from (a) to (d): in (a) it is 44.4%, in (b) 26.7%, in (c) 18%, and in (d) 8.9%. However, the difference between game (c) and game (d) is not statistically significant
 - Our prediction is consistent with the experimental findings of Falk, Fehr, and Fischbacher (2003)

イロト イヨト イヨト イヨト

Sequential prisoner's dilemma

An experimental study from Ahn et al. (2007)

イロト イヨト イヨト イヨト

D-path

Result 1. In all treatments, "C" and "D" are both efficient strategies. If player 1 defects (by choosing "D"), player 2 will always defect (by choosing "d") as a response in ERE.

C-path

- **Result 2.** In treatment 1, if player 1 cooperates (by choosing "C"), the following hold in ERE: (i) If $\beta > \frac{e^{30}+e^{18}}{26\sqrt{18}}$, player 2 will cooperate (by choosing "c"). (ii) If $\beta < \frac{e^{12} + e^{18}}{54e^{18}}$, player 2 will defect (by choosing "d"). (iii) If $\frac{e^{12}+e^{18}}{c+18} \leq \beta \leq \frac{e^{30}+e^{18}}{2c+18}$, player 2 will cooperate (by choosing "c") with probability p that satisfies $3\beta(18-6p) \cdot \frac{e^{18}}{18p+12 + 18} = 1$.
- **Result 3.** In treatment 2. If player 1 cooperates (by choosing "C"), the following holds in ERE: (i) If $\beta > \frac{(e^{34}+e^{18})(\alpha+1)}{20e^{18}}$, player 2 will cooperate (by choosing "c"). (ii) If $\beta < \frac{(e^{14}+e^{18})(1+\alpha)}{4ne^{18}}$, player 2 will defect (by choosing "d"). (iii) If $\frac{(e^{14}+e^{18})(1+\alpha)}{(e^{14}+e^{18})(1+\alpha)} \leq \beta \leq \frac{(e^{34}+e^{18})(\alpha+1)}{(e^{14}+e^{18})(\alpha+1)}$, player 2 will cooperate (by choosing "c") with probability p that satisfies $20\beta(2-p) \cdot \frac{e^{18}}{e^{20p+14}+e^{18}} = 1 + \alpha$.

Our prediction

C-path (Cont.)

Result 4. In treatment 3. If player 1 cooperates (by choosing "C"), the following holds in ERE: (i) If $\beta > \frac{e^{26}+e^{18}}{64e^{18}}$, player 2 will cooperate (by choosing "c"). (ii) If $\beta < \frac{e^{10}+e^{18}}{80e^{18}}$, player 2 will defect (by choosing "d"). (iii) If $\frac{e^{10}+e^{18}}{80e^{18}} \le \beta \le \frac{e^{26}+e^{18}}{64e^{18}}$, player 2 will cooperate (by choosing "c") with probability p that satisfies $4\beta(20-4p) \cdot \frac{e^{18}}{e^{10}+101+e^{18}} = 1$.

Comparison

Result 5. More player 2s are willing to cooperate (by choosing "c") given player 1's cooperation (player 1 chose "C") in treatment 3 than treatment 1 and treatment 2; and more player 2s are willing to cooperate (by choosing "c") given player 1's cooperation (player 1 chose "C") in treatment 1 than treatment 2.

Experimental results

- 43% of players cooperate after cooperation in treatment 3, 35% cooperate after cooperation in treatment 1, and only 21% will cooperate after cooperation in treatment 2.
- Our prediction is consistent with the experimental findings of Ahn et al. (2007)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Many experiments on sequential prisoner's dilemma find that some second movers would like to cooperate after first-mover's cooperation (known as conditional cooperation). But the proportion of conditional cooperator differ given different situations.
- An experimental study from Orhun (2018)

D-path

- Result 1 (GSPD). "C" and "D" are both efficient strategies. If first-mover defects (by choosing "D"), second-mover will always defect (by choosing "d") as a response in ERE.
- **Result 2 (PSPD)**. "C" and "D" are both efficient strategies. If first-mover defects (by choosing "D'), defection (by choosing "d") for second-mover is not the unique ERE.
- Let's define second-mover's choice "c" after "C" as p and "c" / "p" after "D" as q.
- So q=0 in GSPD and q > 0 in PSPD
- In experiment, q=4% in GSPD while q=25% in PSPD

イロト イポト イヨト イヨト

C-path

- **Result 3 (GSPD).** If first-mover cooperates (by choosing "C"), the following holds in ERE: (i) If $\beta > \frac{(2+12\alpha)(e^{5}\cdot e^{4}))}{5e^{4}}$, second-mover will cooperate (by choosing "c") (ii) If $\beta < \frac{(2+12\alpha)(e^{3}+e^{4})}{10e^{4}}$, second-mover will defect (by choosing "d") (iii) If $\frac{(2+12\alpha)(e^{3}+e^{4})}{10e^{4}} \le \beta \le \frac{(2+12\alpha)(e^{5}\cdot 5+e^{4}))}{5e^{4}}$, second-mover will cooperate (by choosing "c") with probability p that satisfies $2 + 12\alpha = 5\beta(2-p)\frac{e^{4}}{e^{5}\cdot5p+3(1-p)+e^{4}}$
- **Result 4 (PSPD).** If first-mover cooperates (by choosing "C"), the following holds in ERE:
 (i) If \$\beta > \frac{(2+12\alpha)(e^{5.5}+e^{1.5q+4(1-q)})}{5(1+q)e^{1.5q+4(1-q)}}\$, second-mover will cooperate (by choosing "c")
 (ii) If \$\beta < \frac{(2+12\alpha)(e^{3}+e^{1.5q+4(1-q)})}{5(2+q)e^{1.5q+4(1-q)}}\$, second-mover will defect (by choosing "d")</p>
 (iii) If \$\frac{(2+12\alpha)(e^{3}+e^{1.5q+4(1-q)})}{5(2+q)e^{1.5q+4(1-q)}}\$, second-mover will defect (by choosing "d")
 (iii) If \$\frac{(2+12\alpha)(e^{3}+e^{1.5q+4(1-q)})}{5(2+q)e^{1.5q+4(1-q)}}\$, \$\leftel{second-mover}\$, second-mover will cooperate (by choosing "d")
 (iii) If \$\frac{(2+12\alpha)(e^{3}+e^{1.5q+4(1-q)})}{5(2+q)e^{1.5q+4(1-q)}}\$, \$\leftel{second-mover}\$, second-mover will cooperate (by choosing "d")
 (iii) If \$\frac{(2+12\alpha)(e^{3}+e^{1.5q+4(1-q)})}{5(2+q)e^{1.5q+4(1-q)}}\$, \$\leftel{second-mover}\$, second-mover will cooperate (by choosing "d")
 (iii) If \$\frac{(2+12\alpha)(e^{3}+e^{1.5q+4(1-q)})}{5(2+q)e^{1.5q+4(1-q)}}\$, \$\leftel{second-mover}\$, second-mover will cooperate (by choosing "c") with a probability \$p\$ that satisfies \$2 + 12\alpha = 5\beta(2-p+q) \$\frac{e^{1.5q+4(1-q)}}{e^{5.5p+3(1-p)+e^{1.5q+4(1-q)}}}\$, \$\leftel{second-mover}\$, \$\leftel{second-mover}

Comparison

- Result 5. Second-mover is more likely to cooperate (by choosing "c") given that first-mover's cooperation (first-mover chose "C") in GSPD than in PSPD
- In experiment, 56.52% second-movers chose cooperation after cooperation in GSPD while 34.55% in PSPD

Back

Ξ.

イロト イヨト イヨト イヨト

 Isoni and Sugden (2019) propose a paradox of trust when studying reciprocity with existing models

イロト イヨト イヨト イヨト

Ξ.

Result 1 . "hold" is not the efficient strategy. No matter what the value from (send, keep) is, "return" is the unique ERE and the value of intentional kindness will be the same.

Back

< □ > < □ > < □ > < □ > < □ >

Ξ.