Testing Weak Factors in Asset Pricing

Soohun Kim Valentina Raponi Paolo Zaffaroni

ESEM 2024 26 August 2024

KAIST

IESE

Imperial College London

Outline

Overview

Economy

Conditional Asset Pricing Set-Up

Benchmark Case: No Strong Factor

Observed Strong Factors

Unobserved Strong Factors

Simulation

Empirical Application

Conclusion

Empirical Asset Pricing

• One of the most famous equations in AP is

$$\mu(\mathsf{rewards}) = B(\mathsf{risk}) \times \gamma(\mathsf{rewards} \ \mathsf{per} \ \mathsf{unit} \ \mathsf{risk})$$

Empirical Asset Pricing

• One of the most famous equations in AP is

$$\mu(\text{rewards}) = B(\text{risk}) \times \gamma(\text{rewards per unit risk})$$

- Seemingly benign but captivating
 - Standard empirical approach is two-pass CSR method
 - Once you decide to take it seriously, lots of complexity arise in empirical application

Empirical Asset Pricing

• One of the most famous equations in AP is

$$\mu(\text{rewards}) = B(\text{risk}) \times \gamma(\text{rewards per unit risk})$$

- Seemingly benign but captivating
 - Standard empirical approach is two-pass CSR method
 - Once you decide to take it seriously, lots of complexity arise in empirical application
- This paper considers the issue of weak factors
 - When some factor loadings are close to zeros for most assets

Weak Factors and Investment

• APT is fine with the following Mean-Variance analysis:

 Hence, as an investor, s/he will have a strong incentive to search for the weak factors!

Weak Factors and Asset Pricing Test

- When some factors are weak, lots of distortion may happen
 - weak factors without premium may appear to be important
 - strong factors with significant premium may apprear to be insignificant

Weak Factors and Asset Pricing Test

- When some factors are weak, lots of distortion may happen
 - weak factors without premium may appear to be important
 - strong factors with significant premium may apprear to be insignificant
- Especially, when the literature proposes hundreds of factors, we need some criteria

Furthermore, rapidly changing economic landscape

- We need to discern which factors are strong weak
 - in a rapidly changing economic environment
- For example, paradigm shifts such as climate changes or job destruction due to AI beg for a short-T method

Key insight of this paper

• Back to the famous equation,

$$\mu(\text{rewards}) = B(\text{risk}) \times \gamma(\text{rewards per unit risk})$$

ullet We do not know B but estimate $\widehat{B}=B+me$ (estimation error)

Key insight of this paper

Back to the famous equation,

$$\mu(\text{rewards}) = B(\text{risk}) \times \gamma(\text{rewards per unit risk})$$

- We do not know B but estimate $\widehat{B} = B + me$ (estimation error)
- Taxonomy of asset pricing econometrics

	Small T	Large T
Strong Factors	$B_{strong} \sim me$	$B_{strong}\gg me$
Weak Factors	$B_{weak} \ll me$	$B_{weak} \sim me$

Key insight of this paper

• Back to the famous equation,

$$\mu(\text{rewards}) = B(\text{risk}) \times \gamma(\text{rewards per unit risk})$$

- We do not know B but estimate $\widehat{B} = B + me$ (estimation error)
- Taxonomy of asset pricing econometrics

	Small T	Large T
Strong Factors	$B_{strong} \sim me$	$B_{strong}\gg me$
Weak Factors	$B_{weak} \ll me$	$B_{weak} \sim me$

- Traditionally, estimation errors in estimated beta are the cause of trouble
- 2. We flip it as a blessing to reveal whether a given factor is weak or not

ullet The literature has focused on the issue of weak factors under large ${\cal T}$ setup

- The literature has focused on the issue of weak factors under large T setup
 - How to overcome very Weak (spurious) Factors in testing Strong Factors
 - Kan and Zhang (1999), Kleibergen (2009), Bryzgalova (2016)

- The literature has focused on the issue of weak factors under large T setup
 - How to overcome very Weak (spurious) Factors in testing Strong Factors
 - Kan and Zhang (1999), Kleibergen (2009), Bryzgalova (2016)
 - How to identify Weak Factors and the price of risk in Weak Factors
 - Giglio, Xiu and Zhang (2021), Lettau and Pelger (2020), Anatolyev and Mikusheva (2022), Kleibergen and Zhan (2023)

- The literature has focused on the issue of weak factors under large T setup
 - How to overcome very Weak (spurious) Factors in testing Strong Factors
 - Kan and Zhang (1999), Kleibergen (2009), Bryzgalova (2016)
 - How to identify Weak Factors and the price of risk in Weak Factors
 - Giglio, Xiu and Zhang (2021), Lettau and Pelger (2020), Anatolyev and Mikusheva (2022), Kleibergen and Zhan (2023)
 - How to test whether a factor of interest is Weak/Semi-strong
 - Pesaran (2012), Pesaran and Smith (2021), Connor and Korajczyk (2022)

- The literature has focused on the issue of weak factors under large T setup
 - How to overcome very Weak (spurious) Factors in testing Strong Factors
 - Kan and Zhang (1999), Kleibergen (2009), Bryzgalova (2016)
 - How to identify Weak Factors and the price of risk in Weak Factors
 - Giglio, Xiu and Zhang (2021), Lettau and Pelger (2020), Anatolyev and Mikusheva (2022), Kleibergen and Zhan (2023)
 - How to test whether a factor of interest is Weak/Semi-strong
 - Pesaran (2012), Pesaran and Smith (2021), Connor and Korajczyk (2022)
- We propose a novel test for weak factors under small T setup
 - builds on the two-pass methodology
 - detect whether observed risk factors are (locally) weak or not

Outline

Overview

Economy

Conditional Asset Pricing Set-Up

Benchmark Case: No Strong Factor

Observed Strong Factors

Unobserved Strong Factors

Simulation

Empirical Application

Conclusion

Outline

Overview

Economy

Conditional Asset Pricing Set-Up

Benchmark Case: No Strong Factor

Observed Strong Factors

Unobserved Strong Factors

Simulation

Empirical Application

Conclusion

RGP

• Conditional Factor Structure for asset $i=1,\cdots,N$ at $t=1,\cdots,T$:

$$R_{it} = \alpha_{it-1} + \underbrace{\beta'_{fit-1}f_t}_{\text{strong}} + \underbrace{\beta'_{git-1}g_t}_{\text{weak}} + e_{it},$$

where

$$\beta_{fit-1} = (\beta_{f_1it-1}, \dots, \beta_{f_Kit-1})', \ \mathbf{f}_t = (f_{1t}, \dots, f_{Kt})$$
$$\beta_{git-1} = (\beta_{g_1it-1}, \dots, \beta_{g_Lit-1})', \ \mathbf{g}_t = (g_{1t}, \dots, g_{Lt})$$

RGP+APT+Local Smoothness

 We can treat (smoothness assumption) the conditional model as a locally unconditional model:

$$\mathbf{R}_{t} = \gamma_{zt-1} \mathbf{1}_{N} + \mathbf{B}_{f} \delta_{ft} + \mathbf{B}_{g} \delta_{gt} + \epsilon_{t},$$

where δ_{ft} and δ_{gt} are expost risk premia:

$$\delta_{\mathit{ft}} = \gamma_{\mathit{ft}-1} + \textit{\textbf{f}}_{\mathit{t}} - \textit{\textbf{E}}\left[\textit{\textbf{f}}_{\mathit{t}}|\mathcal{I}_{\mathit{t}-1}\right], \delta_{\mathit{gt}} = \gamma_{\mathit{gt}-1} + \textit{\textbf{g}}_{\mathit{t}} - \textit{\textbf{E}}\left[\textit{\textbf{g}}_{\mathit{t}}|\mathcal{I}_{\mathit{t}-1}\right]$$

Local Factor Strength

• For some $0 \le \rho \le 1$, the matrix \mathbf{B}_g satisfies

$$\|\mathbf{B}_g\|^2 \asymp \mathcal{O}\left(N^\rho\right), \ \|\mathbf{B}_g'\mathbf{1}_N\| \asymp o\left(N^{\frac{\rho+1}{2}}\right)$$

Local Factor Strength

• For some $0 \le \rho \le 1$, the matrix \mathbf{B}_g satisfies

$$\|\mathbf{B}_{g}\|^{2} \asymp O(N^{\rho}), \|\mathbf{B}_{g}'1_{N}\| \asymp o\left(N^{\frac{\rho+1}{2}}\right)$$

• When ho=1, $\frac{{\sf B}_g^{\prime}{\sf B}_g}{N}symp O(1)$, or ${\it m g}_t$ is strong

Local Factor Strength

• For some $0 \le \rho \le 1$, the matrix \mathbf{B}_g satisfies

$$\|\mathbf{B}_{\mathsf{g}}\|^2 symp O\left(\mathsf{N}^
ho
ight), \ \|\mathbf{B}_{\mathsf{g}}' 1_{\mathsf{N}}\| symp o\left(\mathsf{N}^{rac{
ho+1}{2}}
ight)$$

- When $\rho=1$, $\frac{\mathsf{B}_g'\mathsf{B}_g}{N} \asymp O(1)$, or g_t is strong
- ullet The difference in the convergence speed plays a key role to learn ho
 - ullet Analogy to well-spread portfolio $oldsymbol{w}$, $oldsymbol{w}' oldsymbol{1}_N = 1$ and $oldsymbol{w}' oldsymbol{w} o 0$

Outline

Overview

Economy

Conditional Asset Pricing Set-Up

Benchmark Case: No Strong Factor

Observed Strong Factors

Unobserved Strong Factors

Simulation

Empirical Application

Conclusion

Target Equation

- First, we consider the case that there is no strong factor f:
 - RGP

$$\mathbf{R}_t = \boldsymbol{lpha}_{t-1} + \mathbf{B}_g \mathbf{g}_t + \boldsymbol{\epsilon}_t$$

Target Equation

- First, we consider the case that there is no strong factor f:
 - RGP

$$\mathsf{R}_t = lpha_{t-1} + \mathsf{B}_g \mathsf{g}_t + \epsilon_t$$

 \bullet Along with the pricing, $\mu = {\it B} \times \gamma$

$$\mathsf{R}_t = \gamma_{\mathit{zt}-1} \mathbf{1}_{\mathit{N}} + \mathsf{B}_{\mathit{g}} \delta_{\mathit{gt}} + \epsilon_t,$$

which gives the target equation:

$$\overline{\mathbf{R}} = \overline{\gamma}_z \mathbf{1}_N + \mathbf{B}_g \overline{\delta}_g + \overline{\epsilon}$$

ullet Note that we are interested in whether $oldsymbol{g}$ is weak or not

FMB two-pass

• First-pass time-series OLS gives

$$\begin{split} \widehat{\boldsymbol{B}}_{g0} &= \boldsymbol{B}_g + \epsilon \mathcal{P}_g, \end{split}$$
 where $\boldsymbol{R} = \left(\boldsymbol{R}_1, \cdots, \boldsymbol{R}_T\right)', \ \boldsymbol{\mathcal{G}} = \left(\boldsymbol{g}_1, \cdots, \boldsymbol{g}_T\right)', \ \boldsymbol{\mathcal{J}}_T = \boldsymbol{I}_T - \frac{1}{T} \boldsymbol{1}_T \boldsymbol{1}_T', \mathcal{P}_g = \mathcal{J}_T \boldsymbol{\mathcal{G}} \left(\boldsymbol{\mathcal{G}}' \mathcal{J}_T \boldsymbol{\mathcal{G}}\right)^{-1} \end{split}$

FMB two-pass

• First-pass time-series OLS gives

$$\widehat{\mathbf{B}}_{\mathsf{g0}} = \mathbf{B}_{\mathsf{g}} + \epsilon \mathcal{P}_{\mathsf{g}},$$

where
$$\mathbf{R} = (\mathbf{R}_1, \cdots, \mathbf{R}_T)'$$
, $G = (\mathbf{g}_1, \cdots, \mathbf{g}_T)'$, $\mathcal{J}_T = I_T - \frac{1}{T} \mathbf{1}_T \mathbf{1}_T'$, $\mathcal{P}_g = \mathcal{J}_T G (G' \mathcal{J}_T G)^{-1}$

Second-pass cross-sectional OLS gives:

$$\begin{split} \widehat{\boldsymbol{\Gamma}}_{g0} &= \left[\begin{array}{c} \widehat{\gamma}_{0g0} \\ \widehat{\boldsymbol{\delta}}_{g0} \end{array} \right] = \left(\widehat{\boldsymbol{X}}_{g0}' \widehat{\boldsymbol{X}}_{g0} \right)^{-1} \widehat{\boldsymbol{X}}_{g0}' \overline{\boldsymbol{R}} \\ & \asymp \left[\begin{array}{c} \overline{\boldsymbol{\gamma}}_{z} \\ \boldsymbol{0}_{L} \end{array} \right] + \left[\begin{array}{c} O\left(\frac{\mathbf{B}_{g}' \mathbf{1}_{N}}{N}\right) \\ O\left(\frac{\mathbf{B}_{g}' \mathbf{B}_{g}}{N}\right) \end{array} \right] + O_{p}\left(\frac{1}{\sqrt{N}} \right), \end{split}$$

where

$$\widehat{\boldsymbol{X}}_{g0} = \left[\boldsymbol{1}_{\text{N}} \ \hat{\boldsymbol{B}}_{g0} \right]$$

FMB two-pass

• First-pass time-series OLS gives

$$\widehat{\mathbf{B}}_{\mathsf{g0}} = \mathbf{B}_{\mathsf{g}} + \epsilon \mathcal{P}_{\mathsf{g}},$$

where
$$\mathbf{R} = (\mathbf{R}_1, \cdots, \mathbf{R}_T)'$$
, $G = (\mathbf{g}_1, \cdots, \mathbf{g}_T)'$, $\mathcal{J}_T = I_T - \frac{1}{T} \mathbf{1}_T \mathbf{1}_T'$, $\mathcal{P}_g = \mathcal{J}_T G (G' \mathcal{J}_T G)^{-1}$

Second-pass cross-sectional OLS gives:

$$\begin{split} \widehat{\boldsymbol{\Gamma}}_{g0} &= \left[\begin{array}{c} \widehat{\gamma}_{z0} \\ \widehat{\boldsymbol{\delta}}_{g0} \end{array} \right] = \left(\widehat{\boldsymbol{X}}_{g0}' \widehat{\boldsymbol{X}}_{g0} \right)^{-1} \widehat{\boldsymbol{X}}_{g0}' \overline{\boldsymbol{R}} \\ & \times \left[\begin{array}{c} \overline{\gamma}_{0} \\ 0_L \end{array} \right] + \left[\begin{array}{c} O\left(\frac{\mathbf{B}_{g}' \mathbf{1}_{N}}{N}\right) \\ O\left(\frac{\mathbf{B}_{g}' \mathbf{B}_{g}}{N}\right) \end{array} \right] + O_{\rho}\left(\frac{1}{\sqrt{N}}\right), \end{split}$$

where

$$\widehat{\boldsymbol{X}}_{g0} = \left[\boldsymbol{1}_{\textit{N}} \ \hat{\boldsymbol{B}}_{g0} \right]$$

Properties of FMB 1

Theorem 1. Under some Assumptions, the two-pass estimator $\widehat{\delta}_{g0}$ in $\widehat{\Gamma}_{g0} = \left[\widehat{\gamma}_{z0} \ \widehat{\delta}'_{g0}\right]'$ behaves as follows:

$$\begin{array}{c|c} \widehat{\boldsymbol{\delta}}_{g0} \rightarrow_{p} & \sqrt{N}\widehat{\boldsymbol{\delta}}_{g0} \rightarrow_{d} \\ \hline \rho < \frac{1}{2} & \mathcal{N}\left(\mathbf{0}_{L}, \frac{\kappa_{4} + Ts_{4}}{T^{2}s_{2}^{2}} G' \mathcal{J}_{T} G\right) \\ \rho = \frac{1}{2} & \mathbf{0}_{L} & \mathcal{N}\left(\mathbf{0}_{L}, \frac{\kappa_{4} + Ts_{4}}{T^{2}s_{2}^{2}} G' \mathcal{J}_{T} G\right) + O_{p}\left(1\right) \\ \frac{1}{2} < \rho < 1 & \pm \infty \\ \rho = 1 & \widehat{\boldsymbol{\delta}}_{g0} \nrightarrow_{p} \overline{\boldsymbol{\delta}}_{g} & \pm \infty \end{array}$$

where
$$s_2 = \lim_N \frac{1}{N} \sum_i \epsilon_{it}^2$$
, $\kappa_4 = \left(\lim_N \frac{1}{N} \sum_i \epsilon_{it}^4 - 3s_4\right)$ and $s_4 = \lim_N \frac{1}{N} \sum_i E\left[\epsilon_{it}^2\right]^2$

Relation to Standard OLS

Theorem 2. Under the assumption that residuals are normal i.i.d, the OLS statistics R_{g0}^2 and t-stats and F-stat on $\hat{\delta}_{g0}$ behaves as follows:

	$R_{\mathrm{g0}}^2 ightarrow_{p}$	$t_{g0,k} \mathop{\rightarrow}_{p}$	$F_{g0} ightarrow_p$
$ \rho < \frac{1}{2} $		$\mathcal{N}\left(0,1 ight)$	$\frac{\chi_L^2}{L}$
$\rho = \frac{1}{2}$	0	$\mathcal{N}\left(0,1 ight)+\mathcal{O}_{p}\left(1 ight)$	$rac{\chi_L^2}{L} + O_p\left(1 ight)$
$\frac{1}{2} < \rho < 1$ $\rho = 1$	(0,1)	$\pm\infty$	∞

Properties of FMB 2

Theorem 3. Under some Assumptions, the two-pass estimator $\widehat{\gamma}_{z0}$ in $\widehat{\Gamma}_{g0} = \left[\widehat{\gamma}_{z0} \ \widehat{\delta}'_{g0}\right]'$ behaves as follows:

$$\begin{array}{c|c} & \widehat{\gamma}_{zo} \rightarrow_{\rho} & \sqrt{N} \left(\widehat{\gamma}_{0go} - \overline{\gamma}_{0} \right) \rightarrow_{d} \\ \hline \rho = 0 & \overline{\gamma}_{z} & \mathcal{N} \left(0, \frac{s_{2}}{T} \right) \\ 0 < \rho < 1 & \overline{\gamma}_{z} & \pm \infty \\ \rho = 1 & \widehat{\gamma}_{zo} \nrightarrow_{\rho} \overline{\gamma}_{z} & \end{array}$$

where
$$s_2 = \lim_N \frac{1}{N} \sum_i \epsilon_{it}^2$$

Properties of FMB 2

Theorem 3. Under some Assumptions, the two-pass estimator $\widehat{\gamma}_{z0}$ in $\widehat{\Gamma}_{g0} = \left[\widehat{\gamma}_{z0} \ \widehat{\delta}'_{g0}\right]'$ behaves as follows:

$$\begin{array}{c|c} & \widehat{\gamma}_{zo} \rightarrow_{\rho} & \sqrt{N} \left(\widehat{\gamma}_{0go} - \overline{\gamma}_{0} \right) \rightarrow_{d} \\ \hline \rho = 0 & \mathcal{N} \left(0, \frac{s_{2}}{T} \right) \\ 0 < \rho < 1 & \widehat{\gamma}_{z} & \pm \infty \\ \rho = 1 & \widehat{\gamma}_{zo} \nrightarrow_{\rho} \overline{\gamma}_{z} \end{array}$$

where
$$s_2 = \lim_N \frac{1}{N} \sum_i \epsilon_{it}^2$$

- Given that we do not observe $\overline{\gamma}_z$ (except R is an excess return), the asymptotic distribution is not directly useful
 - ullet This property originates from that $\widehat{\gamma}_{z0}$ contains $rac{\mathbf{1}_N' \mathbf{B}_g}{N}$
- ullet Hence, we propose a new test using $\sqrt{N} rac{\mathbf{1}_N' \mathbf{B}_{go}}{N} \overline{\delta}_g$

Weakness Test

Theorem 4. Under some Assumptions, $\sqrt{N} \frac{\mathbf{1}_N' \overline{\mathbf{B}}_{g0}}{N} \overline{\delta}_g$ behaves as follows:

$$\begin{array}{c|c} & \sqrt{N} \frac{\mathbf{1}_N' \widehat{\mathbf{B}}_{go}}{\overline{\boldsymbol{\delta}}_g} \rightarrow_d \\ \hline \rho = 0 & \mathcal{N} \left(0, s_2 \overline{\boldsymbol{\delta}}_g' \left(G' \mathcal{J}_{\mathcal{T}} G \right)^{-1} \overline{\boldsymbol{\delta}}_g \right) \\ 0 < \rho < 1 \\ \rho = 1 & \pm \infty \end{array}$$

• Furthermore, we observe all the elements for the asymptotic variance except $s_2 = \lim_N \frac{1}{N} \sum_i \epsilon_{it}^2 !$

Estimation of Asymptotic Variance

- \bullet Recall that when $\rho < \frac{1}{2}$
 - $\bullet \ \sqrt{N} \widehat{\delta}_{g0} \to_d \mathcal{N} \left(\mathbf{0}_L, \tfrac{\kappa_4 + T_{S_4}}{T^2 s_2^2} \, G' \, \mathcal{J}_T \, G \right)$

Estimation of Asymptotic Variance

- \bullet Recall that when $\rho < \frac{1}{2}$
 - $\sqrt{N}\widehat{\delta}_{g0} \rightarrow_d \mathcal{N}\left(\mathbf{0}_L, \frac{\kappa_4 + Ts_4}{T^2s_2^2} G' \mathcal{J}_T G\right)$
- We need to estimate $s_2 = \lim_N \frac{1}{N} \sum_i \epsilon_{it}^2$, $\kappa_4 = \left(\lim_N \frac{1}{N} \sum_i \epsilon_{it}^4 3s_4\right)$ and $s_4 = \lim_N \frac{1}{N} \sum_i E\left[\epsilon_{it}^2\right]^2$!
 - We can do that by exploiting estimated residuals from first-pass as well as those from second-pass

Summary of tests

• We utilize two tests: (i) coefficients on the noisy betas from FMB and (ii) average of the noisy betas

	$\sqrt{N}\widehat{\delta}_{ extsf{g0}}$	$rac{1_{N}^{\prime}\widehat{\mathbf{B}}_{g^{0}}}{\sqrt{N}}\overline{oldsymbol{\delta}}_{oldsymbol{g}}$
$\rho = 0$ $0 < \rho < \frac{1}{2}$	Null	Null
$\rho \geq \frac{1}{2}$	Alternative	Alternative

Overview

Economy

Conditional Asset Pricing Set-Up

Benchmark Case: No Strong Factor

Observed Strong Factors

Unobserved Strong Factors

Simulation

Empirical Application

Modified FMB two-pass

• First-pass time-series OLS gives

$$\widehat{\mathbf{B}}_f = \mathbf{B}_f + \epsilon \mathcal{P}_f, \widehat{\mathbf{B}}_g = \mathbf{B}_g + \epsilon \mathcal{P}_{g_\perp},$$
 where $\mathcal{P}_f = \mathcal{J}_T F \left(F' \mathcal{J}_T F\right)^{-1}, \ \mathcal{P}_{g_\perp} = \mathcal{J}_T G_\perp \left(G'_\perp \mathcal{J}_T G_\perp\right)^{-1}$

Modified FMB two-pass

First-pass time-series OLS gives

$$\widehat{\mathbf{B}}_f = \mathbf{B}_f + \epsilon \mathcal{P}_f, \widehat{\mathbf{B}}_g = \mathbf{B}_g + \epsilon \mathcal{P}_{g_{\perp}},$$

where
$$\mathcal{P}_f = \mathcal{J}_T F \left(F' \mathcal{J}_T F \right)^{-1}, \ \mathcal{P}_{g\perp} = \mathcal{J}_T G_\perp \left(G'_\perp \mathcal{J}_T G_\perp \right)^{-1}$$

• Second-pass cross-sectional OLS gives:

$$\widehat{\boldsymbol{\Gamma}}_{g} = \left[\begin{array}{c} \widehat{\gamma}_{z} \\ \widehat{\boldsymbol{\delta}}_{g} \end{array}\right] = \left(\widehat{\mathbf{X}}_{g}'\widehat{\mathbf{X}}_{g}\right)^{-1}\widehat{\mathbf{X}}_{g}'\left(\overline{\mathbf{R}} - \widehat{\mathbf{B}}_{f}\overline{\boldsymbol{\delta}}_{f}\right),$$

where

$$\widehat{\mathbf{X}}_{g} = \left[\mathbf{1}_{N} \ \widehat{\mathbf{B}}_{g} \right]$$

Modified FMB two-pass

First-pass time-series OLS gives

$$\widehat{\mathbf{B}}_{f} = \mathbf{B}_{f} + \epsilon \mathcal{P}_{f}, \widehat{\mathbf{B}}_{g} = \mathbf{B}_{g} + \epsilon \mathcal{P}_{g_{\perp}},$$

where
$$\mathcal{P}_f = \mathcal{J}_T F \left(F' \mathcal{J}_T F \right)^{-1}, \ \mathcal{P}_{g\perp} = \mathcal{J}_T G_{\perp} \left(G'_{\perp} \mathcal{J}_T G_{\perp} \right)^{-1}$$

• Second-pass cross-sectional OLS gives:

$$\widehat{\boldsymbol{\Gamma}}_{g} = \left[\begin{array}{c} \widehat{\gamma}_{z} \\ \widehat{\boldsymbol{\delta}}_{g} \end{array}\right] = \left(\widehat{\mathbf{X}}_{g}'\widehat{\mathbf{X}}_{g}\right)^{-1}\widehat{\mathbf{X}}_{g}'\left(\overline{\mathbf{R}} - \widehat{\mathbf{B}}_{f}\overline{\boldsymbol{\delta}}_{f}\right),$$

where

$$\widehat{\boldsymbol{\mathsf{X}}}_{g} = \left[\boldsymbol{1}_{\textit{N}} \ \widehat{\boldsymbol{\mathsf{B}}}_{g} \right]$$

- If we include $\widehat{\mathbf{B}}_f$ in the second pass regressor
 - It is well known that the estimator is biased due to estimation error
 - The bias-correction such as Shaken (1992) does not work (See Pesaran and Smith (2021))

Slight modification of tests

• Two tests have similar properties

	$\sqrt{N}\widehat{\delta}_{g} ightarrow_{d}$	$rac{1_N'\widehat{\mathbf{B}}_g}{\sqrt{N}}\overline{oldsymbol{\delta}}_g ightarrow_d$
$ \rho = 0 \\ \rho < \frac{1}{2} $	$\mathcal{N}\left(0_{L},V_{1} ight)$	$\mathcal{N}\left(0,V_{2}\right)$
$\rho = \frac{1}{2}$	$\mathcal{N}\left(0_{L},V_{1} ight)+O_{p}\left(1 ight)$	$\pm \infty$
$\frac{1}{2} < \rho \le 1$	$\pm \infty$	

where

$$\begin{split} V_1 &= \frac{s_4}{s_2^2} \mathbf{I}' \mathbf{I} G_\perp' G_\perp + \frac{\kappa_4}{s_2^2} G_\perp' \mathrm{diag} \left(\mathbf{I} \odot \mathbf{I} \right) G_\perp \\ \mathbf{I} &= \frac{1_T}{T} - \mathcal{P}_f \overline{\delta}_f \\ V_2 &= s_2 \overline{\delta}_g' \left(G_\perp' G_\perp \right)^{-1} \overline{\delta}_g \end{split}$$

 Furthermore, we can operationalize the tests using consistent estimators for components in the asymptotic variance

Overview

Economy

Conditional Asset Pricing Set-Up

Benchmark Case: No Strong Factor

Observed Strong Factors

Unobserved Strong Factors

Simulation

Empirical Application

PCA

• Following Zaffaroni (2023), we obtain the systematic factors up to rotation

$$F_* - F\tilde{H} \rightarrow_p 0_{T \times K}$$

Modified FMB two-pass with PCA factors

• First-pass time-series OLS gives

$$\begin{split} \widehat{\mathbf{B}}_{f_*} &= \mathbf{B}_{f_*} + \epsilon_* \mathcal{P}_{f_*}, \\ \widehat{\mathbf{B}}_{g_*} &= \mathbf{B}_{g_*} + \epsilon_* \mathcal{P}_{g_{*\perp}}, \end{split}$$
 where $\mathcal{P}_{f_*} = \mathcal{J}_T F_* (F_*' \mathcal{J}_T F_*)^{-1}, \; \mathcal{P}_{g_{*\perp}} = \mathcal{J}_T G_{*\perp} \left(G_{*\perp}' \mathcal{J}_T G_{*\perp}\right)^{-1}$

Modified FMB two-pass with PCA factors

• First-pass time-series OLS gives

$$\begin{split} \widehat{\mathbf{B}}_{f_*} &= \mathbf{B}_{f_*} + \epsilon_* \mathcal{P}_{f_*}, \\ \widehat{\mathbf{B}}_{g_*} &= \mathbf{B}_{g_*} + \epsilon_* \mathcal{P}_{g_{*\perp}}, \end{split}$$

where
$$\mathcal{P}_{f_*} = \mathcal{J}_T F_* \left(F_*' \mathcal{J}_T F_* \right)^{-1}, \ \mathcal{P}_{g_* \perp} = \mathcal{J}_T G_{* \perp} \left(G_{* \perp}' \mathcal{J}_T G_{* \perp} \right)^{-1}$$

Second-pass cross-sectional OLS gives:

$$\widehat{\Gamma}_{g_*} = \left[egin{array}{c} \widehat{\gamma}_{z_*} \ \widehat{\delta}_{g_*} \end{array}
ight] = \left(\widehat{\mathbf{X}}_{g_*}' \widehat{\mathbf{X}}_{g_*}
ight)^{-1} \widehat{\mathbf{X}}_{g_*}' \left(\overline{\mathbf{R}} - \widehat{\mathbf{B}}_{f_*} \overline{\delta}_{f_*}
ight),$$

where

$$\widehat{\mathbf{X}}_{g_*} = \left[\mathbf{1}_{N} \ \widehat{\mathbf{B}}_{g_*} \right]$$

Slight modification of tests

Two tests have similar properties

$$\begin{array}{c|c}
 & \sqrt{N}\widehat{\delta}_{g_*} \to_d & \frac{\mathbf{1}_N'\widehat{\mathbf{B}}_{g_*}}{\sqrt{N}} \overline{\delta}_{g_*} \to_d \\
\rho = 0 & \mathcal{N}\left(\mathbf{0}_L, V_{1*}\right) & \mathcal{N}\left(\mathbf{0}, V_{2*}\right) \\
\rho = \frac{1}{2} & \mathcal{N}\left(\mathbf{0}_L, V_{1*}\right) + O_p\left(1\right) & \pm \infty \\
\frac{1}{2} < \rho \le 1 & \pm \infty
\end{array}$$

where

$$\begin{split} V_{1*} &= \frac{s_4}{s_2^2} \mathbf{I'I} G_{\perp}' G_{\perp} + \frac{\kappa_4}{s_2^2} G_{\perp}' \operatorname{diag} \left(\mathbf{I} \odot \mathbf{I} \right) G_{\perp} \\ V_{2*} &= c_* + s_2 \overline{\delta}_g' \left(G_{\perp}' G_{\perp} \right)^{-1} \overline{\delta}_g \end{split}$$

 Furthermore, we can operationalize the tests using consistent estimator of the asymptotic variance

Overview

Economy

Conditional Asset Pricing Set-Up

Benchmark Case: No Strong Factor

Observed Strong Factors

Unobserved Strong Factors

Simulation

Empirical Application

Simulation Design

1. Calibration: MacKinlay and Pastor (2000)

$$R_{it} = 0 + \beta_{fi} \boldsymbol{f}_t + \beta_{gi} \boldsymbol{g}_t + e_{it}$$

2. We consider a single strong factor and a single weak factor,

N = 3000, T = 24

3. We focus on the distribution of the following two tests

	test 1: $\frac{1}{\sqrt{\widehat{AsyVar}}} \left(\sqrt{N} \widehat{\delta}_g \right)$	test 2: $\frac{1}{\sqrt{\widehat{AsyVar}}} \left(\frac{1_N' \widehat{\mathbf{B}}_g}{\sqrt{N}} \overline{\delta}_g \right)$
$\rho = 0$ $\rho < \frac{1}{2}$	$\mathcal{N}\left(0,1 ight)$	$\mathcal{N}\left(0,1 ight)$
$\rho = \frac{1}{2}$ $\frac{1}{2} < \rho \le 1$	$\mathcal{N}\left(0,1 ight)+\mathcal{O}_{p}\left(1 ight) \ \pm\infty$	$\pm\infty$

test 1: under the null $\rho < \frac{1}{2} + DGP$ with $\rho \in [0, 1]$

• 3000 repetitions

test 2: under the null $\rho = 0$ + DGP with $\rho \in [0,1]$

• 3000 repetitions

Overview

Economy

Conditional Asset Pricing Set-Up

Benchmark Case: No Strong Factor

Observed Strong Factors

Unobserved Strong Factors

Simulation

Empirical Application

- \bullet We focus on the test 2 on the null $\rho=$ 0 over 1968-2022
 - \bullet Similar message from the test 1 on the null $\rho<\frac{1}{2}$

- ullet We focus on the test 2 on the null ho=0 over 1968-2022
 - \bullet Similar message from the test 1 on the null $\rho<\frac{1}{2}$
- Are there any strong factors in FF5?
 - We test whether a factor in FF5 is weak or not
 - Strong/weak depends on industry

- We focus on the test 2 on the null $\rho = 0$ over 1968-2022
 - \bullet Similar message from the test 1 on the null $\rho < \frac{1}{2}$
- Are there any strong factors in FF5?
 - We test whether a factor in FF5 is weak or not
 - Strong/weak depends on industry
- Given a set of strong factors, we perform weak factor test on
 - Factor zoo
 - 150 factors from Feng, Giglio and Xiu (2020)
 - Likelihood of being weak on recession/post-publication

Are there any strong factors in FF5?

• HeatMap (Strong Red - ... - Weak Gray)

Null on F and G
 F
 G
 No Strong Factor
 CAPM
 SMB, HML
 FF3
 RMW, CMA

Stong/Weak of FF5 in Utility Industry

• HeatMap (Strong Red - ... - Weak Gray)

- SMB tend to be weaker in Utility industry
 - 20% of tests in Uitlity vs 0% of tests in CRSP

Stong/Weak of FF5 in Consumer Nondurables

• HeatMap (Strong Red - ... - Weak Gray)

- HML tend to be weaker in Consumer Nondurables industry
 - 27% of tests in Consumer Non-durables vs 10% of tests in CRSP

Factor Zoo with strong subset of FF5

• We select strong factors from FF5 at each local time

Business Cycle and Weakness of Factors

• Business Cycle and % of Weak factors in factor zoo

% of weak factors =
$$a - \underbrace{10.6}_{t=19.69} * NBER recession dummy + e$$

Post-publication effect

- What happens to the weakness of a given factor post publication
 - ullet We regress [the dummy on |t|>1.96 from our test] on [the post-publication dummy]

Strong Dummy using our test =
$$a + \underbrace{0.19}_{t=45.92}$$
 *Post Publication dummy+ e

- Nice contrast with the results that the average returns tend to be lower post publication (McLean and Pontiff, 2016)
 - Public information => Pervasive & Fair price

Overview

Economy

Conditional Asset Pricing Set-Up

Benchmark Case: No Strong Factor

Observed Strong Factors

Unobserved Strong Factors

Simulation

Empirical Application

- We provide a framework to test local weakness of factors using a short panel
 - Asymptotic theory
 - Simulation evidence
- Empirical findings
 - anomaly factors: tend to be stronger during recession and post publication