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Abstract

For the linear model with a single endogenous variable, Montiel Olea and Pflueger

(2013) proposed the effective F-statistic as a test for weak instruments in terms of

the Nagar bias of the two-stage least squares (2SLS) or limited information max-

imum likelihood (LIML) estimator relative to a benchmark worst-case bias. We

show that their methodology for the 2SLS estimator applies to a class of linear

generalized method of moments (GMM) estimators with an associated class of gen-

eralized effective F-statistics. The standard robust F-statistic is a member of this

class. The associated GMMf estimator, with the extension “f” for first-stage, has

the weight matrix based on the first-stage residuals. In the grouped-data IV designs

of Andrews (2018) with moderate and high levels of endogeneity and where the ro-

bust F-statistic is large but the effective F-statistic is small, the GMMf estimator

is shown to behave much better in terms of bias than the 2SLS estimator.

Keywords: Instrumental variables, weak instruments, heteroskedasticity, robust F-statistic,

GMM

JEL Codes: C12, C26



1 Introduction

It is commonplace to report the first-stage F-statistic to test for weak instruments in

linear models with a single endogenous variable, estimated by two-stage least squares

(2SLS). This follows the work of Staiger and Stock (1997) and Stock and Yogo (2005),

with the latter providing critical values for the first-stage non-robust F-statistic for null

hypotheses of weak instruments in terms of bias of the 2SLS estimator relative to that of

the OLS estimator and Wald-test size distortions. These weak-instruments critical val-

ues for the non-robust F-statistic are valid only under homoskedasticity (i.e. conditional

homoskedasticity, no serial correlation and no clustering) of both the first-stage and struc-

tural errors, and do not apply to the robust F-statistic in general designs, see Bun and

de Haan (2010), Montiel Olea and Pflueger (2013) and Andrews (2018). In particular,

Andrews (2018) found for some cross-sectional heteroskedastic designs that the standard

2SLS confidence intervals had large coverage distortions even for very large values of the

robust F-statistic. For example, he found for a high endogeneity design that “the 2SLS

confidence set has a 15% coverage distortion even when the mean of the first-stage robust

F-statistic is 100,000”, Andrews (2018, Supplementary Appendix, p 11).

For general heteroskedasticity, which we mean to cover the cases of conditional het-

eroskedasticity, serial correlation and clustering, Montiel Olea and Pflueger (2013) pro-

posed the first-stage effective F-statistic and derived critical values for the null of weak

instruments in terms of the Nagar bias of the 2SLS or LIML estimator, relative to an

estimator-specific benchmark worst-case bias. We focus here on their results for the 2SLS

estimator. As shown in Section 6.1, the effective F-statistics in the designs of Andrews

(2018) do not reject the null of weak instruments. In their review paper Andrews, Stock,

and Sun (2019, p 729) recommend “that researchers judge instrument strength based on

the effective F-statistic of Montiel Olea and Pflueger (2013)”.

The effective F-statistic is specific to the Nagar bias of the 2SLS or LIML estimator

and the main contribution of this paper is that the 2SLS related methods of Montiel

Olea and Pflueger (2013) apply to a wider class of linear generalized method of moments

(GMM) estimators resulting in a class of associated generalized effective F-statistics. The

robust F-statistic is a member of this class, and we call its associated GMM estimator

the GMMf estimator, with the extension “f” for first-stage. This is because the weight

matrix of the GMMf estimator is based on the first-stage residuals, with kz times the

robust F-statistic being the denominator of the GMMf estimator, where kz is the number
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of excluded instruments. This is similar to the relationship of the non-robust F-statistic

and the 2SLS estimator.

In practice, reported 2SLS estimation results with robust standard errors are often ac-

companied by the robust first-stage F-statistic, as most statistical packages automatically

provide these together. Whilst the robust F-statistic can be used as a test for underiden-

tification, it can not be used as a test for weak instruments related to the performance

of the 2SLS estimator. Hence, for the single-endogenous variable case, robust 2SLS es-

timation results should be accompanied by the effective F-statistic and its critical value,

as per the advice of Andrews et al. (2019). The critical value of the robust F-statistic

in relation to the test for weak instruments for the GMMf estimator could also be com-

puted. If the situation is such, like in the Andrews (2018) example, that the effective

F-statistic is small and indicates weak instruments problems for the 2SLS estimator, but

the robust F-statistic is large, rejecting the null of weak instruments for the GMMf es-

timator, then the latter could be preferred and reported.1 This is illustrated in Section

6.1, where we replicate the Monte Carlo analysis of Andrews (2018). The design is the

same as a grouped-data one, see Angrist (1991) and the discussion in Angrist and Pischke

(2009), where the instruments are mutually exclusive group membership indicators. In

the two designs considered, there is in each only one informative group, but the first-stage

heteroskedasticity is such that the 2SLS estimator does not utilize this information well,

whereas the GMMf estimator gives almost all the weight to the informative groups.

Section 2 introduces the single-endogenous variable linear model specification, main

assumptions, effective and robust F-statistics and the GMMf estimator. Section 3 then

formulates the class of generalized F-statistics for the class of linear GMM estimators and

shows that the weak-instruments testing methods developed by Montiel Olea and Pflueger

(2013) apply straightforwardly to this class. The section then provides a summary of

the Montiel Olea and Pflueger (2013) results. Section 4 shows how the general results

and specifications simplify for the robust-F statistic in relation to the Nagar bias of the

GMMf estimator. As the Nagar bias is relative to a benchmark worse-case bias, which is

estimator specific, we harmonize in Section 5 the benchmark bias and propose the use of

the worst-case OLS bias as the benchmark, which applies to the class of GMM estimators

considered.

The weak-instruments test procedures considered here only apply to linear models

1An extension of the “weakivtest” command of Pflueger and Wang (2015) in Stata, StataCorp. (2023),
called “gfweakivtest” for calculating these is available from the author upon request.
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with a single endogenous regressor. Lewis and Mertens (2022) develop an extension of

the Montiel Olea and Pflueger (2013) method to the multiple endogenous variable case

for the 2SLS estimator, but they do not consider such an extension for the wider class of

GMM estimators.

2 Model, Assumptions and F-Statistics

We have a sample {yi, xi, zi}ni=1, where zi is a kz-vector of instrumental variables. We are

interested in the effect of x on y in a linear model specification, where x is endogenously

determined. We consider the linear structural and first-stage specifications

y = xβ + u (1)

x = Zπ + v2, (2)

where y, x, u and v2 are n-vectors and Z an n× kz matrix. Other exogenous explanatory

variables, including the constant have been partialled out. The reduced-form specification

for y is then given by

y = Zπβ + v1 = Zπy + v1, (3)

where v1 = u+ βv2, and πy = πβ.

Following Montiel Olea and Pflueger (2013) (henceforth MOP), we make the following

assumptions.

Assumption 1.

1. Weak-instruments asymptotics. The vector π is local to zero,

π = πn = c/
√
n,

where c is a fixed vector c ∈ Rkz .
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2. As n→ ∞,

1

n
Z ′Z

p→ Qzz;

1

n
[v1 v2]

′ [v1 v2]
p→ Σv;

1√
n

(
Z ′v1

Z ′v2

)
d→

(
ψ1

ψ2

)
∼ N (0,W ) ,

with Qzz, Σv and W finite, positive definite matrices, and

Σv =

[
σ2
1 σ12

σ12 σ2
2

]
;

W =

[
W1 W12

W ′
12 W2

]
.

3. There exists a sequence of positive definite estimates
{
Ŵn

}
, such that Ŵn

p→ W as

n→ ∞.

In the remainder, we drop the subscript n from Ŵn for ease of exposition, and, com-

mensurate with the partitioning of W ,

Ŵ =

[
Ŵ1 Ŵ12

Ŵ ′
12 Ŵ2

]
.

The two-stage least squares (2SLS) estimator is given by

β̂2sls =
x′PZy

x′PZx
,

where PZ = Z (Z ′Z)−1 Z ′. The standard non-robust first-stage F-statistic is

F̂ =
x′PZx

kzσ̂2
v2

,

where σ̂2
v2

= v̂′2v̂2/n, v̂2 = (In − PZ)x, where In is the identity matrix of order n. Note that

we refrain throughout from finite sample degrees-of-freedom corrections in the exposition.
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It follows that we can alternatively express the 2SLS estimator as

β̂2sls =
π̂′ (V âr (π̂))−1 π̂y

π̂′ (V âr (π̂))−1 π̂
=
π̂′ (V âr (π̂))−1 π̂y

kzF̂
, (4)

where π̂ and π̂y are the OLS estimators of π and πy in the first-stage and reduced-form

models (2) and (3), and V âr (π̂) = σ̂2
v2
(Z ′Z)−1, the non-robust estimator of the variance

of π̂.

F̂ can be used as a test for underidentification and as a test for weak instruments in

terms of the bias of the 2SLS estimator relative to that of the OLS estimator of β, or

the size distortion of the Wald test for hypotheses on β, Stock and Yogo (2005). The

Stock and Yogo critical values are valid only under conditional homoskedasticity of both

u and v2, i.e. E [ui|zi] = σ2
u and E [v2i|zi] = σ2

v2
, or W = Σv ⊗Qzz, with Σv = E [viv

′
i] and

vi = (v1i, v2i)
′.

The robust F-statistic is given by

F̂r =
x′ZŴ−1

2 Z ′x

nkz
(5)

and is a standard test statistic for testing H0 : π = 0 under general forms of heteroskedas-

ticity. But F̂r cannot be used as a test for weak instruments in relation to the behaviour of

the 2SLS estimator, see the discussion in Andrews et al. (2019, pp 738-739), summarized

at the end of this section. Andrews (2018) showed in a grouped-data IV design that F̂r

could take very large values, of the order of 100, 000, whereas the 2SLS estimator was still

poorly behaved in terms of bias and Wald test size.

MOP proposed the effective F-statistic

F̂eff =
x′PZx

tr
((

1
n
Z ′Z

)−1/2
Ŵ2

(
1
n
Z ′Z

)−1/2
)

=
x′PZx

tr
(
Ŵ2

(
1
n
Z ′Z

)−1
) , (6)

and showed that this F-statistic can be used as a test for weak instruments in relation

to the Nagar (1959) bias of the 2SLS and LIML estimators, relative to a worst-case

benchmark. Andrews et al. (2019) advocate the use of F̂eff to gauge instrument strength

for the 2SLS estimator. Although this weak-instrument test is related to the bias, the

results presented in Andrews et al. (2019, Section 3) for a sample of 106 specifications from
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papers published in the American Economic Review suggest that the effective F-statistic

“may convey useful information about the instrument strength more broadly, since we see

that conventional asymptotic approximations appear reasonable in specifications where

the effective F-statistic exceeds 10.”, Andrews et al. (2019, p 739).

In the next section, we introduce a class of generalized effective F-statistics, denoted

F̂geff, associated with a class of linear Generalized Method of Moments (GMM) estimators.

We show that the weak-instrument Nagar bias results of MOP, derived for the effective

F-statistic in relation to the 2SLS estimator, applies to this general class. The robust

F-statistic is a member of this class and the associated GMM estimator, denoted GMMf,

is defined as

β̂gmmf =
x′ZŴ−1

2 Z ′y

x′ZŴ−1
2 Z ′x

, (7)

where the extension “f” is for first stage, as the weight matrix is based on the first-stage

residuals. As we will show and explain below, for the Andrews (2018) design with large

values for the robust F-statistic, but small values for the effective F-statistic, this estimator

is much better behaved in terms of bias and also inference than the 2SLS estimator.

Like the expression of the 2SLS estimator in (4), we can write the GMMf estimator as

β̂gmmf =
π̂′ (V ârr (π̂))

−1 π̂y

π̂′ (V ârr (π̂))
−1 π̂

=
π̂′ (V ârr (π̂))

−1 π̂y

kzF̂r

, (8)

where V ârr (π̂) = n (Z ′Z)−1 Ŵ2 (Z
′Z)−1 is the robust estimator of the variance of π̂.

The discussion in Andrews et al. (2019, pp 738-739) provides the intuition of why

F̂eff is an appropriate statistic for testing instrument strength when using 2SLS. As they

argue, 2SLS behaves badly when its denominator x′PZx is close to zero. F̂eff measures this

object, as x′PZx is its numerator, and gets the standard errors right on average in the case

of general heteroskedasticity, unlike the non-robust F̂ . The robust F-statistic F̂r measures

a different object, x′ZŴ−1
2 Z ′x, and, asymptotically, “while it has a noncentral chi-square

distribution, its noncentrality parameter does not correspond to the distribution of β̂2sls”,

Andrews et al. (2019, p 739). But x′ZŴ−1
2 Z ′x is the denominator of the GMMf estimator,

and so F̂r is the appropriate statistic for testing instrument strength when using β̂gmmf .
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3 The Generalized Effective F-Statistic as a Test for

Weak Instruments

Consider the class of linear Generalized Methods of Moments (GMM) estimators of β,

given by

β̂Ωn =
x′ZΩnZ

′y

x′ZΩnZ ′x
, (9)

where Ωn is a kz × kz possibly data dependent weight matrix. It satisfies the following

assumption,

Assumption 2. Under the conditions stated in Assumption 1, as n→ ∞, Ωn
p→ Ω, with

Ω a finite, full rank matrix.

Assumption 2 precludes the standard two-step GMM estimator with Ωn = Ωn

(
β̂1

)
,

e.g. in the cross-sectional setting, Ωn

(
β̂1

)
=
(
1
n

∑n
i=1 û

2
1iziz

′
i

)−1
, where û1i = yi − xiβ̂1

and β̂1 is an initial estimator, for example the 2SLS estimator. The initial estimator

is consistent under standard strong-instruments asymptotics, but it converges to a non-

degenerate random variable under weak-instruments asymptotics, see (12) below, and

hence Assumption 2 does not hold.

Let

WΩ =

[
WΩ,1 WΩ,12

W ′
Ω,12 WΩ,2

]
=
(
I2 ⊗ Ω1/2

)
W
(
I2 ⊗ Ω1/2

)
,

and

ŴΩn =
(
I2 ⊗ Ω1/2

n

)
Ŵ
(
I2 ⊗ Ω1/2

n

)
. (10)

Then consider the class of generalized effective F-statistics, given by

F̂geff (Ωn) =
x′ZΩnZ

′x

ntr
(
ŴΩn,2

) =
x′ZΩnZ

′x

ntr
(
Ω

1/2
n Ŵ2Ω

1/2
n

) =
x′ZΩnZ

′x

ntr
(
Ŵ2Ωn

) . (11)

For the 2SLS estimator we have Ωn =
(
1
n
Z ′Z

)−1
and

F̂geff

(
(Z ′Z/n)

−1
)
=

x′PZx

tr
(
Ŵ2 (Z ′Z/n)−1

) = F̂eff.

For the GMMf estimator as defined in (7), we have Ωn = Ŵ−1
2 . Therefore

F̂geff

(
Ŵ−1

2

)
=
x′ZŴ−1

2 Z ′x

nkz
= F̂r.
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This remainder of this section together with the proofs in the Appendix draw heavily

on Montiel Olea and Pflueger (2013). We show that the MOP weak-instruments testing

methodology for 2SLS applies to the class of generalized F-statistics in relation to the

Nagar bias of the linear GMM estimators. We do this by restating parts of their Lemma

1 and Theorem 1, Montiel Olea and Pflueger (2013, p 362), that directly apply to our

GMM setting.

Lemma 1. Under Assumptions 1 and 2, the following limits hold jointly as n→ ∞.

β̂Ωn − β
d→ β∗

Ω =
(
γ′Ω,2γΩ,2

)−1
γ′Ω,2 (γΩ,1 − βγΩ,2) (12)

F̂geff (Ωn)
d→ F ∗

geff (Ω) = γ′Ω,2γΩ,2/tr (WΩ,2) = γ′Ω,2γΩ,2/tr (W2Ω) , (13)

where (
γΩ,1

γΩ,2

)
∼ N

((
cΩβ

cΩ

)
,WΩ

)
,

with cΩ = Ω1/2Qzzc.

Proof. See Appendix A.3.

3.1 Nagar Bias Approximation

As v1 = u+ βv2, it follows from Assumption 1 that, as n→ ∞,

1√
n

(
Ω

1/2
n Z ′u

Ω
1/2
n Z ′v2

)
d→ N (0, S (β,WΩ)) ,

with

S (β,WΩ) =

[
S1 (β,WΩ) S12 (β,WΩ)

S12 (β,WΩ)
′ WΩ,2

]
, (14)

where

S1 (β,WΩ) = WΩ,1 − β
(
WΩ,12 +W ′

Ω,12

)
+ β2WΩ,2

S12 (β,WΩ) = WΩ,12 − βWΩ,2.

We can now state Theorem 1 of Montiel Olea and Pflueger (2013, p 262) on the Nagar

bias approximation for our general class of GMM estimators.
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Theorem 1. Nagar Bias Approximation. Let cΩ,0 := cΩ/∥cΩ∥, where ∥cΩ∥ =
√
c′ΩcΩ,

and let the concentration parameter µ2
Ω := ∥cΩ∥2/tr (WΩ,2). Define the benchmark bias as

BM (β,WΩ) :=

√
tr (S1 (β,WΩ))

tr (WΩ,2)
. (15)

The Taylor series expansion of β∗
Ω around µ−1

Ω = 0 results in the Nagar (1959) bias

approximation

E [β∗
Ω] ≈ N (β, cΩ,WΩ) =

n (β, cΩ,0,WΩ)

µ2
Ω

, (16)

with

n (β, cΩ,0,WΩ) =
tr (S12 (β,WΩ))− 2c′Ω,0S12 (β,WΩ) cΩ,0

tr (WΩ,2)
. (17)

Further,

B (WΩ) := sup
β∈R,cΩ,0∈Skz−1

(
|n (β, cΩ,0,WΩ)|
BM (β,WΩ)

)
≤ 1 (18)

where Skz−1 is the kz-dimensional unit sphere.

Proof. For the Nagar bias approximation, see Appendix A.4. For B (WΩ) ≤ 1, see Montiel

Olea and Pflueger (2013, Apendix A.3).

MOP interpret the benchmark BM(β,WΩ) as a “worst-case” bias. It is derived by

approximating the expectation of the ratio by the ratio of expectations,

E [β∗
Ω] ≈

E
[
γ′Ω,2 (γΩ,1 − βγΩ,2)

]
E
[
γ′Ω,2γΩ,2

] =
tr (S12 (β,WΩ))

tr (WΩ,2) (1 + µ2
Ω)

=
1

(1 + µ2
Ω)

tr (S12 (β,WΩ))√
tr (WΩ,2)

√
tr (S1 (β,WΩ))

√
tr (S1 (β,WΩ))

tr (WΩ,2)
.

This expected (absolute) bias expression is maximized when the concentration parameter

µ2
Ω = 0 and when the the first-stage and structural errors are perfectly correlated, and

it follows that then E [β∗
Ω] ≤

√
tr (S1 (β,WΩ)) /tr (WΩ,2), see Montiel Olea and Pflueger

(2013, pp 362-363).

The results of Lemma 1 and Theorem 1 are those in MOP for the 2SLS estimator,

with Ωn =
(
1
n
Z ′Z

)−1
and Ω = Q−1

zz . The Lemma and Theorem are replicated here to

show that their methodology applies directly to the larger class of GMM estimators (9),

under Assumption 2. We can therefore also apply the MOP procedure for testing for weak

instruments directly, as we describe next.
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3.2 Null Hypothesis of Weak Instruments and Testing Proce-

dure

The null hypothesis of weak instruments is specified as in MOP as

H0 : µ
2
Ω ∈ H (WΩ, τ) against H1 : µ

2
Ω /∈ H (WΩ, τ) ,

where

H (WΩ, τ) =

µ2
Ω ∈ R+ : sup

β∈R,cΩ,0∈Skz−1


∣∣∣N (β, µΩ

√
tr (WΩ,2)cΩ,0,WΩ

)∣∣∣
BM(β,WΩ)

 > τ

 ,

or equivalently

H (WΩ, τ) =

{
µ2
Ω ∈ R+ : µ2

Ω <
B (WΩ)

τ

}
.

Under the null hypothesis of weak instruments, the Nagar bias exceeds a fraction τ of the

benchmark for at least some value of the structural parameter β and some direction of

the first-stage parameters, cΩ,0. The parameter τ is a user specified threshold, commonly

set to τ = 0.10.

The generalization of the MOP test for weak instruments is then based on F̂geff (Ωn)

which is asymptotically distributed as γ′Ω,2γΩ,2/tr (WΩ,2), with γΩ,2 ∼ N (cΩ,WΩ,2), which

has mean 1 + µ2
Ω. It follows that we reject H0 when F̂geff (Ωn) is large. Denote by

F−1
cΩ,WΩ,2

(α) the upper α quantile of the distribution of γ′Ω,2γΩ,2/tr (WΩ,2) and let

cv (α,WΩ,2, dΩ) := sup
cΩ∈Rkz

F−1
cΩ,WΩ,2

(α) 1(
c′
Ω
cΩ

tr(WΩ,2)
<dΩ

)
 ,

where 1(A) denotes the indicator function over a set A. The null of weak instruments is

then rejected if

F̂geff (Ωn) > cv
(
α, ŴΩn,2, B

(
ŴΩn

)
/τ
)
,

which is shown in Lemma 2 of Montiel Olea and Pflueger (2013, p 363) to be pointwise

asymptotically valid,

sup
H(WΩ,τ)

lim
n→∞

P
(
F̂geff (Ωn) > cv

(
α, ŴΩn,2, B

(
ŴΩn

)
/τ
))

≤ α,
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and, provided that B
(
ŴΩn

)
is bounded in probability,

lim
µ2
Ω→∞

lim
n→∞

P
(
F̂geff (Ωn) > cv

(
α, ŴΩn,2, B

(
ŴΩn

)
/τ
))

= 1.

After obtaining B
(
ŴΩn

)
by a numerical routine, MOP show that the critical val-

ues can be obtained by Monte Carlo methods or by the Patnaik (1949) curve-fitting

methodology. The Patnaik critical value is obtained as the the upper α quantile of

χ2
k̂geff(Ωn)

(
dΩn,τ k̂geff (Ωn)

)
/k̂geff (Ωn) where χ

2
k̂geff(Ωn)

(
dΩn,τ k̂geff (Ωn)

)
denotes the noncen-

tral χ2 distribution with k̂geff(Ωn) degrees of freedom and noncentrality parameter dΩn,τ k̂geff (Ωn),

with

dΩnτ = B
(
ŴΩn

)
/τ ; (19)

k̂geff (Ωn) =

[
tr
(
ŴΩn,2

)]2
(1 + 2dΩn,τ )

tr
(
Ŵ ′

Ωn,2
ŴΩn,2

)
+ 2dΩn,τ tr

(
ŴΩn,2

)
λmax

(
ŴΩn,2

) , (20)

and where λmax

(
ŴΩn,2

)
denotes the maximum eigenvalue of ŴΩn,2.

To summarize, and following MOP, the weak-instruments test procedure related to

the Nagar approximation of the bias of the GMM estimator β̂Ωnas defined in (9), under

Assumptions 1 and 2 is as follows.

1. Compute the generalized effective F-statistic,

F̂geff (Ωn) =
x′ZΩnZ

′x

ntr
(
Ŵ2Ωn

) .
2. Obtain

B
(
ŴΩn

)
= sup

β∈R,cΩ,0∈Skz−1


∣∣∣n(β, cΩ,0, ŴΩn

)∣∣∣
BM

(
β, ŴΩn

)


by a numerical maximization routine, where ŴΩn is as defined in (10), n
(
β, cΩ,0, ŴΩn

)
and BM

(
β, ŴΩn

)
in (17) and (18) respectively, with the estimated ŴΩn replacing

WΩ.

3. Applying the Patnaik (1949) curve-fitting methodology, estimate the effective

degrees of freedom k̂geff (Ωn) as given in (20) and compute the critical value

cv
(
α, ŴΩn,2, dΩn,τ

)
for a user specified threshold value τ as the upper α quantile of
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χ2
k̂geff(Ωn)

(
dΩn,τ k̂geff (Ωn)

)
/k̂geff (Ωn), where dΩn,τ is defined in (19).

4. Reject the null of weak instruments, that the proportion of the Nagar approximation

of the bias of β̂Ωn relative to the benchmark bias is larger than τ , if F̂geff (Ωn) >

cv
(
α, ŴΩn,2, dΩn,τ

)
.

As an alternative to step 3. one can use Monte Carlo methods, see Montiel Olea and

Pflueger (2013, Section 5). As B (WΩ) ≤ 1, MOP propose a simplified asymptotically

valid but conservative test. For this simplified test procedure, step 2. is not needed,

instead replacing B
(
ŴΩn

)
by 1, and so dΩn,τ by 1/τ , in steps 3. and 4. Hence the

simplified test rejects the null hypothesis of weak instruments if

F̂geff > cv
(
α, ŴΩn,2, 1/τ

)
,

with cv
(
α, ŴΩn,2, 1/τ

)
≥ cv

(
α, ŴΩ,2, dΩn,τ

)
.

4 The Robust F-Statistic as a Test for Weak Instru-

ments

For the robust F-statistic in relation to the Nagar bias of the GMMf estimator as defined

in (7),

β̂gmmf =
x′ZŴ−1

2 Z ′y

x′ZŴ−1
2 Z ′x

,

the above expressions apply, but simplify significantly. With Ωn = Ŵ−1
2

p→ W−1
2 = Ω, it

follows that

WΩ =

[
W

−1/2
2 W1W

−1/2
2 W

−1/2
2 W12W

−1/2
2

W
−1/2
2 W ′

12W
−1/2
2 Ikz

]
.

For the Nagar bias expression, we get

Ngmmf (β, cΩ,WΩ) =
1

µ2
Ω

ngmmf (β, cΩ,WΩ) ,

with µ2
Ω = c′QzzW

−1
2 Qzzc/kz and

ngmmf (β, cΩ,0,WΩ) =
tr (S12 (β,WΩ))− 2c′Ω,0S12 (β,WΩ) cΩ,0

kz
,

12



where

S12 (β,WΩ) = WΩ,12 − βIkz .

The expression therefore simplifies to

ngmmf (β, cΩ,0,WΩ) =
1

kz

(
tr (WΩ,12)− 2c′Ω,0WΩ,12cΩ,0 − (kz − 2) β

)
.

The benchmark worst-case bias for the GMMf estimator is then given by

BM(β,WΩ) =

√
tr (S1 (β,WΩ))

kz

where

tr (S1 (β,WΩ)) = tr (WΩ,1)− 2βtr (WΩ,12) + kzβ
2.

Then

Bgmmf (WΩ) = sup
β∈R,cΩ,0∈Skz−1

(
|ngmmf (β, cΩ,0,WΩ)|

BM(β,WΩ)

)

= sup
β∈R,cΩ,0∈Skz−1

(∣∣tr (WΩ,12)− 2c′Ω,0WΩ,12cΩ,0 − (kz − 2) β
∣∣√

kz (tr (WΩ,1)− 2βtr (WΩ,12) + kzβ2)

)

As Ω = W−1
2 we have that γΩ,2 ∼ N (cΩ, Ikz) and so it follows that γ′Ω,2γΩ,2 ∼ χ2

kz
(c′ΩcΩ) =

χ2
kz
(kzµ

2
Ω). Therefore, the null of weak instruments for the GMMf estimator, specified as

H0 : µ
2
Ω ∈ Hgmmf (WΩ, τ) ,

Hgmmf (WΩ, τ) =

{
µ2
Ω ∈ R+ : µ2

Ω <
Bgmmf (WΩ)

τ

}
,

is rejected if

F̂r > cv (α, kz, dΩn,τ ) ,

with cv (α, kz, dΩn,τ ) the upper α quantile of χ2
kz
(kzdΩn) /kz, and where dΩn,τ = Bgmmf

(
ŴΩn

)
/τ

and ŴΩn =
(
I2 ⊗ Ŵ

−1/2
2

)
Ŵ
(
I2 ⊗ Ŵ

−1/2
2

)
. Relative to the general results for the gen-

eralized effective F-statistic, we see that for the GMMf estimator, Bgmmf

(
ŴΩn

)
is a

simpler function to maximize with respect to β and cΩ,0 than B
(
ŴΩn

)
from (18) when

Ωn ̸= Ŵ−1
2 . There is further no need for Monte Carlo simulations or Patnaik’s curve-

fitting methodology to compute the critical values, as F̂r follows an asymptotic scaled

noncentral chi-square distribution, with the “effective” degrees of freedom here equal to

13



kz.

To summarize the weak-instruments testing procedure in relation to the approximate

Nagar bias of β̂gmmf ,

1. Compute the robust F-statistic

F̂r =
x′ZŴ−1

2 Z ′x

nkz
.

2. Obtain

Bgmmf

(
ŴΩn

)
= sup

β∈R,cΩ,0∈Skz−1


∣∣∣tr(ŴΩn,12

)
− 2c′Ω,0ŴΩn,12cΩ,0 − (kz − 2) β

∣∣∣√
kz

(
tr
(
ŴΩn,1

)
− 2βtr

(
ŴΩn,12

)
+ kzβ2

)


by a numerical maximization routine, where ŴΩn =
(
I2 ⊗ Ŵ

−1/2
2

)
Ŵ
(
I2 ⊗ Ŵ

−1/2
2

)
.

3. Reject the null of weak instruments if F̂r > cv
(
α, ŴΩn,2, dΩn,τ

)
, where dΩn,τ =

Bgmmf

(
ŴΩn

)
/τ and where cv

(
α, ŴΩn,2, dΩn,τ

)
is the upper α quantile of

χ2
kz
(kzdΩn,τ ) /kz.

The simplified conservative test based on the fact that Bgmmf (WΩ) ≤ 1 is obtained using

the critical value cv (α, kz, 1/τ), which is simply the upper α quantile of χ2
kz
(kz/τ) /kz.

We can illustrate divergence of F̂eff and F̂r, building on examples in Montiel Olea and

Pflueger (2013) and Andrews et al. (2019). Let kz = 2, Qzz = I2 and W2 =

(
ξ21 0

0 ξ22

)
.

Then for 2SLS/F̂eff we have the concentration parameter µ2
Q−1

zz
=

c21+c22
ξ21+ξ22

, and for GMMf/F̂r

we have µ2
W−1

2

= 1
2

(
c21
ξ21

+
c22
ξ22

)
. Then, for c21 > 0 and c22 > 0, if for example ξ21 → 0 and

ξ22 > c21 + c22 then µ2
Q−1

zz
→ c21+c22

ξ22
< 1 and µ2

W−1
2

→ ∞. In this situation, there is no

weak-instruments problem for the GMMf estimator, but there is for the 2SLS estimator.

A design where such heteroskedasticity can be generated is the grouped-data IV one, and

is the one used in Andrews (2018). We consider this design in Section 6, where we further

show how the GMMf estimator utilizes the information in such designs better than the

2SLS estimator.2

2 Note that for this example it is the case that if
(
ξ21 > ξ22

)
and

(
c21
ξ21

>
c22
ξ22

)
then µ2

Q−1
zz

> µ2
W−1

2

.
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4.1 Efficiency

Under standard strong-instruments asymptotics, the 2SLS estimator is consistent and

asymptotically efficient if E [u2i ziz
′
i] = σ2

uQzz, and for the GMMf estimator this is the case

if E
[
v22,iziz

′
i

]
= δE [u2i ziz

′
i], for some constant δ > 0. However, under the weak-instruments

asymptotics setting of Assumption 1, it follows from the expression of the random variable

β∗
Ω in (12) that the GMM estimators are biased and inconsistent. Therefore, the weak-

instruments test is based on the relative Nagar bias, and GMM estimators can then be

ranked on their bias performance, not on their relative efficiency. As the MOP benchmark

bias is estimator specific, we first propose to harmonize the bias by using the worst-case

OLS bias as a benchmark.

5 Harmonizing the Benchmark Bias

The benchmark bias BM (β,WΩ) as defined in (15) is estimator/F-statistic specific and

is derived using an ad hoc approximation of E (β∗
Ω). This makes a comparison of weak-

instrument test results between generalized F-statistics for different GMM estimators

difficult, as the critical values of the test are based on the maximum of the Nagar bias

approximation relative to the estimator-specific benchmark. A solution is to harmonize

the benchmark bias, such that it is the same for each estimator/F-statistic. For the

homoskedastic case, the bias related weak-instruments critical values of Stock and Yogo

(2005) for the nonrobust F-statistic are in terms of the relative bias, that of the 2SLS

estimator relative to that of the OLS estimator. We propose here to harmonize the

benchmark worst-case bias and to replace it with the worst-case bias of the OLS estimator.

The probability limit of the worst-case weak-instrument OLS (absolute) bias, under

Assumption 1 is given by

β̂LS − β =
x′u

x′x

=
c′Z ′u/

√
n+ v′2u

c′Z ′Zc/n+ 2c′Z ′v2/
√
n+ v′2v2

p→ σuv2 (β,Σv)

σ2
2

= ρuv2
σu (β,Σv)

σ2

≤ σu (β,Σv)

σ2
=

√
σ2
1 − 2βσ12 + β2σ2

2

σ2
2

= BMLS (β,Σv) .

Note that this benchmark bias is only a function of β and Σv, the marginal variance
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of (v1 v2)
′, applies to all forms of general heteroskedasticity and does not depend on

homoskedasticity assumptions. However, it can be seen to be a valid benchmark for all

GMM estimators defined in (9) by considering the worst-case benchmark bias BM (β,WΩ)

under the maintained assumption of homoskedasticity. In that case we haveW = Σv⊗Qzz

and thus WΩ = Σv ⊗ Ω−1/2QzzΩ
−1/2. Then it follows that

BM (β,WΩ) =

√
(σ2

1 − 2βσ12 + β2σ2
2) tr (QzzΩ−1)

σ2
2tr (QzzΩ−1)

=

√
σ2
1 − 2βσ12 + β2σ2

2

σ2
2

= BMLS (β,Σv) .

We have that

lim
β→±∞

|n (β, cΩ,0,WΩ)|
BM(β,WΩ)

= lim
β→±∞

|n (β, cΩ,0,WΩ)|
BMLS (β,Σv)

= 1− 2λmin (WΩ,2)

tr (WΩ,2)
,

where λmin (WΩ,2) is the minimum eigenvalue ofWΩ,2. It follows further from Assumptions

1 and 2 that

0 <
BM(β,WΩ)

BMLS (β,Σv)
< C

∀β ∈ R, for some finite C > 1. Note that the positive definiteness, or full rank assumption

of Σv is important, as otherwise BMLS (β,Σv) would be zero for some value of β. Therefore

the case of ρ212 = 1 is excluded. It then follows from Theorem 1 that,

BLS (WΩ,Σv) := sup
β∈R,cΩ,0∈Skz−1

(
|n (β, cΩ,0,WΩ)|
BMLS (β,Σv)

)
<∞

and the test procedures described in Section 3 apply, replacing B (WΩ) by BLS (WΩ,Σv)

from step 2 onwards in the summaries of the testing procedures. The null of weak instru-

ments is then rejected if

F̂geff (Ωn) > cvLS
(
α, ŴΩn,2, d

LS
Ωn,τ

)
,

where dLSΩn,τ
= BLS

(
ŴΩn , Σ̂v

)
/τ .

The interpretation of the weak-instruments null hypothesis H0 : µ2
Ω ∈ H (WΩ,Σv, τ),

where

H (WΩ,Σv, τ) =

µ2
Ω ∈ R+ : sup

β∈R,cΩ,0∈Skz−1


∣∣∣N (β, µΩ

√
tr (WΩ,2)cΩ,0,WΩ

)∣∣∣
BMLS (β,Σv)

 > τ

 ,

16



is then that the Nagar bias exceeds a fraction τ of the benchmark maximum OLS bias

for at least some value of the structural parameter β and some direction of the first-

stage coefficients. Whilst this is not the same as the asymptotic relative bias results of

Stock and Yogo (2005), it is more aligned with it. It makes the interpretation of the null

hypothesis and hence that of its rejection the same for different GMM estimators and their

associated generalized effective F-statistics and is not based on an ad hoc approximation.

In the remainder, this benchmark is used. Note that the simplified conservative test

procedure does not apply here, as it is not the case that BLS (WΩ,Σv) ≤ 1 in general.

6 Grouped-Data IV Model

We now consider the heteroskedastic model designs from Andrews (2018). In these de-

signs, very large values of the robust F-statistic are accompanied by a poor performance of

the 2SLS estimator, where Andrews (2018) focused on coverage distortions of confidence

sets. We find that in these designs the effective F-statistic is indeed small, indicating

a weak-instrument problem for 2SLS, but large values of the robust F-statistic indicate

there is not a weak-instrument problem for the GMMf estimator.

Following the example of divergence between F̂eff and F̂r given at at the end of Section

4, the design in Andrews (2018, Supplementary Appendix C.3) is that of a grouped-data

IV setup,

yi = xiβ + ui

xi = z′iπ + v2,i,

for i = 1, ..., n, where the G-vector zi ∈ {e1, ..., eG}, with eg a G-vector with gth entry

equal to 1 and zeros everywhere else, for g = 1, . . . , G.

The variance-covariance structure for the errors is modeled fully flexibly by group, and

specified as ((
ui

v2,i

)
|zi = eg

)
∼ (0,Σg) ,

Σg =

[
σ2
u,g σuv2,g

σuv2,g σ2
v2,g

]
. (21)
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At the group level, we therefore have for group member j in group g

yjg = xjgβ + ujg (22)

xjg = πg + v2,jg (23)(
ujg

v2,jg

)
∼ (0,Σg) ,

for j = 1, ..., ng and g = 1, ..., G, with ng the number of observations in group g,
∑G

g=1 ng =

n, see also Bekker and Ploeg (2005). We assume that limn→∞
ng

n
= fg, with 0 < fg < 1.

The OLS estimator of πg is given by π̂g = xg =
1
ng

∑ns

j=1 xjg and V ar (π̂g) = σ2
v2,g

/ng.

The OLS residual is v̂2,jg = xjg − xg and the estimator for the variance is given by

V âr (π̂g) = σ̂2
v2,g

/ng, where σ̂
2
v,g =

1
ng

∑ng

j=1 v̂
2
2,jg. Let Z be the n×Gmatrix of instruments.

For the vector π the OLS estimator is given by

π̂ = (Z ′Z)
−1
Z ′x = (x1, x2, ..., xG)

′ .

Let

Ŵ2 =
1

n

n∑
i=1

v̂22,iziz
′
i (24)

= Diag
(
ngσ̂

2
v2,g

)
/n,

where Diag (qg) is a diagonal matrix with gth diagonal element qg. Then the robust

estimator of V ar (π̂) is given by

V ârr (π̂) = (Z ′Z)
−1
nŴ2 (Z

′Z)
−1

= Diag
(
σ̂2
v2,g

/ng

)
.

The non-robust variance estimator is

V âr (π̂) =

(
1

n

n∑
i=1

v̂22,i

)
(Z ′Z)

−1

=

(
G∑

g=1

ng

n
σ̂2
v2,g

)
Diag

(
1

ng

)
.
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The group- (or instrument-) specific IV estimators for β are given by

β̂g =
z′gy

z′gx
=
yg
xg
, (25)

with yg =
1
ng

∑ng

j=1 yjg, and the 2SLS estimator for β is

β̂2sls = (x′PZx)
−1
x′PZy

=

∑G
g=1 ngxgyg∑G
g=1 ngx

2
g

=

∑G
g=1 ngx

2
g

(
yg/xg

)∑G
g=1 ngx

2
g

=
G∑

g=1

ŵ2sls,gβ̂g,

the standard result that β̂2sls is a linear combination of the instrument specific IV esti-

mators, (see e.g. Windmeijer, 2019). The weights are given by

ŵ2sls,g =
ngx

2
g∑G

s=1 nsx
2
s

≥ 0 (26)

and hence the 2SLS estimator is here a weighted average of the group specific estimators.

For the group specific estimates, the first-stage F-statistics are given by

F̂g =
π̂2
g

V âr (π̂g)
=
ngx

2
g

σ̂2
v2,g

(27)

for g = 1, ..., G. As the errors (ujg, v2,jg) are iid within groups, the standard weak-

instruments results of Staiger and Stock (1997) and Stock and Yogo (2005) apply to each

group-specific IV estimator β̂g. As these are just-identified models, we can relate the

values of the F-statistics to Wald-test size distortions.

From (26) and (27) it follows that the weights for the 2SLS estimator are related to

the individual F-statistics as follows

ŵ2sls,g =
ngx

2
g∑G

s=1 nsx
2
s

=
σ̂2
v2,g

F̂g∑G
s=1 σ̂

2
v2,s
F̂s

. (28)

Under first-stage homoskedasticity, σ2
v2,g

= σ2
v2,s

, for g, s = 1, . . . , G, then σ̂2
v2,s

≈ σ̂2
v2,s

for

all g, s, and hence F̂ ≈ 1
G

∑G
g=1 F̂g. Then the weights are given by ŵ2sls,g ≈ F̂g∑G

s=1 F̂πg

≈ F̂g

GF̂
,

so we see that the groups with the larger individual F-statistics get the larger weights in

the 2SLS estimator under homoskedasticity.
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This is not necessarily the case under heteroskedasticity. For equal sized groups with

approximately the same value of the signal π̂2
g , F̂g is larger for groups with, and because

of, the smaller values of σ̂2
v2,g

. The 2SLS weights ignore this information and give in this

example approximately equal weights to groups with similar values of π̂2
g . In practice it

could then be the case that a small variance, large F̂g group could receive a small weight

in the 2SLS estimator. As shown in the Monte Carlo exercises below, this is exactly what

happens in the design of Andrews (2018). There is one group with a large individual

F-statistic. However, this group has a very small population variance σ2
v2,g

resulting in a

relatively small weight in the 2SLS estimator and a poor performance of the estimator in

terms of bias and size of the Wald-test.

The non-robust F-statistic for π is given by

F̂ =
1

G
π̂′ (V âr (π̂))−1 π̂

=
1

G

∑G
g=1 ngx

2
g(∑G

g=1
ng

n
σ̂2
v2,g

) =
1

G

G∑
g=1

σ̂2
v2,g(∑G

s=1
ns

n
σ̂2
v2,s

) F̂g.

The effective F-statistic is given by

F̂eff =
G∑

g=1

σ̂2
v2,g(∑G

s=1 σ̂
2
v2,s

) F̂g,

and so F̂eff = F̂ if groups sizes are equal, ng = n/G for g = 1, . . . , G. In the designs of

Andrews (2018) group sizes are equal in expectation. Both these F-statistics will therefore

correctly reflect weak-instruments problems for the 2SLS estimator in these designs.

The robust first-stage F-statistic is given by

F̂r =
1

G
π̂′ (V ârr (π̂))

−1 π̂

=
1

G

G∑
g=1

ngx
2
g

σ̂2
v2,g

=
1

G

G∑
g=1

F̂g.

It is therefore clear, that if F̂r is large, then at least one of the F̂g is large. For the GMMf
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estimator we have that

β̂gmmf =

∑G
g=1 ngxgyg/σ̂

2
v2,g∑G

g=1 ngx
2
g/σ̂

2
v2,g

=
G∑

g=1

ngx
2
g/σ̂

2
v2,g∑G

s=1 nsx
2
s/σ̂

2
v2,s

β̂g (29)

=
G∑

g=1

ŵgmmf,gβ̂g,

with

ŵgmmf,g =
F̂g∑G
s=1 F̂s

=
F̂g

GF̂r

,

hence the groups with the larger F-statistics get the larger weights, independent of the

values of σ̂2
v2,s

, mimicking the 2SLS weights under homoskedasticity of the first-stage

errors.

6.1 Some Monte Carlo Results

We consider here the two heteroskedastic designs of Andrews (2018) with G = 10 groups,

β = 0 and one with moderate and one with high endogeneity. Tables 9 and 12 in the

Supplementary Appendix C.3 of Andrews (2018) present the values of the conditional

group-specific variance matrices Σg as defined in (21) and the first-stage parameters,

denoted π0g, for g = 1, . . . , 10. The correlation between ui and v2i is −0.59 in the moderate

and we set it equal to 0.99 in the high endogeneity case. We multiply the first-stage

parameters π0 by 0.040 and 0.026, such that the value of the robust F̂r is just over 80 on

average for 10, 000 replications and sample size n = 10, 000 in both designs. The group

sizes are equal in expectation with P (zi = eg) = 0.1 for all g. The first two rows in each

panel of Table 3 present the values of πg and σ2
v2,g

for g = 1, . . . , 10.

Tables 1 and 2 presents the weak-instruments test results and estimation results. We

use and present the critical values based on the OLS bias benchmark, BMLS

(
ŴΩn , Σ̂v

)
,

and set τ = 0.10. The means of the effective F-statistics are small in both designs, and

the F̂eff-based test does not reject the null of weak instruments for the 2SLS estimator

in any of the replications. This is reflected in the bias of the 2SLS estimator and the

2SLS-based Wald test for H0 : β = 0 overrejects. The means and standard deviations

of the non-robust F-statistics are virtually the same as those of the effective F-statistics,

confirming the results derived in Section 6. The means of the robust F-statistics are

large, and the F̂r-based test for weak instruments rejects the null of weak instruments in

all replications. The GMMf estimator is virtually unbiased and the GMMf-based Wald
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Table 1: Weak-instruments test results
F̂ F̂eff cvLSeff RF F̂r cvLSr RF

Mod Endog 1.411 1.411 17.09 0 80.23 13.45 1
(0.738) (0.739) (0.110) (7.025) (0.290)

High Endog 0.993 0.993 17.12 0 80.12 12.26 1
(0.599) (0.599) (0.113) (7.081) (0.010)

Notes: Means and (st.dev.), of 10, 000 replications. n = 10, 000, τ = 0.1, Rej.freq. (RF) at 5%
level.

Table 2: Estimation results
β̂ols β̂2sls β̂gmmf Wald2sls Waldgmmf

Mod Endog -0.608 -0.424 -0.001 0.534 0.049
(0.011) (0.257) (0.563)

High Endog 0.747 0.742 0.007 0.999 0.065
(0.001) (0.057) (0.029)

Notes: Bias and (st.dev.). Rej.freq. of robust Wald tests at 5% level.

test has good size properties. The means of the critical values for F̂eff are 17.09 and 17.12,

whereas those for F̂r are 13.45 in the moderate and 12.26 in the high endogeneity design.

In comparison, the 10% relative bias Stock and Yogo critical value for the homoskedastic

case is here given by 11.46, see Skeels and Windmeijer (2018).

The details as given in Table 3 below make clear what is happening. It reports the

population values of πg, σ
2
v2,g

, µ2
n,g = 1000π2

g/σ
2
v2,g

and the mean values of F̂g, ŵ2sls,g and

ŵgmmf,g = F̂g/
∑G

s=1 F̂g. For the moderate endogeneity design identification in the first

group is strong, with an average value of F̂1 = 789.5. Identification in all other 9 groups

is very weak, with the largest average value for F̂5 = 2.23. The signal for group 1, π2
1, is

somewhat larger than those for the other groups, but the population value µ2
n,1 is large

mainly due to the relatively very small value of σ2
v2,1

. As detailed in (28), the 2SLS weights

ignore the σ2
v2,1

part of the information in group 1 which leads to the low average value

of ŵ2sls,1 = 0.127. This shows that the 2SLS estimator does not utilize the identification

strength of the first group well, with some larger weights given to higher variance, but

lower concentration-parameter groups.

Table 3 further shows that for the GMMf estimator almost all weight is given to the

first group, with the average of ŵgmmf,1 equal to 0.984, resulting in the good behaviour

of the GMMf estimator in terms of bias and Wald test size. In this case the standard

deviation of the GMMf estimator is quite large relative to that of the 2SLS estimator.

This is driven by the value of σ2
u,1, which in this design is equal to 1.10, much larger than

σ2
v2,1

. Reducing the value of σ2
u,1 (and the value for σuv2,1 accordingly to keep the same
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Table 3: Group information and estimator weights
g 1 2 3 4 5 6 7 8 9 10

ME πg 0.058 -0.023 0.049 0.015 0.022 0.008 -0.017 0.011 -0.036 -0.040
σ2
v2,g 0.004 2.789 4.264 0.779 0.395 7.026 1.226 0.308 1.709 6.099

µ2
n,g 785.7 0.184 0.556 0.284 1.190 0.009 0.236 0.387 0.770 0.266

F̂g 789.5 1.170 1.564 1.279 2.225 0.997 1.203 1.372 1.798 1.246

ŵ2sls,g 0.126 0.098 0.178 0.035 0.031 0.180 0.049 0.015 0.096 0.192
ŵgmmf,g 0.984 0.002 0.002 0.002 0.003 0.001 0.002 0.002 0.002 0.002

HE 100 · πg -0.021 0.095 -0.484 -0.069 0.159 -0.028 0.101 -0.418 0.450 -0.546
σ2
v2,g 1.600 0.478 2.975 1.142 0.174 0.145 4.658 1.963 2.990 0.38·a

µ2
n,g 0.28·a 0.002 0.008 4.2·a 0.015 5.6·a 2.2·a 0.009 0.007 789.9

F̂g 0.998 1.017 0.979 1.010 1.034 0.984 0.977 1.031 0.997 792.2

ŵ2sls,g 0.111 0.040 0.177 0.085 0.016 0.013 0.242 0.134 0.181 0.003
ŵgmmf,g 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.989

Notes: µ2
n,g = 1000π2

g/σ
2
v2,g

; a = 10−4

correlation structure within group 1), will reduce the standard deviation of the GMMf

estimator.

The pattern of group information for the high endogeneity case is similar to that of the

moderate endogeneity case, with one informative group, g = 10, with an average value of

F̂10 = 792.2. However, the variance σ2
v2,10

is now so small in relative terms, that the 2SLS

weight for group 10 has an average value of only ŵ2sls,10 = 0.003. The GMMf estimator

corrects this, with the average value of ŵgmmf,10 = 0.989. The standard deviation of the

GMMf estimates, 0.029, is in this case smaller than that of the 2SLS estimates, 0.057.

The left panels of Figure 1 displays the relative bias of the 2SLS and GMMf estima-

tors, relative to that of the OLS estimator, as a function of the mean values of the robust

F-statistic F̂r, together with the rejection frequency of the F̂r-based test for weak instru-

ments, using the critical values from the least-squares benchmark bias. We present the

relative bias here to be in line with the homoskedastic case as presented below. Different

values of F̂r are obtained by different values of the scalar e when setting the first-stage

parameters π = eπ0. The relative bias of the GMMf estimator decreases quite rapidly

with increasing values of F̂r. For the moderate endogeneity case, the test has a rejection

frequency of 5% at a mean F̂r of 10.03, with the relative bias of the GMMf estimator

at that point equal to 0.092. As shown in the top right-hand panel of Figure 1, the

GMMf estimator based Wald test is well behaved in terms of size, with hardly any size

distortion for mean values of F̂r larger than 5. The GMMf relative bias picture for the
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Figure 1: Heteroskedastic design. Top: Moderate Endogeneity. Bottom: High Endo-
geneity. Left: Bias of 2SLS and GMMf estimators relative to OLS bias, and F̂r-based
weak-instrument test rejection frequencies, α = 0.05, τ = 0.10, least-squares benchmark
bias. The “0.05” line refers to the rej. freq. Right: Rejection frequencies of robust Wald
tests, α = 0.05.

high-endogeneity case is very similar to that of the moderate-endogeneity case. Here the

F̂r based test for weak instruments has a rejection frequency of 5% at a mean F̂r of 8.98,

with the relative bias there being 0.091. As for the homoskedastic case, where the Wald

test size deviation from nominal size is larger for larger values of ρ2uv2 , the GMMf Wald

test has a worse size performance in the high-endogeneity design, and has a 10% rejection

frequency at a mean F̂r of 26.64. This would imply a critical value at the 5% level of

around 32, which compares to the Stock and Yogo weak-instruments critical value of 38.54

for a Wald test size of 10% at the 5% nominal level.
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6.1.1 Homoskedastic Design

We next consider the homoskedastic design for the moderate endogeneity case with Σuv2 =

1
G

∑G
g=1Σuv2,g, resulting in

Σuv2 =

[
2.57 −1.50

−1.50 2.46

]
,

with ρuv2 = −0.59, as above. We consider smaller sample sizes of n = 250 and n = 500,

or group sizes of 25 or 50 on average, to compare the weak-instrument finite sample

behaviour of the GMMf estimator to that of the 2SLS estimator. In particular, the noise

induced by estimation of W−1
2 may adversely affect the GMMf estimator.

The results in Figure 2 shows that for this design and sample sizes the relative bi-

ases and Wald rejection frequencies are virtually identical for the two estimators, with

the standard deviations of the GMMf estimates slightly larger than those of the 2SLS

estimator, as expected. The rejection frequencies of the F̂r-based test are here closer to

those of the standard Stock and Yogo F̂ -based test compared to the rejection frequencies

of the F̂eff-based test, with the latter test more conservative.

6.2 Relative Values of F̂eff and F̂r and Biases of 2SLS and GMMf

Estimators

From the results on the relative magnitude of the concentration parameters as discussed

in Section 4 and footnote 2, we can change the parameter values in the grouped-data

design of Section 6.1 such that F̂eff > F̂r in expectation. The design is described in

Appendix A.1 where Table A1 presents Monte Carlo results for the weak-instruments

tests and estimation results. The null of weak instruments is rejected in all replications

for the 2SLS estimator, whereas it is not rejected in virtually all replications for the GMMf

estimator and the bias of the 2SLS estimator is smaller than that of the GMMf estimator.

As per the results of Tables 1 and 2, a large value of F̂r ≫ cvLSr indicates that the

GMMf estimator is quite well behaved in terms of bias. But when that is the case, a value

of F̂eff < cvLSeff , and so not rejecting the null of weak instruments for the 2SLS estimator,

does not necessarily imply that the 2SLS bias is larger than the GMMf bias (and vice

versa). Consider an example with fixed group sizes ng

n
= fg, 0 < fg < 1, for g = 1, . . . , G.
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Figure 2: Homoskedastic design, moderate endogeneity. Top: n = 250. Bottom: n = 500.
Left: Relative bias and weak-instrument tests rejection frequencies. Right: Wald test
rejection frequencies and standard deviations of 2SLS and GMMf estimates.

Then for 2SLS,

µ2
2sls := µ2

Q−1
zz

=

∑G
g=1 c

2
gfg∑G

g=1 σ
2
v2,g

,

and for GMMf,

µ2
gmmf := µ2

W−1
2

=
1

G

G∑
g=1

c2gfg/σ
2
v2,g

.

Then the Nagar bias (16) for the 2SLS and GMMf estimators are respectively given by

N2sls =

∑G
g=1

(
1− 2

c2gfg∑G
s=1 c

2
sfs

)
σuv2,g∑G

g=1 c
2
gfg

Ngmmf =

∑G
g=1

(
1− 2

c2gfg/σ
2
v2,g∑G

s=1 c
2
sfs/σ

2
v2,s

)
σuv2,g

σ2
v2,g∑G

g=1 c
2
gfg/σ

2
v2,g

.
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One can find therefore parameter values in this design, such that N2sls < Ngmmf whereas

µ2sls < µgmmf . It follows for example, that if c2gfg = cf , cf > 0 for g = 1, . . . , G, then

N2sls = 0 if
∑G

g=1 σuv2,g = 0, irrespective of the value of µ2sls. In that case, there is no

overall endogeneity, as ρuv2 = 0. (Conversely, in the constant c2gfg case, Ngmmf = 0 if∑G
g=1

σuv2,g

σ4
v2,g

= 0 irrespective of the value of µgmmf ).

As another example, consider again G = 10, with fg = 0.1 for g = 1, . . . , 10, with

parameter values cg and group variance matrices Σuv2,g given in Appendix A.2. The

resulting overall endogeneity is a moderate ρuv2 = 0.244. We get a value of µ2
gmmf = 43.09

and a smaller value of µ2
2sls = 8.45, whereas the Nagar bias approximations are virtually

identical at N2sls = 0.022 < Ngmmf = 0.023. Table A3 in Appendix A.2 presents some

Monte Carlo results for this design, for n = 10, 000, confirming the theoretical results.

We find there that the null of weak instruments is not rejected in virtually all replications

for the 2SLS estimator, whereas it is rejected in all replications for the GMMf estimator.

But the Monte Carlo bias of the 2SLS estimator, 0.022, is slightly smaller than that of

the of the GMMf estimator, 0.024, as indicated by the Nagar bias approximations.

From these latter examples it is clear that a situation with F̂r > cvLSr and F̂eff <

cvLSeff does not necessarily imply that the 2SLS estimator is more biased than the GMMf

estimator (and vice versa). However, randomly sampling values cg and group variance

matrices Σuv2,g, for g = 1, . . . , 10, and collecting the first 1000 of those sets where |ρuv2| >
0.2, 5 < µ2sls < 10 and 40 < µgmmf < 45, we find for 989, or 99% of those, the Nagar bias

of the 2SLS estimator to be larger than that of the GMMf estimator.

7 Considerations for Practice

The Andrews (2018) grouped-data IV designs are quite extreme in the variation of σ2
v2,g

,

leading to the large differences between the values of F̂eff and F̂r and between the perfor-

mances of the 2SLS and GMMf estimators. Note that these results carry over to a model

with a constant and a full set of mutually exclusive binary indicators as instruments, when

the variances σ2
v2,g

for at least two groups are relatively small and their πg coefficients are

different. This is the case if we for example change σ2
v2,2

in the moderate endogeneity

design above to be equal to the small σ2
v2,1

. An example where this could be relevant

is the judge fixed effects design as pioneered by Kling (2006). There are many papers

using judge effects as instrumental variables, Table 1 in Frandsen et al. (2023) presents

a subset of these. Stevenson (2018) studied the effect of pretrial detention on conviction,
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using judge indicators as instruments, as cases are randomly assigned to judges. As the

treatment is here binary, with variance π (1− π), a very lenient (small π) and a very strict

judge (large π) in terms of sending defendants to pretrial detention have small values of

σ2
v2
, but clearly different values of π. Unlike the 2SLS estimator, the GMMf estimator

takes the differential strengths of the instruments due to the different values of σ2
v2

into

account, giving more weight to very lenient and very strict judges.3

For any single-endogenous variable application, most packages will compute the robust

F-statistic for estimation results with robust standard errors. For example, in Stata, Stata-

Corp. (2023), the robust first-stage F-statistic is provided with the output of “ivregress” or

“ivreg2”, Baum, Schaffer, and Stillman (2010), whereas “weakivtest”, Pflueger and Wang

(2015), calculates the effective F-statistic and critical values for the weak-instruments

test. An extended version of the latter, called “gfweakivtest”4 also calculates the robust

F-statistic and its weak-instruments critical values. It further includes the critical values

based on the least-squares benchmark bias for both F̂r and F̂eff, and presents the estima-

tion results for the GMMf estimator. As per the advice of Andrews et al. (2019), 2SLS

estimation results with robust standard errors should be accompanied by the effective

F-statistic and its critical value. If the situation is as in the Andrews (2018) examples

above, then the GMMf estimator could be the preferred estimator.

Windmeijer (2023) presents such comparisons for a study with a set of mutually exclu-

sive binary indicators as instruments, and one of the American Economic Review studies

as considered in the review paper by Andrews et al. (2019). This is from Stephens and

Yang (2014) who study the effect of schooling on wages, using data from the 1960-1980

US Censuses of Population. The endogenous variable is years of schooling for individual

i, born in state s in year t, and the instruments are three indicator variables RS7, RS8

and RS9, corresponding to being required to attend seven, eight or nine or more years

of schooling, respectively. All specifications include state-of-birth and year-of-birth fixed

effects, and the computed standard errors are robust to heteroskedasticity and clustering

at the state-of-birth/year-of-birth cell. Stephens and Yang (2014) report the robust first-

stage F-statistics F̂r in their Table 1, which presents eight sets of estimates of the returns

of schooling on log weekly wages for four different samples and two different model specifi-

cations for each sample. None of the F̂r statistics indicate an underidentification problem.

But no effective F-statistics were reported. As the estimator used is the 2SLS estimator, it

3I would like to thank an anonymous referee for this example.
4Available from the author upon request.
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is therefore important to consider whether the F̂r statistic misrepresents weak-instruments

bias of the 2SLS estimator, in the sense that a large value of F̂r may not be an indicator

of a good performance of the 2SLS estimator. Table 3 in Windmeijer (2023) shows that

this is not the case here. The F̂eff and F̂r based tests for weak instruments both reject

and don’t reject the null of weak instruments for the same specifications, their values are

similar in magnitude and the 2SLS and GMMf estimation results are virtually identical

when the null of weak instruments is rejected and the Hansen J-test does not indicate

misspecification. This is a reassuring result for the 2SLS estimates that were accompanied

by larger values of F̂r, with the only two cases where the null of weak instruments was

not rejected had values of F̂r equal to 8.22 and 6.34 with those of F̂eff equal to 8.11 and

6.13 respectively.

8 Concluding Remarks

For models with a single endogenous explanatory variable, we have introduced a class of

generalized effective F-statistics as defined in (11) in relation to a class of linear GMM

estimators given in (9) and have shown that the Montiel Olea and Pflueger (2013) weak-

instruments testing procedure that they established for the effective F-statistic in relation

to the Nagar bias of the 2SLS estimator applies to this extended class. In particular, the

standard robust F-statistic is a member of this class and is associated with the behaviour

in terms of Nagar bias of the GMMf estimator, which has its weight matrix based on

the first-stage residuals. We then focused on a comparison of the effective F-statistic

and the robust F-statistic and the associated weak-instrument behaviours of the 2SLS

and GMMf estimators. In particular, we have shown that and explained why the GMMf

estimator’s performance is much better in terms of bias than that of the 2SLS estimator

in the grouped-data designs of Andrews (2018), where the robust F-statistic can take very

large values, but the effective F-statistic is very small. One should therefore in general

not use the robust F-statistic to gauge instrument strength in relation to the performance

of the 2SLS estimator, Andrews et al. (2019, pp 738-739), but as shown here, it can be

used as a weak-instruments test in relation to the Nagar bias of the GMMf estimator. In

practice, therefore, both the effective F-statistic and robust F-statistic should be reported,

together with their critical values, and the GMMf estimator could be considered in cases

where there is a clear discrepancy with a large value for the robust F-statistic rejecting

the null of weak instruments, and when the effective F-statistic is small and does not
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reject its null of weak instruments.

We have not focused here on the wider applicability of the class of generalized effective

F-statistics and their associated GMM estimators, but an example is the one-step Arellano

and Bond (1991) GMM estimator for panel data models with a single endogenous variable.

Two-step estimators do not fall in the class because of the presence of estimated structural

parameters in the weight matrix, but one could test for weak instruments in this setting,

fixing the parameter of the endogenous variable in the weight matrix, for example under

a specific null value of interest.

A topic for future research for the general heteroskedasticity setting is an extension to

the linear model with more than one endogenous variable. Lewis and Mertens (2022) is

an extension of the Montiel Olea and Pflueger (2013) method to the multiple endogenous

variable case for the 2SLS estimator, but they do not consider such an extension for the

wider class of GMM estimators. Future research should also address the weak-instruments

Wald size properties for both the single and multiple endogenous variables settings.
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Appendix

A.1 A Grouped-Data Design with F̂eff > F̂r

From the results on the relative magnitude of the concentration parameters as discussed

in Section 4 and footnote 2, we can change the parameter values such that F̂eff > F̂r in

expectation in the grouped-data design. Here we take the moderate-endogeneity design of

Andrews (2018), but change the value of σ2
v2,1

from 0.004 to 20, adjusting σ2
u,1 and σuv2,1

accordingly, and change the value of π1 from 0.058 to 1.414. This results in the expected

group specific concentration parameter µ2
n,1 = 100, and so the first group is again the

informative group, but has now a relatively large variance σ2
v2

and a relatively large signal

π2
1. The estimation results are given in Table A1. F̂eff indicates that there is no weak-
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instruments problem for 2SLS, whereas F̂r shows that there is for the GMMf estimator.

The 2SLS estimator is virtually unbiased and the 2SLS Wald test is well behaved, whereas

the GMMf estimator displays bias with the its Wald test overrejecting. In this case, the

2SLS estimator gives a large weight of 0.98 to group 1, whereas this weight is 0.89 for

GMMf.

Table A1: Weak-instruments tests and estimation results, σ2
v2,1

= 20, π1 = 1.414

F̂ F̂eff cvLSeff RF F̂r cvLSr RF
46.10 46.12 18.55 1 11.42 16.03 0.025
(9.11) (9.17) (0.116) (2.16) (0.191)

β̂ols β̂2sls β̂gmmf Wald2sls Waldgmmf

-0.316 -0.007 -0.065 0.056 0.217
(0.011) (0.024) (0.061)

Notes: See notes to Tables 1 and 2. Moderate Endogeneity.

A.2 Parameter Values for Design of Section 6.2

The parameter values cg and Σuv2 =

[
σ2
u,g σuv2,g

σuv2,g σ2
v2,g

]
are given by

Table A2: Parameter values.
g cg σ2

u,g σuv2,g σ2
v2,g

1 20.6393 9.0052 1.7135 4.2487
2 27.6284 3.4060 1.7847 9.9668
3 -3.3019 2.3741 2.8222 6.0015
4 -38.7569 1.7522 -0.7409 0.4370
5 -11.1463 3.5420 -2.4995 8.6788
6 18.2092 3.2771 3.0059 4.0456
7 -0.4646 0.0538 0.3084 6.9979
8 25.0219 6.2319 4.8593 8.2675
9 -25.6606 5.8019 -0.4336 4.2698
10 5.9592 7.3973 0.8086 0.0968

Table A3 presents some Monte Carlo results for this design, for n = 10, 000, confirming

the theoretical results. We find here that the null of weak instruments is not rejected in

virtually all replications for the 2SLS estimator, whereas it is rejected in all replications

for the GMMf estimator. But the Monte Carlo bias of the 2SLS estimator, 0.022, is

slightly smaller than that of the of the GMMf estimator, 0.024, as indicated by the Nagar

bias approximations as detailed in Section 6.2.
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Table A3: Weak-instruments tests and estimation results
F̂eff cvLSeff RF F̂r cvLSr RF
9.49 15.85 0.00 44.24 19.47 1
(1.83) (0.10) (4.45) (0.15)

β̂ols β̂2sls β̂gmmf Wald2sls Waldgmmf

0.218 0.022 0.024 0.062 0.049
(0.009) (0.092) (0.149)

Notes: See notes to Tables 1 and 2. Design as in text and Appendix.

A.3 Proof of Lemma 1

It follows from the first-stage and reduced-form model specifications (2) and (3) and

Assumptions 1 and 2 that, as n→ ∞,

1√
n

(
Ω

1/2
n Z ′y

Ω
1/2
n Z ′x

)
=

(
Ω

1/2
n

(
1
n
Z ′Z

)
cβ + 1√

n
Ω

1/2
n Z ′v1

Ω
1/2
n

(
1
n
Z ′Z

)
c+ 1√

n
Ω

1/2
n Z ′v2

)
d→

(
γΩ,1

γΩ,2

)
:=

(
cΩβ + Ω1/2ψ1

cΩ + Ω1/2ψ2

)
∼ N

((
cΩβ

cΩ

)
,WΩ

)
, (A.1)

where cΩ = Ω1/2Qzzc.

As

β̂Ωn =
x′ZΩnZ

′y

x′ZΩnZ ′x
,

it follows that

β̂Ωn − β =
x′ZΩnZ

′u

x′ZΩnZ ′x
=
x′ZΩnZ

′ (v1 − βv2)

x′ZΩnZ ′x
.

Under Assumptions 1 and 2 it follows from (A.1) and the continuous mapping theorem

that

β̂Ωn − β
d→ β∗

Ω =
(
γ′Ω,2γΩ,2

)−1
γ′Ω,2 (γΩ,1 − βγΩ,2) .

As

F̂geff (Ωn) =
x′ZΩnZ

′x

ntr
(
Ŵ2Ωn

)
it follows Assumptions 1 and 2 that

F̂geff (Ωn)
d→

γ′Ω,2γΩ,2

tr (W2Ω)

again from (A.1) and the continuous mapping theorem.

32



A.4 Proof of Nagar Bias Result of Theorem 1

The Nagar bias result is obtained as follows. Let S (β,WΩ) be as defined in (14), and

ξ = S
−1/2
1 (β,WΩ) (γΩ,1 − βγΩ,2) ∼ N (0, 1) ,

ν = W
−1/2
Ω,2 (γΩ,2 − cΩ) ∼ N (0, 1) .

We then have that

β∗
Ω =

γ′Ω,2 (γΩ,1 − βγΩ,2)

γ′Ω,2γΩ,2

=
c′ΩS

1/2
1 (β,WΩ) ξ + ν ′W

1/2
Ω,2S

1/2
1 (β,WΩ) ξ

c′ΩcΩ + 2c′ΩW
1/2
Ω,2S

1/2
1 ν + ν ′WΩ,2ν

.

It follows that

∥cΩ∥β∗
Ω =

c′Ω,0S
1/2
1 (β,WΩ) ξ +

ν′W
1/2
Ω,2 S

1/2
1 (β,WΩ)ξ√

tr(WΩ,2)
µ−1
Ω

1 +
2c′Ω,0W

1/2
Ω,2 S

1/2
1 ν√

tr(WΩ,2)
µ−1
Ω +

ν′WΩ,2ν

tr(WΩ,2)
µ−2
Ω

,

where µ2
Ω = ∥cΩ∥2/tr (WΩ,2). Then from Rothenberg (1984, (6.2)), we get the second-order

Edgeworth, Nagar (1959) approximation

E (β∗
Ω) ≈

1

µ2
Ω

1

tr (WΩ,2)
E
[
ν ′W

1/2
Ω,2S

1/2
1 (β,WΩ) ξ − 2c′Ω,0S

1/2
1 (β,WΩ) ξc

′
Ω,0W

1/2
Ω,2 ν

]
=

1

µ2
Ω

(
tr
(
S12 (β,WΩ)− 2c′Ω,0S12 (β,WΩ) cΩ,0

)
tr (WΩ,2)

)
.
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