Innovation Spurred Evidence from South Korea's Big R&D Push

Luis F. Jaramillo (University of Maryland, JMP) Chan Kim (University of Maryland)

2024 Meetings of the European Economic Association Rotterdam, The Netherlands August 28th, 2024

• Despite clear theoretical grounds for interventions, open questions are: what works? what doesn't work?

- Despite clear theoretical grounds for interventions, open questions are: what works? what doesn't work?
- We know little about "mission-oriented" programs: large endeavors where the public sector takes an active role in coordinating actors around cross-sectoral issues

- Despite clear theoretical grounds for interventions, open questions are: what works? what doesn't work?
- We know little about "mission-oriented" programs: large endeavors where the public sector takes an active role in coordinating actors around cross-sectoral issues
- We study the G7 Program, South Korea's first "mission-oriented" National R&D Program, to investigate how industrial policy affects research output and economic outcomes

• We use newly digitized files from archival sources, patenting, and export data to study how patenting and exports in G7P-targeted technological classes evolved between 1980 and 2015

- We use newly digitized files from archival sources, patenting, and export data to study how patenting and exports in G7P-targeted technological classes evolved between 1980 and 2015
- We use a language model and rich textual data to determine targeted and control classes

- We use newly digitized files from archival sources, patenting, and export data to study how patenting and exports in G7P-targeted technological classes evolved between 1980 and 2015
- We use a language model and rich textual data to determine targeted and control classes
- We leverage that some high-potential research projects were planned but not implemented due to budget shocks in an event-study setting

- We use newly digitized files from archival sources, patenting, and export data to study how patenting and exports in G7P-targeted technological classes evolved between 1980 and 2015
- We use a language model and rich textual data to determine targeted and control classes
- We leverage that some high-potential research projects were planned but not implemented due to budget shocks in an event-study setting

• Main findings

- By the 10th year after receiving program support, targeted technological classes doubled their citationweighed patenting output and tripled their real exports relative to control classes
- Targeted and control classes observed no differential trends in outcomes or economic characteristics before receiving support
- The effect on patenting output materialized almost immediately. It took more time for exports (~5 years)
- Ours findings persist in a cross-country setting
- Technological classes with *less* concentrated scientific output before the program observe *greater* effects

- We use newly digitized files from archival sources, patenting, and export data to study how patenting and exports in G7P-targeted technological classes evolved between 1980 and 2015
- We use a language model and rich textual data to determine targeted and control classes
- We leverage that some high-potential research projects were planned but not implemented due to budget shocks in an event-study setting

• Main findings

- By the 10th year after receiving program support, targeted technological classes doubled their citationweighed patenting output and tripled their real exports relative to control classes
- Targeted and control classes observed no differential trends in outcomes or economic characteristics before receiving support
- The effect on patenting output materialized almost immediately. It took more time for exports (~5 years)
- Ours findings persist in a cross-country setting
- Technological classes with *less* concentrated scientific output before the program observe *greater* effects
- The G7P shifted the direction in which the South Korean economy innovated, with important economic consequences

- Answer to the exhaustion of South Korea's catching-up strategy
 - Soaring labour costs: real wages increased 70% between 1985 and 1992
 - Stagnating exports: 3% p.a. increase between 1987 and 1991

- Answer to the exhaustion of South Korea's catching-up strategy
 - Soaring labour costs: real wages increased 70% between 1985 and 1992
 - Stagnating exports: 3% p.a. increase between 1987 and 1991
- Large program
 - +7 bn USD between 1992 and 2001 (2023 USD)
 - ~ 100.000 researchers (Kwon, 2021)

- Answer to the exhaustion of South Korea's catching-up strategy
 - Soaring labour costs: real wages increased 70% between 1985 and 1992
 - Stagnating exports: 3% p.a. increase between 1987 and 1991
- Large program
 - +7 bn USD between 1992 and 2001 (2023 USD)
 - ~ 100.000 researchers (Kwon, 2021)
- A research subsidy. What's different?
 - Top-down, centralized approach to project selection
 - Projects were managed by a public research institute

- Answer to the exhaustion of South Korea's catching-up strategy
 - Soaring labour costs: real wages increased 70% between 1985 and 1992
 - Stagnating exports: 3% p.a. increase between 1987 and 1991
- Large program
 - +7 bn USD between 1992 and 2001 (2023 USD)
 - ~ 100.000 researchers (Kwon, 2021)
- A research subsidy. What's different?
 - Top-down, centralized approach to project selection
 - Projects were managed by a public research institute
- Focus on applied technology, not basic science

- Answer to the exhaustion of South Korea's catching-up strategy
 - Soaring labour costs: real wages increased 70% between 1985 and 1992
 - Stagnating exports: 3% p.a. increase between 1987 and 1991
- Large program
 - +7 bn USD between 1992 and 2001 (2023 USD)
 - ~ 100.000 researchers (Kwon, 2021)
- A research subsidy. What's different?
 - Top-down, centralized approach to project selection
 - Projects were managed by a public research institute
- Focus on applied technology, not basic science
- Two types of projects: "product" and "base" technologies

Туре	Name	Implementation		
	HDTV	1992 - 1994		
Product	High-capacity semiconductor	1995 - 1999		
	Next-generation car (electric vehicle)	1992 - 2001		
	Next-generation flat panel display	1995 - 2000		
	B-ISDN Devices for 10GB environments	1992 - 2001		
	New medicines and agrochemicals	1992 - 1997		
	Medical engineering	1995 - 2001		
	Ultra-compact precision machinery	1995 - 2001		
	High-speed train	1996 - 2001		
		1002 2001		
	Information, electronics, and energy materials	1992 - 2001		
	Biomaterials	1992 - 2001		
Base	Advanced Production System	1992 - 2001		
	Next-generation semiconductor	1993 - 1996		
	Environmental Engineering	1992 - 2001		
	Fuel-cell	1992 - 2001		
	Next-generation nuclear reactor	1992 - 2001		
	Human Ergonomics	1995 - 2001		
	Next-generation superconducting nuclear fusion			
	device	1995 - 2001		

- Answer to the exhaustion of South Korea's catching-up strategy
 - Soaring labour costs: real wages increased 70% between 1985 and 1992
 - Stagnating exports: 3% p.a. increase between 1987 and 1991
- Large program
 - +7 bn USD between 1992 and 2001 (2023 USD)
 - ~ 100.000 researchers (Kwon, 2021)
- A research subsidy. What's different?
 - Top-down, centralized approach to project selection
 - Projects were managed by a public research institute
- Focus on applied technology, not basic science
- Two types of projects: "product" and "base" technologies
- To address selection **concerns**, we leverage that some **high-potential projects** were **selected but not implemented** due to **budget shocks**
 - High Speed Ship
 - Aircraft Core Technology
 - Artificial Intelligence Computer
 - Automated Traffic Control System
 - Off-shore Manufacturing Plant

Туре	Name	Implementation		
Product	HDTV	1992 - 1994		
	High-capacity semiconductor	1995 - 1999		
	Next-generation car (electric vehicle)	1992 - 2001		
	Next-generation flat panel display	1995 - 2000		
	B-ISDN Devices for 10GB environments	1992 - 2001		
	New medicines and agrochemicals	1992 - 1997		
	Medical engineering	1995 - 2001		
	Ultra-compact precision machinery	1995 - 2001		
	High-speed train	1996 - 2001		
	Information electronics and energy materials	1002 2001		
	Riomatorials	1992 - 2001		
Base		1992 - 2001		
	Advanced Production System	1992 - 2001		
	Next-generation semiconductor	1993 - 1996		
	Environmental Engineering	1992 - 2001		
	Fuel-cell	1992 - 2001		
	Next-generation nuclear reactor	1992 - 2001		
	Human Ergonomics	1995 - 2001		
	Next-generation superconducting nuclear fusion			
	device	1995 - 2001		

- Patenting
 - Outcome: future-citation-weighed patenting output at the country- 4-digit IPC level (646 categories) from USPTO
 - **Period:** 1980 2015

- Patenting
 - Outcome: future-citation-weighed patenting output at the country- 4-digit IPC level (646 categories) from USPTO
 - **Period:** 1980 2015
- Exports
 - Outcome: Exports at the country-3-digit IPC level (131 categories) from UN-COMTRADE, Lybbert & Zolas (2014)
 - Period: 1980 2015

- Patenting
 - Outcome: future-citation-weighed patenting output at the country- 4-digit IPC level (646 categories) from USPTO
 - **Period:** 1980 2015
- Exports
 - Outcome: Exports at the country-3-digit IPC level (131 categories) from UN-COMTRADE, Lybbert & Zolas (2014)
 - Period: 1980 2015
- Industry Characteristics
 - Plant-level information coming from Korea's Mining and Manufacturing Survey (MMS)
 - **Period:** 1980 2003

- Patenting
 - Outcome: future-citation-weighed patenting output at the country- 4-digit IPC level (646 categories) from USPTO
 - **Period:** 1980 2015
- Exports
 - Outcome: Exports at the country-3-digit IPC level (131 categories) from UN-COMTRADE, Lybbert & Zolas (2014)
 - Period: 1980 2015
- Industry Characteristics
 - Plant-level information coming from Korea's Mining and Manufacturing Survey (MMS)
 - **Period:** 1980 2003
- G7 Program Files
 - Newly digitized information on final goal and description of activities, participating firms, time span, and private and public contributions for over +4,700 G7P—related projects
 - We use a language model (IPCCAT) to match each research project to IPC technological classes

사업구분									선도기술개발사업
3) 31 46 46	34 H B	연구기관 (책임자)	9 00)13	영구기간	'95 연구개발비(단위:천원)		:천원)	최종목표	9748
					图单	71 21	x		
95-G-02-01-A	교환기술분야개발	전자동신연구소 (임주환)	한화정보통신 동아전기 삼성전자(주) 대우통신(주) 우진전자동신 (주) LG정보통신 (주)	`92 ~ `97 (`95/01/01 ~`95/12/31)	32,868,000	44,237,000	77,105,000		
95-G-02-01 + 01	ATM 교환기 시스램 개 발	전자통신연구소 (참겨문)	한화정보통신 동아전기 삼성전자(주) 대우통신(주) 우진전차통신 (주) LG정보통신 (주)	`92 ~ `97 (`95/01/01 ~`95/12/31)	27,520.000	38,669,000	66,189,000	정보화 사회의 구축에 핵 심적인 광대역 ATM기 술,광교환기술 등 차세 대 교환기술개발	으소형 ATM 교환과 개발 완료 ⊙중형 ATM 교환기 구조 절개
95-G-02-01-A-01-A	ATM 교환기에서의 과 부하제어에 관한 연구	한남대학교 (최진군)					15,000		
95-G-02-01-A-01- AA	운용메시지의 음성화에 관한 연구	과학기술원 (오영환)					15,000	5	
95-G-02-01-A-01- AB	ATM 교환기의 내진동 설계 및 해석에 관한연 구	과학기술원 (업윤용)					25,000	1	

• We use a Local Projections (LP) approach (Dube et al., 2023) to estimate:

 $\Delta ihs(patents)_{s,g+h} =$

 $\Delta ihs(patents)_{s,g+h} = ihs(patents)_{s,g+h} - ihs(patents)_{s,g-1}$

*ihs(patents)*_{s,g+h} is the (ihs) of future-citation-weighed patents in an IPC 4-digit level technological class s, h years after G7P-targeting

• We use a Local Projections (LP) approach (Dube et al., 2023) to estimate:

$$\Delta ihs(patents)_{s,g+h} = \alpha + \beta_{g+h} \Delta G7P_{s,g+h} + \delta_{c,t} + \sum_{j=1987}^{2015} X_s \gamma_j + \varepsilon_{s,g+h,k}$$
$$\Delta ihs(patents)_{s,g+h} = ihs(patents)_{s,g+h} - ihs(patents)_{s,g-1}$$
$$\Delta G7P_{s,g+h} = G7P_{s,g+h} - G7P_{s,g-1}$$

ihs(patents)_{s,g+h} is the (ihs) of future-citation-weighed patents in an IPC 4-digit level technological class *s*, *h* years after G7P-targeting

$$\Delta ihs(patents)_{s,g+h} = \alpha + \beta_{g+h} \Delta G7P_{s,g+h} + \delta_{c,t} + \sum_{j=1987}^{2015} X_s \gamma_j + \varepsilon_{s,g+h,k}$$

$$\Delta ihs(patents)_{s,g+h} = ihs(patents)_{s,g+h} - ihs(patents)_{s,g-1}$$

$$\Delta G7P_{s,g+h} = G7P_{s,g+h} - G7P_{s,g-1}$$

- *ihs(patents)_{s,g+h}* is the (ihs) of future-citation-weighed patents in an IPC 4-digit level technological class *s*, *h* years after G7P-targeting
- $G7P_{s,g+h}$ is G7P treatment status for class s, h years after targeting

$$\Delta ihs(patents)_{s,g+h} = \alpha + \beta_{g+h} \Delta G7P_{s,g+h} + \delta_{c,t} + \sum_{j=1987}^{2015} X_s \gamma_j + \varepsilon_{s,g+h,k}$$

$$\Delta ihs(patents)_{s,g+h} = ihs(patents)_{s,g+h} - ihs(patents)_{s,g-1}$$

$$\Delta G7P_{s,g+h} = G7P_{s,g+h} - G7P_{s,g-1}$$

- *ihs(patents)*_{s,g+h} is the (ihs) of future-citation-weighed patents in an IPC 4-digit level technological class s, h years after G7P-targeting
- $G7P_{s,g+h}$ is G7P treatment status for class s, h years after targeting
- $\delta_{c,t}$ is a calendar year-IPC 3-digit level class c fixed effect

$$\Delta ihs(patents)_{s,g+h} = \alpha + \beta_{g+h} \Delta G7P_{s,g+h} + \delta_{c,t} + \sum_{j=1987}^{2015} X_s \gamma_j + \varepsilon_{s,g+h,k}$$
$$\Delta ihs(patents)_{s,g+h} = ihs(patents)_{s,g+h} - ihs(patents)_{s,g-1}$$
$$\Delta G7P_{s,g+h} = G7P_{s,g+h} - G7P_{s,g-1}$$

- *ihs(patents)*_{s,g+h} is the (ihs) of future-citation-weighed patents in an IPC 4-digit level technological class s, h years after G7P-targeting
- $G7P_{s,g+h}$ is G7P treatment status for class s, h years after targeting
- $\delta_{c,t}$ is a calendar year-IPC 3-digit level class c fixed effect
- X_s is technological class' s share of patenting output between 1987 and 1991, γ_i is a calendar-year dummy

• We use a Local Projections (LP) approach (Dube et al., 2023) to estimate:

 $\Delta ihs(patents)_{s,g+h} = \alpha + \beta_{g+h} \Delta G7P_{s,g+h} + \delta_{c,t} + \sum_{j=1987}^{2015} X_s \gamma_j + \varepsilon_{s,g+h,k}$ $\Delta ihs(patents)_{s,g+h} = ihs(patents)_{s,g+h} - ihs(patents)_{s,g-1}$ $\Delta G7P_{s,g+h} = G7P_{s,g+h} - G7P_{s,g-1}$

- *ihs(patents)*_{s,g+h} is the (ihs) of future-citation-weighed patents in an IPC 4-digit level technological class s, h years after G7P-targeting
- $G7P_{s,g+h}$ is G7P treatment status for class *s*, *h* years after targeting
- $\delta_{c,t}$ is a calendar year-IPC 3-digit level class c fixed effect
- X_s is technological class' s share of patenting output between 1987 and 1991, γ_j is a calendar-year dummy
- Using LP implies estimating the specification for each year separately and keeping only "newly treated" technological classes $(\Delta G7P_{s,g+h} = 1)$ or clean controls $(G7P_{s,g+h} = 0)$

• We use a Local Projections (LP) approach (Dube et al., 2023) to estimate:

 $\Delta ihs(exports)_{c,g+h} = \\\Delta ihs(exports)_{c,g+h} = ihs(exports)_{c,g+h} - ihs(exports)_{c,g-1}$

• *ihs(exports)*_{c,g+h} is the (ihs) of exports of an IPC 3-digit level technological class *c*, *h* years after G7P-targeting

• We use a Local Projections (LP) approach (Dube et al., 2023) to estimate:

$$\Delta ihs(exports)_{c,g+h} = \alpha + \beta_{g+h} \Delta G7P_{c,g+h} + \delta_{d,t} + \sum_{j=1987}^{2015} X_c \gamma_j + \varepsilon_{c,g+h}$$
$$\Delta ihs(exports)_{c,g+h} = ihs(exports)_{c,g+h} - ihs(exports)_{c,g-1}$$
$$\Delta G7P_{s,g+h} = G7P_{s,g+h} - G7P_{s,g-1}$$

• $ihs(exports)_{c,g+h}$ is the (ihs) of exports of an IPC 3-digit level technological class c, h years after G7P-targeting

$$\Delta ihs(exports)_{c,g+h} = \alpha + \beta_{g+h} \Delta G7P_{c,g+h} + \delta_{d,t} + \sum_{j=1987}^{2015} X_c \gamma_j + \varepsilon_{c,g+h}$$
$$\Delta ihs(exports)_{c,g+h} = ihs(exports)_{c,g+h} - ihs(exports)_{c,g-1}$$
$$\Delta G7P_{s,g+h} = G7P_{s,g+h} - G7P_{s,g-1}$$

- *ihs(exports)*_{c,g+h} is the (ihs) of exports of an IPC 3-digit level technological class *c*, *h* years after G7P-targeting
- $G7P_{c,g+h}$ is G7P treatment status for class c, h years after targeting

$$\Delta ihs(exports)_{c,g+h} = \alpha + \beta_{g+h} \Delta G7P_{c,g+h} + \delta_{d,t} + \sum_{j=1987}^{2015} X_c \gamma_j + \varepsilon_{c,g+h}$$
$$\Delta ihs(exports)_{c,g+h} = ihs(exports)_{c,g+h} - ihs(exports)_{c,g-1}$$
$$\Delta G7P_{s,g+h} = G7P_{s,g+h} - G7P_{s,g-1}$$

- *ihs(exports)*_{c,g+h} is the (ihs) of exports of an IPC 3-digit level technological class *c*, *h* years after G7P-targeting
- $G7P_{c,g+h}$ is G7P treatment status for class c, h years after targeting
- $\delta_{d,t}$ a calendar year-IPC 1-digit level technological domain d fixed effect

$$\Delta ihs(exports)_{c,g+h} = \alpha + \beta_{g+h} \Delta G7P_{c,g+h} + \delta_{d,t} + \sum_{j=1987}^{2015} X_c \gamma_j + \varepsilon_{c,g+h}$$
$$\Delta ihs(exports)_{c,g+h} = ihs(exports)_{c,g+h} - ihs(exports)_{c,g-1}$$
$$\Delta G7P_{s,g+h} = G7P_{s,g+h} - G7P_{s,g-1}$$

- *ihs(exports)*_{c,g+h} is the (ihs) of exports of an IPC 3-digit level technological class *c*, *h* years after G7P-targeting
- $G7P_{c,g+h}$ is G7P treatment status for class c, h years after targeting
- $\delta_{d,t}$ a calendar year-IPC 1-digit level technological domain d fixed effect
- X_c is technological class' c average export share between 1987 and 1991

• We use a Local Projections (LP) approach (Dube et al., 2023) to estimate:

 $\Delta ihs(exports)_{c,g+h} = \alpha + \delta_{d,t} + \beta_{g+h} \Delta G7P_{c,g+h} + \sum_{j=1987}^{2015} X_c \gamma_j + \varepsilon_{c,g+h}$ $\Delta ihs(exports)_{c,g+h} = ihs(exports)_{c,g+h} - ihs(exports)_{c,g-1}$ $\Delta G7P_{s,g+h} = G7P_{s,g+h} - G7P_{s,g-1}$

- *ihs(exports)*_{c,g+h} is the (ihs) of exports of an IPC 3-digit level technological class *c*, *h* years after G7P-targeting
- $G7P_{c,g+h}$ is G7P treatment status for class c, h years after targeting
- $\delta_{d,t}$ a calendar year-IPC 1-digit level technological domain d fixed effect
- X_c is technological class' c average export share between 1987 and 1991
- γ_j is a calendar-year dummy

• We use a Local Projections (LP) approach (Dube et al., 2023) to estimate:

 $\Delta ihs(exports)_{c,g+h} = \alpha + \delta_{d,t} + \beta_{g+h} \Delta G7P_{c,g+h} + \sum_{j=1987}^{2015} X_c \gamma_j + \varepsilon_{c,g+h}$ $\Delta ihs(exports)_{c,g+h} = ihs(exports)_{c,g+h} - ihs(exports)_{c,g-1}$ $\Delta G7P_{s,g+h} = G7P_{s,g+h} - G7P_{s,g-1}$

- *ihs(exports)*_{c,g+h} is the (ihs) of exports of an IPC 3-digit level technological class *c*, *h* years after G7P-targeting
- $G7P_{c,g+h}$ is G7P treatment status for class c, h years after targeting
- $\delta_{d,t}$ a calendar year-IPC 1-digit level technological domain d fixed effect
- X_c is technological class' c average export share between 1987 and 1991
- γ_j is a calendar-year dummy
- Using LP implies estimating the specification for each year separately and keeping only "newly treated" technological classes ($\Delta G7P_{s,g+h} = 1$) or clean controls ($G7P_{s,g+h} = 0$)

Results

Mechanisms

Conclusion

- The G7P shifted the direction in which the South Korean economy innovated
 - Large, persistent impact on citation-weighed patenting output for targeted technological classes
 - Almost immediate effects
 - Larger effects in technological classes with *less* concentrated scientific production

Conclusion

- The G7P shifted the direction in which the South Korean economy innovated
 - Large, persistent impact on citation-weighed patenting output for targeted technological classes
 - Almost immediate effects
 - Larger effects in technological classes with *less* concentrated scientific production
- Such shift had a relevant impact on the real economy
 - Large, long-lasting impact on exports for targeted technological classes
 - Effects took some time to materialize

감사합니다!

(Thank you!)

- <u>Alternative definition of patent nationality</u>
- Logarithmic transformation
- <u>Alternative quality thresholds for language model's predictions</u>
- <u>Additional pre-treatment lags</u>

