Dynamic Concern for Misspecification

Giacomo Lanzani

Harvard

August 2024

Lanzani ((Harvard)

・ロト ・日下・ ・ ヨト・

Motivation

- Misspecification—beliefs that rule out the true data generating process— is a pervasive issue for economic agents.
 - A central bank may consider different model economies of the data-generating process for output and inflation, but none may be correct.
 - Agents in a social network may find it hard to correctly account for redundant sources of information.
 - Misspecification is even more relevant when dealing with entirely novel issues, such as those related to human impact on climate change.

< □ > < □ > < □ > < □ > < □ >

- Fast-growing literature studies the consequence of Bayesian learning with misspecified models (Esponda and Pouzo, 2016 and the follow-up work).
- Misspecified learning as a unifying explanation for many biases (overconfidence, failures to understand regression to the mean, suboptimal behavior in the face of complex tax schedule, lemon's problems).
- But this literature also assumes that the agents always ignore the possibility of being misspecified.
- Normatively unappealing because misspecification has a strong predicted impact on learning problems.
- Also descriptively unrealistic, as some models of uncertainty/ambiguity-averse preferences embody incomplete trust in a single probability, and we have evidence in favor of it in many settings.

My approach

- I propose a model of agents who:
 - Learn about the data generating process from the consequences of their actions;
 - Hedge against misspecification in a way that generalizes the robust control preferences of Hansen and Sargent (2001);
 - Adaptively adjust their misspecification concern as a function of how well their subjective model explained past data.

イロト イヨト イヨト

Outline of Results

• There exists a unique "statistical" way to adjust misspecification concern with good performance under any possible DGP.

• Characterize the limit actions for different attitudes towards model failures, providing a learning foundation for different decision criteria under uncertainty.

• Applications to misperception of tax schedules (Rees-Jones and Taubinsky, 2020) and cyclical monetary policies (Sargent, 2008,2009).

< □ > < 同 > < 三 > < 三 >

Static Decision Problem

- Agent who repeatedly chooses from a finite number of actions $a \in A$.
- Consequences $y \in Y$.
- Utility index $u : A \times Y \to \mathbb{R}$ over actions and consequences.
- Each $a \in A$ induces an objective probability distribution $p_a^* \in \Delta(Y)$.
- Agent knows each period consequence only depends on the current action.
- The agent does not know $p^* = (p_a^*)_{a \in A}$ and deals with this uncertainty in a quasi-Bayesian way.

<ロ> <四> <四> <四> <三</p>

Purely Bayesian Benchmark

- The agent's models are described by parameters $\Theta,$ and a prior belief μ_0 with support $\Theta.$
- Each $\theta \in \Theta$ is associated with a distribution $q^{\theta} = (q^{\theta}_{a})_{a \in A} \in \Delta(Y)^{A}$.
- The agent is *correctly specified* if there exists $\theta \in \Theta$ such that $q^{\theta} = p^*$.
- The actions that maximize the SEU of an agent with belief μ are:

$$BR^{SEU}(\mu) = \operatorname{argmax}_{a \in A} \int_{\Theta} \mathbb{E}_{q_{a}^{\theta}} \left[u\left(a, y\right) \right] d\mu\left(\theta\right).$$

Average Robust Control

- Agent is concerned that none of these models is exact but only an approximation, with concern measured by $\lambda \ge 0$.
- For $p, p' \in \Delta(Y)$, let R(p||p') be the relative entropy between p and p'.
- The agent evaluates action *a* with the *average robust control* criterion of Cerreia-Vioglio, Hansen, Maccheroni, Marinacci (2022):

$$\int_{\Theta} \min_{p_{a} \in \Delta(Y)} \left(\mathbb{E}_{p_{a}} \left[u\left(a, y\right) \right] + \frac{R\left(p_{a} | | q_{a}^{\theta}\right)}{\lambda} \right) d\mu\left(\theta\right).$$

- Hansen and Sargent (2001)'s robust control: μ is a Dirac on (the usually correct) θ^* : rational expectations + robustness.
- The nondegenerate average over models captures the fact that the agent hasn't yet discovered the true model.

イロト 不得 トイヨト イヨト

э

Reaction to Information

- We want the agent's beliefs and concern for misspecification to adapt to the received information.
- Belief $\mu \in \Delta(\Theta)$ updated to $\mu(\cdot|h_t)$ through standard Bayesian updating.
- Concern for misspecification is a function $\lambda(h_t)$ of how well the agent's model explained the current history h_t .
- The relation between $\lambda(h_t)$ and the average log-likelihood ratio of the model (LLR) turns out to be crucial.

Two Desiderata: Safety and No Regret

- **Safety:** The limit time-average payoff should be at least what the agent can guarantee against *every* possible data generating process.
- Mild but it has a significant bite under misspecification: often a Bayesian SEU agent fails it, a lot of criticism for misspecified learning comes from this.
- No Regret Under Correct Specification: If the agent is correctly specified limit time-average payoff should converge to the payoff of the objectively best action.
- Can be interpreted as requiring that the long run probability of Type I error goes to 0.

Theorem (Informal)

● For every decision problem and there exists a c̄ ≥ 0 such that for all c ≥ c̄, the average robust control with

$$\boldsymbol{\lambda}(h_t) = c \frac{LLR(h_t, \Theta)}{t}$$

is safe and has no regret under correct specification.

There are decision problems for which there are no safe and no regret under correct specification average robust control such that

$$o\left(\boldsymbol{\lambda}(h_t)
ight) = rac{LLR(h_t,\Theta)}{t} \quad or \quad \boldsymbol{\lambda}(h_t) = o\left(rac{LLR(h_t,\Theta)}{t}
ight)$$

- It is always safe and no regret under correct specification to keep the concern proportional to the LLR.
- Any rule that is globally more demanding or lenient in the evaluation of the model performance fails one of these conditions in some decision problem.

4 D K 4 B K 4 B K 4

• I refer to
$$oldsymbol{\lambda}(h_t) = c rac{LLR(h_t, \Theta)}{t}$$
 as "statistically sophisticated."

 o (λ(h_t)) = LLR(h_t,Θ)/t, is a "demanding type", sort of a belief in the Law of Small Numbers, if the empirical frequency doesn't quickly match the theoretical distribution they grow suspicious of the model.

• $\lambda(h_t) = o\left(\frac{LLR(h_t,\Theta)}{t}\right)$ is a "lenient type" that attributes too much of the unexplained evidence to sampling variability.

Equilibrium Concepts

 Let Θ (a) = argmin_{θ∈Θ} R (p^{*}_a||q^θ_a) be the set of distributions that best fit the true data generating process while action a is played.

Definition

Action a^* is a:

1 Berk-Nash equilibrium if there exists $\nu \in \Delta(\Theta)$ with

$$\mathbf{a}^{*} \in BR^{SEU}\left(
u
ight)$$
, $\operatorname{supp}
u \subseteq \Theta\left(\mathbf{a}^{*}
ight)$.

- Maxmin equilibrium if a^{*} is the maxmin best reply to the distributions that are absolutely continuous wrt some {q_θ : θ ∈ Θ(a^{*})}.
- **③** *c-robust equilibrium* if there exists $\nu \in \Delta(\Theta)$ with

$$a^{*}\in BR^{\lambda}\left(
u
ight)$$
, $\mathrm{supp}
u\subseteq\Theta\left(a^{*}
ight)$, $\lambda=c\min_{ heta\in\Theta}R\left(p_{a^{*}}^{*}||q_{a^{*}}^{ heta}
ight)$.

< ロ > < 同 > < 回 > < 回 >

Taxonomy Under Misspecification

• Action *a* is a λ -limit action if there is a λ -optimal policy Π such that $\mathbb{P}_{\Pi}[\sup\{t: a_t \neq a\} < \infty] > 0.$

Theorem

Suppose that the agent is misspecified and a^* is a λ -limit action. We have:

- **(**) If λ is lenient, then a^* is a Berk-Nash equilibrium (SEU).
- **2** If λ is demanding, then a^* is a maxmin equilibrium.
- If $\lambda(h_t) = c \frac{LLR(h_t, \Theta)}{t}$ then a^* is a *c*-robust equilibrium.

イロト イボト イヨト イヨト

Taking Stock

- Learning foundation for different uncertainty attitudes.
- Positive correlation between misspecification and uncertainty aversion.
- Positive correlation between uncertainty aversion and belief in the Law of Small Numbers.
- These relations are causal: misspecification and belief in the Law of Small Numbers induce more uncertainty aversion.
- Long-run uncertainty aversion is higher under convergence to an action with consequences that are less well predicted by the models.

イロト イボト イヨト イヨト

Conclusion

• Model endogenous misspecification concern and establish a normative benchmark.

• Characterize the limit actions and give a learning foundation for different decision criteria under uncertainty.

• Paper shows that the model is consistent with response to tax schedules and monetary policy cycles.

イロト イヨト イヨト

Proof Sketch

• **Step 1**: Show that on almost all histories if the empirical action frequency converges to *α* then

$$\frac{LLR(h_t,\Theta)}{t} - \min_{\theta\in\Theta} \sum_{a\in A} \alpha(a) R\left(f_a^t || q_a^\theta\right) \to 0,$$

where f_a^t is the empirical outcome frequency after action *a*.

• Step 2: Prove that although the $(R(\cdot|q_a^{\theta}))_{\theta\in\Theta}$ are not continuous (so cannot apply maximum theorem)

$$\min_{\theta \in \Theta} \sum_{a \in A} \alpha_t(a) R\left(f_a^t || q_a^\theta\right) \to \min_{\theta \in \Theta} \sum_{a \in A} \alpha(a) R\left(p_a^* || q_a^\theta\right) \qquad a.s.$$

• So λ converges to 0 (lenient) to a finite positive number (statistically sophisticated), infinity (demanding).

• Step 3: Generalization of Berk (1966, exogenous action) and Esponda and Pouzo (2016, finite Y) to show beliefs must concentrate on $\Theta(a)$.

 Step 4: Extend the result of Maccheroni, Marinacci, and Rustichini (2006) on the limits for λ to 0 or ∞ to allow for:

- Evaluation of continuous rather than finite range utility;
- (Infinite) average of robust control evaluations instead of single one;
- Convergent but time-changing weights in the average.

イロト イボト イヨト イヨト